首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The molecular mechanisms underlying the formation of carriers trafficking from the Golgi complex to the cell surface are still ill-defined; nevertheless, the involvement of a lipid-based machinery is well established. This includes phosphatidylinositol 4-phosphate (PtdIns(4)P), the precursor for phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)). In yeast, PtdIns(4)P exerts a direct role, however, its mechanism of action and its targets in mammalian cells remain uncharacterized. We have identified two effectors of PtdIns(4)P, the four-phosphate-adaptor protein 1 and 2 (FAPP1 and FAPP2). Both proteins localize to the trans-Golgi network (TGN) on nascent carriers, and interact with PtdIns(4)P and the small GTPase ADP-ribosylation factor (ARF) through their plekstrin homology (PH) domain. Displacement or knockdown of FAPPs inhibits cargo transfer to the plasma membrane. Moreover, overexpression of FAPP-PH impairs carrier fission. Therefore, FAPPs are essential components of a PtdIns(4)P- and ARF-regulated machinery that controls generation of constitutive post-Golgi carriers.  相似文献   

2.
Phosphatidylinositol-4-phosphate (PI4P) plays a crucial role in cellular functions, including protein trafficking, and is mainly located in the cytoplasmic surface of intracellular membranes, which include the trans-Golgi network (TGN) and the plasma membrane. However, many PI4P-binding domains of membrane-associated proteins are localized only to the TGN because of the requirement of a second binding protein such as ADP-ribosylation factor 1 (ARF1) in order to be stably localized to the specific membrane. In this study, we developed new probes that were capable of detecting PI4P at the plasma membrane using the known TGN-targeting PI4P-binding domains. The PI4P-specific binding pleckstrin homology (PH) domain of various proteins including CERT, OSBP, OSH1, and FAPP1 was combined with the N-terminal moderately hydrophobic domain of the short-form of Aplysia phosphodiesterase 4 (S(N30)), which aids in plasma membrane association but cannot alone facilitate this association. As a result, we found that the addition of S(N30) to the N-terminus of the GFP-fused PH domain of OSBP (S(N30)-GFP-OSBP-PH), OSH1 (S(N30)-GFP-OSH1-PH), or FAPP1 (S(N30)-GFP-FAPP1-PH) could induce plasma membrane localization, as well as retain TGN localization. The plasma membrane localization of S(N30)-GFP-FAPP1-PH is mediated by PI4P binding only, whereas those of S(N30)-GFP-OSBP-PH and S(N30)-GFP-OSH1-PH are mediated by either PI4P or PI(4,5)P2 binding. Taken together, we developed new probes that detect PI4P at the plasma membrane using a combination of a moderately hydrophobic domain with the known TGN-targeting PI4P-specific binding PH domain.  相似文献   

3.
BACKGROUND: Phosphoinositides are required for the recruitment of many proteins to both the plasma membrane and the endosome; however, their role in protein targeting to other organelles is less clear. The pleckstrin homology (PH) domains of oxysterol binding protein (OSBP) and its relatives have been shown to bind to the Golgi apparatus in yeast and mammalian cells. Previous in vitro binding studies identified phosphatidylinositol (PtdIns) (4)P and PtdIns(4,5)P(2) as candidate ligands, but it is not known which is recognized in vivo and whether phosphoinositide specificity can account for Golgi-specific targeting. RESULTS: We have examined the distribution of GFP fusions to the PH domain of OSBP and to related PH domains in yeast strains carrying mutations in individual phosphoinositide kinases. We find that Golgi targeting requires the activity of the PtdIns 4-kinase Pik1p but not phosphorylation of PtdIns at the 3 or 5 positions and that a PH domain specific for PtdIns(4,5)P(2) is targeted exclusively to the plasma membrane. However, a mutant version of the OSBP PH domain that does not bind phosphoinositides in vitro still shows some targeting in vivo. This targeting is independent of Pik1p but dependent on the Golgi GTPase Arf1p. CONCLUSIONS: Phosphorylation of PtdIns at the 4 position but not conversion to PtdIns(4,5)P(2) contributes to recruitment of PH domains to the Golgi apparatus. However, potential phosphoinositide ligands for these PH domains are not restricted to the Golgi, and the OSBP PH domain also recognizes a second determinant that is ARF dependent, indicating that organelle specificity reflects a combinatorial interaction.  相似文献   

