首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 392 毫秒
1.
We tested the hypothesis that regular endurance exercise prevents the age-related decline in insulin action typically observed in healthy, sedentary adults. An index of whole body insulin sensitivity (ISI), obtained from minimal model analysis of insulin and glucose concentrations during a frequently sampled intravenous glucose tolerance test, was determined in 126 healthy adults: 25 young [27 +/- 1 (SE) yr; 13 men/12 women] and 43 older (59 +/- 1 yr; 20/13) sedentary and 25 young (29 +/- 1 yr; 12/13) and 33 older (60 +/- 1 yr; 20/13) endurance trained. ISI values were lower in the older vs. young adults in both sedentary (-53%; 3.9 +/- 0.3 vs. 7.0 +/- 0.7 x10(-4) x min(-1) x microU(-1) x ml(-1); P < 0.01) and endurance-trained (-36%; 7.9 +/- 0.6 vs. 12.4 +/- 1.0 x 10(-4) min(-1) x microU(-1) x ml(-1); P < 0.01) groups, but the value was 72-102% higher in the trained subjects at either age (P < 0.01). In subgroup analysis of sedentary and endurance-trained adults with similar body fat levels (n = 62), the age-related reduction in ISI persisted only in the endurance-trained subjects (12.9 +/- 1.9 vs. 8.7 +/- 1.2 x 10(-4) x min(-1) x microU(-1) x ml(-1); P < 0.01). The results of the present study suggest that habitual endurance exercise does not prevent the age-associated decline insulin action. Moreover, the age-related reduction in ISI in endurance-trained adults appears to be independent of adiposity.  相似文献   

2.
To determine the relation between habitual endurance exercise status and the age-associated decline in maximal aerobic capacity [i.e., maximal O(2) consumption (Vo(2 max))] in men, we performed a well-controlled cross-sectional laboratory study on 153 healthy men aged 20-75 yr: 64 sedentary and 89 endurance trained. Vo(2 max) (ml. kg(-1). min(-1)), measured by maximal treadmill exercise, was inversely related to age in the endurance-trained (r = -0.80) and sedentary (r = -0.74) men but was higher in the endurance-trained men at any age. The rate of decline in Vo(2 max) with age (ml. kg(-1). min(-1)) was greater (P < 0.001) in the endurance-trained than in the sedentary men. Whereas the relative rate of decline in Vo(2 max) (percent decrease per decade from baseline levels in young adulthood) was similar in the two groups, the absolute rate of decline in Vo(2 max) was -5.4 and -3.9 ml. kg(-1). min(-). decade(-1) in the endurance-trained and sedentary men, respectively. Vo(2 max) declined linearly across the age range in the sedentary men but was maintained in the endurance-trained men until approximately 50 yr of age. The accelerated decline in Vo(2 max) after 50 yr of age in the endurance-trained men was related to a decline in training volume (r = 0.46, P < 0.0001) and was associated with an increase in 10-km running time (r = -0.84, P < 0.0001). We conclude that the rate of decline in maximal aerobic capacity during middle and older age is greater in endurance-trained men than in their sedentary peers and is associated with a marked decline in O(2) pulse.  相似文献   

3.
We determined the independent and interactive influences of aging and habitual endurance exercise on calf venous compliance in humans. We tested the hypotheses that calf venous compliance is 1) reduced with age in sedentary and endurance-trained men, and 2) elevated in young and older endurance-trained compared with age-matched sedentary men. We studied 8 young (28 +/- 1 yr) and 8 older (65 +/- 1) sedentary, and 8 young (27 +/- 1) and 8 older (63 +/- 2) endurance-trained men. Calf venous compliance was measured in supine subjects by inflating a venous collecting cuff, placed above the knee, to 60 mmHg for 8 min and then decreasing cuff pressure at 1 mmHg/s to 0 mmHg. Calf venous compliance was determined using the first derivative of the pressure-volume relation during cuff pressure reduction (compliance = beta(1) + 2. beta(2). cuff pressure). Calf venous compliance was reduced with age in sedentary (approximately 40%) and endurance-trained men (approximately 20%) (both P < 0.01). Furthermore, calf venous compliance was approximately 70-120% greater in endurance-trained compared with age-matched sedentary men and approximately 30% greater in older endurance-trained compared with young sedentary men (both P < 0.01). These data indicate that calf venous compliance is reduced with age in sedentary and endurance-trained men, but compliance is better preserved in endurance-trained men.  相似文献   

4.
5.
Carotid artery intima-media thickness (IMT), an independent risk factor for stroke, increases with age. Habitual exercise is associated with a lower prevalence of stroke, but it is unclear whether this protective effect could be mediated through a favorable influence on carotid IMT. We examined this possibility using both cross-sectional and intervention approaches. First, 137 healthy men (age 18-77 yr) who were either sedentary or endurance trained were studied. In both groups, carotid IMT and IMT-to-lumen ratio were progressively higher with age (P < 0.05). There were no significant differences in measures of carotid IMT between sedentary and endurance-trained men at any age. Carotid systolic blood pressure increased progressively with age and was related to carotid IMT (r = 0.63, P < 0.01). Second, 18 healthy sedentary subjects (54 +/- 2 yr) were studied before and after 3 mo of endurance training. Carotid IMT, IMT/lumen ratio, and carotid systolic blood pressure did not change with exercise intervention. Our results do not support the hypothesis that regular aerobic exercise exerts its protective effect against stroke by attenuating the age-related increase in carotid IMT. This lack of effect on carotid IMT may be due to the apparent inability of habitual exercise to prevent or reduce the age-associated elevation in carotid distending pressure.  相似文献   