4.
In mammalian cells, three types of phosphatidylinositol 4-kinase (PI4K) are associated with the Golgi complex, where their product, phosphatidylinositol 4-phosphate [PtdIns(4)P], is concentrated. The role of PtdIns(4)P in this compartment and how the PtdIns(4)P-positive membrane domain is formed and maintained despite continuous membrane flow are, however, poorly understood. Recent work has shown that PtdIns(4)P and the small GTPase ARF1 function cooperatively in the recruitment of four-phosphate adaptor proteins (FAPPs) to the trans-Golgi network (TGN) and has implicated FAPPs in formation of the membrane domain and in post-Golgi trafficking.  相似文献   

5.
Protein kinase D (PKD) isoenzymes regulate the formation of transport carriers from the trans-Golgi network (TGN) that are en route to the plasma membrane. The PKD C1a domain is required for the localization of PKDs at the TGN. However, the precise mechanism of how PKDs are recruited to the TGN is still elusive. Here, we report that ADP-ribosylation factor (ARF1), a small GTPase of the Ras superfamily and a key regulator of secretory traffic, specifically interacts with PKD isoenzymes. ARF1, but not ARF6, binds directly to the second cysteine-rich domain (C1b) of PKD2, and precisely to Pro275 within this domain. Pro275 in PKD2 is not only crucial for the PKD2-ARF1 interaction but also for PKD2 recruitment to and PKD2 function at the TGN, namely, protein transport to the plasma membrane. Our data suggest a novel model in which ARF1 recruits PKD2 to the TGN by binding to Pro275 in its C1b domain followed by anchoring of PKD2 in the TGN membranes via binding of its C1a domain to diacylglycerol. Both processes are critical for PKD2-mediated protein transport.  相似文献   

6.
ARHGAP21 is a Rho family GTPase-activating protein (RhoGAP) that controls the Arp2/3 complex and F-actin dynamics at the Golgi complex by regulating the activity of the small GTPase Cdc42. ARHGAP21 is recruited to the Golgi by binding to another small GTPase, ARF1. Here, we present the crystal structure of the activated GTP-bound form of ARF1 in a complex with the Arf-binding domain (ArfBD) of ARHGAP21 at 2.1 A resolution. We show that ArfBD comprises a PH domain adjoining a C-terminal alpha helix, and that ARF1 interacts with both of these structural motifs through its switch regions and triggers structural rearrangement of the PH domain. We used site-directed mutagenesis to confirm that both the PH domain and the helical motif are essential for the binding of ArfBD to ARF1 and for its recruitment to the Golgi. Our data demonstrate that two well-known small GTPase-binding motifs, the PH domain and the alpha helical motif, can combine to create a novel mode of binding to Arfs.  相似文献   

7.
The general receptor for phosphoinositides isoform 1 (GRP1) is recruited to the plasma membrane in response to activation of phosphoinositide 3-kinases and accumulation of phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)]. GRP1's pleckstrin homology (PH) domain recognizes PtdIns(3,4,5)P(3) with high specificity and affinity, however, the precise mechanism of its association with membranes remains unclear. Here, we detail the molecular basis of membrane anchoring by the GRP1 PH domain. Our data reveal a multivalent membrane docking involving PtdIns(3,4,5)P(3) binding, regulated by pH and facilitated by electrostatic interactions with other anionic lipids. The specific recognition of PtdIns(3,4,5)P(3) triggers insertion of the GRP1 PH domain into membranes. An acidic environment enhances PtdIns(3,4,5)P(3) binding and increases membrane penetration as demonstrated by NMR and monolayer surface tension and surface plasmon resonance experiments. The GRP1 PH domain displays a 28 nM affinity for POPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine/PtdIns(3,4,5)P(3) vesicles at pH 6.0, but binds 22-fold weaker at pH 8.0. The pH sensitivity is attributed in part to the His355 residue, protonation of which is required for the robust interaction with PtdIns(3,4,5)P(3) and significant membrane penetration, as illustrated by mutagenesis data. The binding affinity of the GRP1 PH domain for PtdIns(3,4,5)P(3)-containing vesicles is further amplified (by approximately 6-fold) by nonspecific electrostatic interactions with phosphatidylserine/phosphatidylinositol. Together, our results provide new insight into the multivalent mechanism of the membrane targeting and regulation of the GRP1 PH domain.  相似文献   

8.
Inside-out activation of integrins is mediated via the binding of talin and kindlin to integrin β-subunit cytoplasmic tails. The kindlin FERM domain is interrupted by a pleckstrin homology (PH) domain within its F2 subdomain. Here, we present data confirming the importance of the kindlin-1 PH domain for integrin activation and its x-ray crystal structure at a resolution of 2.1 Å revealing a C-terminal second α-helix integral to the domain but found only in the kindlin protein family. An isoform-specific salt bridge occludes the canonical phosphoinositide binding site, but molecular dynamics simulations display transient switching to an alternative open conformer. Molecular docking reveals that the opening of the pocket would enable potential ligands to bind within it. Although lipid overlay assays suggested the PH domain binds inositol monophosphates, surface plasmon resonance demonstrated weak affinities for inositol 3,4,5-triphosphate (Ins(3,4,5)P3; KD ∼100 μm) and no monophosphate binding. Removing the salt bridge by site-directed mutagenesis increases the PH domain affinity for Ins(3,4,5)P3 as measured by surface plasmon resonance and enables it to bind PtdIns(3,5)P2 on a dot-blot. Structural comparison with other PH domains suggests that the phosphate binding pocket in the kindlin-1 PH domain is more occluded than in kindlins-2 and -3 due to its salt bridge. In addition, the apparent affinity for Ins(3,4,5)P3 is affected by the presence of PO4 ions in the buffer. We suggest the physiological ligand of the kindlin-1 PH domain is most likely not an inositol phosphate but another phosphorylated species.  相似文献   

9.
GRP1 and the related proteins ARNO and cytohesin-1 are ARF exchange factors that contain a pleckstrin homology (PH) domain thought to target these proteins to cell membranes through binding polyphosphoinositides. Here we show the PH domains of all three proteins exhibit relatively high affinity for dioctanoyl phosphatidylinositol 3,4,5-triphosphate (PtdIns(3,4,5)P(3)), with K(D) values of 0.05, 1.6 and 1.0 micrometer for GRP1, ARNO, and cytohesin-1, respectively. However, the GRP1 PH domain was unique among these proteins in its striking selectivity for PtdIns(3,4, 5)P(3) versus phosphatidylinositol 4,5-diphosphate (PtdIns(4,5)P(2)), for which it exhibits about 650-fold lower apparent affinity. Addition of a glycine to the Gly(274)-Gly(275) motif in GRP1 greatly increased its binding affinity for PtdIns(4,5)P(2) with little effect on its binding to PtdIns(3,4,5)P(3), while deletion of a single glycine in the corresponding triglycine motif of the ARNO PH domain markedly reduced its binding affinity for PtdIns(4,5)P(2) but not for PtdIns(3,4,5)P(3). In intact cells, the hemagglutinin epitope-tagged PH domain of GRP1 was recruited to ruffles in the cell surface in response to insulin, as were full-length GRP1 and cytohesin-1, but the PH domain of cytohesin-1 was not. These data indicate that the unique diglycine motif in the GRP1 PH domain, as opposed to the triglycine in ARNO and cytohesin-1, directs its remarkable PtdIns(3,4,5)P(3) binding selectivity.  相似文献   

10.
Class I myosins, which link F-actin to membrane, are largely undefined in lymphocytes. Mass spectrometric analysis of lymphocytes identified two short tail forms: (Myo1G and Myo1C) and one long tail (Myo1F). We investigated Myo1G, the most abundant in T-lymphocytes, and compared key findings with Myo1C and Myo1F. Myo1G localizes to the plasma membrane and associates in an ATP-releasable manner to the actin-containing insoluble pellet. The IQ+tail region of Myo1G (Myo1C and Myo1F) is sufficient for membrane localization, but membrane localization is augmented by the motor domain. The minimal region lacks IQ motifs but includes: 1) a PH-like domain; 2) a “Pre-PH” region; and 3) a “Post-PH” region. The Pre-PH predicted α helices may contribute electrostatically, because two conserved basic residues on one face are required for optimal membrane localization. Our sequence analysis characterizes the divergent PH domain family, Myo1PH, present also in long tail myosins, in eukaryotic proteins unrelated to myosins, and in a probable ancestral protein in prokaryotes. The Myo1G Myo1PH domain utilizes the classic lipid binding site for membrane association, because mutating either of two basic residues in the “signature motif” destroys membrane localization. Mutation of each basic residue of the Myo1G Myo1PH domain reveals another critical basic residue in the β3 strand, which is shared only by Myo1D. Myo1G differs from Myo1C in its phosphatidylinositol 4,5-bisphosphate dependence for membrane association, because membrane localization of phosphoinositide 5-phosphatase releases Myo1C from the membrane but not Myo1G. Thus Myo1PH domains likely play universal roles in myosin I membrane association, but different isoforms have diverged in their binding specificity.  相似文献   

11.
Association of the Golgi-specific adaptor protein complex 1 (AP-1) with the membrane is a prerequisite for clathrin coat assembly on the trans-Golgi network (TGN). The AP-1 adaptor is efficiently recruited from cytosol onto the TGN by myristoylated ADP-ribosylation factor 1 (ARF1) in the presence of the poorly hydrolyzable GTP analog guanosine 5′-O-(3-thiotriphosphate) (GTPγS). Substituting GTP for GTPγS, however, results in only poor AP-1 binding. Here we show that both AP-1 and clathrin can be recruited efficiently onto the TGN in the presence of GTP when cytosol is supplemented with ARF1. Optimal recruitment occurs at 4 μM ARF1 and with 1 mM GTP. The AP-1 recruited by ARF1·GTP is released from the Golgi membrane by treatment with 1 M Tris-HCl (pH 7) or upon reincubation at 37°C, whereas AP-1 recruited with GTPγS or by a constitutively active point mutant, ARF1(Q71L), remains membrane bound after either treatment. An incubation performed with added ARF1, GTP, and AlFn, used to block ARF GTPase-activating protein activity, results in membrane-associated AP-1, which is largely insensitive to Tris extraction. Thus, ARF1·GTP hydrolysis results in lower-affinity binding of AP-1 to the TGN. Using two-stage assays in which ARF1·GTP first primes the Golgi membrane at 37°C, followed by AP-1 binding on ice, we find that the high-affinity nucleating sites generated in the priming stage are rapidly lost. In addition, the AP-1 bound to primed Golgi membranes during a second-stage incubation on ice is fully sensitive to Tris extraction, indicating that the priming stage has passed the ARF1·GTP hydrolysis point. Thus, hydrolysis of ARF1·GTP at the priming sites can occur even before AP-1 binding. Our finding that purified clathrin-coated vesicles contain little ARF1 supports the concept that ARF1 functions in the coat assembly process rather than during the vesicle-uncoating step. We conclude that ARF1 is a limiting factor in the GTP-stimulated recruitment of AP-1 in vitro and that it appears to function in a stoichiometric manner to generate high-affinity AP-1 binding sites that have a relatively short half-life.  相似文献   

12.
Mouse alpha 1-syntrophin sequences were produced as chimeric fusion proteins in bacteria and found to bind phosphatidylinositol 4, 5-bisphosphate (PtdIns4,5P2). Half-maximal binding occurred at 1.9 microM PtdIns4,5P2 and when 1.2 PtdIns4,5P2 were added per syntrophin. Binding was specific for PtdIns4,5P2 and did not occur with six other tested lipids including the similar phosphatidylinositol 4-phosphate. Binding was localized to the N-terminal pleckstrin homology domain (PH1); the second, C-terminal PH2 domain did not bind lipids. Key residues in PtdIns4,5P2 binding to a PH domain were found to be conserved in alpha-syntrophins' PH1 domains and absent in PH2 domains, suggesting a molecular basis for binding.  相似文献   

13.
P-Rex1 is a guanine-nucleotide exchange factor (GEF) for the small GTPase Rac. We have investigated here the mechanisms of stimulation of P-Rex1 Rac-GEF activity by the lipid second messenger phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) and the Gbetagamma subunits of heterotrimeric G proteins. We show that a P-Rex1 mutant lacking the PH domain (DeltaPH) cannot be stimulated by PtdIns(3,4,5)P3, which implies that the PH domain confers PtdIns(3,4,5)P3 regulation of P-Rex1 Rac-GEF activity. Consistent with this, we found that PtdIns(3,4,5)P3 binds to the PH domain of P-Rex1 and that the DH/PH domain tandem is sufficient for PtdIns(3,4,5)P3-stimulated P-Rex1 activity. The Rac-GEF activities of the DeltaPH mutant and the DH/PH domain tandem can both be stimulated by Gbetagamma subunits, which infers that Gbetagamma subunits regulate P-Rex1 activity by binding to the catalytic DH domain. Deletion of the DEP, PDZ, or inositol polyphosphate 4-phosphatase homology domains has no major consequences on the abilities of either PtdIns(3,4,5)P3 or Gbetagamma subunits to stimulate P-Rex1 Rac-GEF activity. However, the presence of any of these domains impacts on the levels of basal and/or stimulated P-Rex1 Rac-GEF activity, suggesting that there are important functional interactions between the DH/PH domain tandem and the DEP, PDZ, and inositol polyphosphate 4-phosphatase homology domains of P-Rex1.  相似文献   

14.
mTORC2 (mammalian target of rapamycin complex 2) plays important roles in signal transduction by regulating an array of downstream effectors, including protein kinase AKT. However, its regulation by upstream regulators remains poorly characterized. Although phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) is known to regulate the phosphorylation of AKT Ser(473), the hydrophobic motif (HM) site, by mTORC2, it is not clear whether PtdIns(3,4,5)P(3) can directly regulate mTORC2 kinase activity. Here, we used two membrane-docked AKT mutant proteins, one with and the other without the pleckstrin homology (PH) domain, as substrates for mTORC2 to dissect the roles of PtdIns(3,4,5)P(3) in AKT HM phosphorylation in cultured cells and in vitro kinase assays. In HEK293T cells, insulin and constitutively active mutants of small GTPase H-Ras and PI3K could induce HM phosphorylation of both AKT mutants, which was blocked by the PI3K inhibitor LY294002. Importantly, PtdIns(3,4,5)P(3) was able to stimulate the phosphorylation of both AKT mutants by immunoprecipitated mTOR2 complexes in an in vitro kinase assay. In both in vivo and in vitro assays, the AKT mutant containing the PH domain appeared to be a better substrate than the one without the PH domain. Therefore, these results suggest that PtdIns(3,4,5)P(3) can regulate HM phosphorylation by mTORC2 via multiple mechanisms. One of the mechanisms is to directly stimulate the kinase activity of mTORC2.  相似文献   

15.
The group I family of pleckstrin homology (PH) domains are characterized by their inherent ability to specifically bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) and its corresponding inositol head-group inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P(4)). In vivo this interaction results in the regulated plasma membrane recruitment of cytosolic group I PH domain-containing proteins following agonist-stimulated PtdIns(3,4,5)P(3) production. Among group I PH domain-containing proteins, the Ras GTPase-activating protein GAP1(IP4BP) is unique in being constitutively associated with the plasma membrane. Here we show that, although the GAP1(IP4BP) PH domain interacts with PtdIns(3,4, 5)P(3), it also binds, with a comparable affinity, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) (K(d) values of 0.5 +/- 0.2 and 0.8 +/- 0.5 microm, respectively). Intriguingly, whereas this binding site overlaps with that for Ins(1,3,4,5)P(4), consistent with the constitutive plasma membrane association of GAP1(IP4BP) resulting from its PH domain-binding PtdIns(4,5)P(2), we show that in vivo depletion of PtdIns(4,5)P(2), but not PtdIns(3,4,5)P(3), results in dissociation of GAP1(IP4BP) from this membrane. Thus, the Ins(1,3,4,5)P(4)-binding PH domain from GAP1(IP4BP) defines a novel class of group I PH domains that constitutively targets the protein to the plasma membrane and may allow GAP1(IP4BP) to be regulated in vivo by Ins(1,3,4,5)P(4) rather than PtdIns(3,4,5)P(3).  相似文献   

16.
The phosphatidylinositol (PtdIns) 3-kinase (PI3K) family regulates diverse cellular processes, including cell proliferation, migration, and vesicular trafficking, through catalyzing 3′-phosphorylation of phosphoinositides. In contrast to class I PI3Ks, including p110α and p110β, functional roles of class II PI3Ks, comprising PI3K-C2α, PI3K-C2β, and PI3K-C2γ, are little understood. The lysophospholipid mediator sphingosine 1-phosphate (S1P) plays the important roles in regulating vascular functions, including vascular formation and barrier integrity, via the G-protein-coupled receptors S1P1–3. We studied the roles of PI3K-C2α in S1P-induced endothelial cell (EC) migration and tube formation. S1P stimulated cell migration and activation of Akt, ERK, and Rac1, the latter of which acts as a signaling molecule essential for cell migration and tube formation, via S1P1 in ECs. Knockdown of either PI3K-C2α or class I p110β markedly inhibited S1P-induced migration, lamellipodium formation, and tube formation, whereas that of p110α or Vps34 did not. Only p110β was necessary for S1P-iduced Akt activation, but both PI3K-C2α and p110β were required for Rac1 activation. FRET imaging showed that S1P induced Rac1 activation in both the plasma membrane and PtdIns 3-phosphate (PtdIns(3)P)-enriched endosomes. Knockdown of PI3K-C2α but not p110β markedly reduced PtdIns(3)P-enriched endosomes and suppressed endosomal Rac1 activation. Also, knockdown of PI3K-C2α but not p110β suppressed S1P-induced S1P1 internalization into PtdIns(3)P-enriched endosomes. Finally, pharmacological inhibition of endocytosis suppressed S1P-induced S1P1 internalization, Rac1 activation, migration, and tube formation. These observations indicate that PI3K-C2α plays the crucial role in S1P1 internalization into the intracellular vesicular compartment, Rac1 activation on endosomes, and thereby migration through regulating vesicular trafficking in ECs.  相似文献   

17.
For decades, phosphatidylinositol 4-phosphate (PtdIns4P) was considered primarily as a precursor in the synthesis of phosphatidylinositol(4,5)bisphosphate (PtdIns(4,5)P2). More recently, specific functions for PtdIns4P itself have been identified, particularly in the regulation of intracellular membrane trafficking. PI4K2A/PI4KIIα (phosphatidylinositol 4-kinase type 2 α), one of the 4 enzymes that catalyze PtdIns4P production in mammalian cells, promotes vesicle formation from the trans-Golgi network (TGN) and endosomes. We recently identified a novel function for PI4K2A-derived PtdIns4P, as a facilitator of autophagosome-lysosome (A-L) fusion. We further showed that that this function requires the presence of the autophagic adaptor protein GABARAP (GABA[A] receptor-associated protein), which binds to PI4K2A and recruits it to autophagosomes. The mechanism whereby GABARAP-PI4K2A-PtdIns4P promotes A-L fusion remains to be defined. Based on other examples of phosphoinositide involvement in membrane trafficking, we speculate that it acts by recruiting elements of the membrane docking and fusion machinery.  相似文献   

18.
PDZ domains are well known protein-protein interaction modules that, as part of multidomain proteins, assemble molecular complexes. Some PDZ domains have been reported to interact with membrane lipids, in particular phosphatidylinositol phosphates, but few studies have been aimed at elucidating the prevalence or the molecular details of such interactions. We screened 46 Drosophila PDZ domains for phosphoinositide-dependent cellular localization and discovered that the second PDZ domain of polychaetoid (Pyd PDZ2) interacts with phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) at the plasma membrane. Surface plasmon resonance binding experiments with recombinant protein established that Pyd PDZ2 interacts with phosphatidylinositol phosphates with apparent affinities in the micromolar range. Electrostatic interactions involving an extended positively charged surface of Pyd PDZ2 are crucial for the PtdIns(4,5)P(2)-dependent membrane interactions as shown by a combination of three-dimensional modeling, mutagenesis, binding, and localization studies. In vivo localization studies further suggested that both lipid and peptide binding contribute to membrane localization. We identified the transmembrane protein Crumbs as a Pyd PDZ2 ligand and probed the relation between peptide and PtdIns(4,5)P(2) binding. Contrary to the prevalent view on PDZ/peptide/lipid binding, we did not find competition between peptide and lipid ligands. Instead, preloading the protein with the 10-mer Crb3 peptide increased the apparent affinity of Pyd PDZ2 for PtdIns(4,5)P(2) 6-fold. Our results suggest that membrane localization of Pyd PDZ2 may be driven by a combination of peptide and PtdIns(4,5)P(2) binding, which raises the intriguing possibility that the domain may coordinate protein- and phospholipid-mediated signals.  相似文献   

19.
Interaction of Pik1p and Sjl proteins in membrane trafficking   总被引:2,自引:0,他引:2  
Phosphatidylinositol (PtdIns) phosphates are involved in signal transduction, cytoskeletal organization, and membrane traffic. PtdIns 4-phosphate [PtdIns(4)P], produced in yeast by PtdIns 4-kinase (Pik1p), appears to regulate Golgi secretory function. PtdIns(4)P is also produced by dephosphorylation of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], catalyzed by one of the three yeast Sjl proteins, homologs of the mammalian synaptic vesicle-associated PtdIns(4,5)P2 5-phosphatase, synaptojanin. To determine whether Pik1p and Sjl proteins operate in the same pathway or regulate the same process, we used a genetic approach. Mutation in the PIK1 gene displays synthetic genetic interactions with deletions of individual SJL genes. Deletion of SJL3 gene is synthetically lethal with pik1ts, and deletions of SJL1 or SJL2 genes in pik1ts cells exacerbate the temperature sensitivity, neomycin sensitivity, and defect in invertase secretion. A diminished level of PtdIns(4)P and increased level of PtdIns(4,5)P2 in pik1(ts)sjl1delta and pik1(ts)sjl2delta cells, compared with pik1ts cells, indicate that PtdIns(4)P is specifically required for secretion. Collectively, our results suggest that Pik1p and the Sjl proteins coordinately function to regulate the dynamic phosphorylation-dephosphorylation of the polar heads of phosphoinositides, and this process appears to be important for membrane trafficking pathways.  相似文献   

20.
The pleckstrin homology domain of the FAPP1 protein (FAPP1-PH) recognizes phosphatidylinositol 4-phosphate [PtdIns(4)P] and is recruited to the Golgi apparatus in order to mediate trafficking to the cell surface. We report the complete 1H, 13C and 15N resonance assignments of the FAPP1-PH in its free state and those induced by PtdIns(4)P or detergent micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号