6.
Physiological functional capacity (PFC) is defined here as the ability to perform the physical tasks of daily life and the ease with which these tasks can be performed. For the past decade, we have sought to determine the effect of primary (healthy) adult human aging on PFC and the potential modulatory influences of gender and habitual aerobic exercise status on this process by studying young adult and Masters athletes. An initial approach to determining the effects of aging on PFC involved investigating changes in peak exercise performance with age in highly trained and competitive athletes. PFC, as assessed by running and swimming performance, decreased only modestly until age 60-70 yr but declined exponentially thereafter. A progressive reduction in maximal O2 consumption (V(O2 max)) appears to be the primary physiological mechanism associated with declines in endurance running performance with advancing age, along with a reduction in the exercise velocity at lactate threshold. Because V(O2 max) is important in mediating age-related reductions in exercise performance and PFC, we then investigated the modulatory influence of habitual aerobic exercise status on the rate of decline in V(O2 max) with age. Surprisingly, as a group, endurance-trained adults appear to undergo greater absolute rates of decline in V(O2 max) with advancing age compared with healthy sedentary adults. This appears to be mediated by a baseline effect (higher V(O2 max) as young adults) and/or a marked age-related decline in exercise training volume and intensity (stimulus) in endurance-trained adults. Thus the ability to maintain habitual physical activity levels with advancing age appears to be a critical determinant of changes in PFC in part via modulation of maximal aerobic capacity.  相似文献   

7.
Exercise training elicits morphological adaptations in the left ventricle (LV) and large-conduit arteries that are specific to the type of training performed (i.e., endurance vs. resistance exercise). We investigated whether the mode of chronic exercise training, and the associated cardiovascular adaptations, influence the blood pressure responses to orthostatic stimulation in 30 young healthy men (10 sedentary, 10 endurance trained, and 10 resistance trained). The endurance-trained group had a significantly larger LV end-diastolic volume normalized by body surface area (vs. sedentary and resistance-trained groups), whereas the resistance-trained group had a significantly higher LV wall thickness and aortic pulse wave velocity (PWV) compared with the endurance-trained group. In response to 60° head-up tilt (HUT), mean arterial pressure (MAP) rose in the resistance-trained group (+6.5 ± 1.6 mmHg, P < 0.05) but did not change significantly in sedentary and the endurance-trained groups. Systolic blood pressure (SBP) decreased in endurance-trained group (-8.3 ± 2.4 mmHg, P < 0.05) but did not significantly change in sedentary and resistance-trained groups. A forward stepwise multiple regression analysis revealed that LV wall thickness and aortic PWV were significantly and independently associated with the MAP response to HUT, explaining ~41% of its variability (R(2) =0.414, P < 0.001). Likewise, aortic PWV and the corresponding HUT-mediated change in stroke volume were significantly and independently associated with the SBP response to HUT, explaining ~52% of its variability (R(2) = 0.519, P < 0.0001). Furthermore, the change in stroke volume significantly correlated with LV wall thickness (r = 0.39, P < 0.01). These results indicate that chronic resistance and endurance exercise training differentially affect the BP response to HUT, and that this appears to be associated with training-induced morphological adaptations of the LV and large-conduit arteries.  相似文献   

8.
Regular endurance exercise increases central arterial compliance, whereas resistance training decreases it. It is not known how the vasculature adapts to a combination of endurance and resistance training. Rowing is unique, because its training encompasses endurance- and strength-training components. We used a cross-sectional study design to determine arterial compliance of 15 healthy, habitual rowers [50 +/- 9 (SD) yr, 11 men and 4 women] and 15 sedentary controls (52 +/- 8 yr, 10 men and 5 women). Rowers had been training 5.4 +/- 1.2 days/wk for 5.7 +/- 4.0 yr. The two groups were matched for age, body composition, blood pressure, and metabolic risk factors. Central arterial compliance (simultaneous ultrasound and applanation tonometry on the common carotid artery) was higher (P < 0.001) and carotid beta-stiffness index was lower (P < 0.001) in rowers than in sedentary controls. There were no group differences for measures of peripheral (femoral) arterial stiffness. The higher central arterial compliance in rowers was associated with a greater cardiovagal baroreflex sensitivity, as estimated during a Valsalva maneuver (r = 0.54, P < 0.005). In conclusion, regular rowing exercise in middle-aged and older adults is associated with a favorable effect on the elastic properties of the central arteries. Our results suggest that simultaneously performed endurance training may negate the stiffening effects of strength training.  相似文献   

9.
Brachial artery flow-mediated dilation (FMD) is a strong predictor of future cardiovascular disease and is believed to represent a "barometer" of systemic endothelial health. Although a recent study [Padilla et al. Exp Biol Med (Maywood) 235: 1287-1291, 2010] in pigs confirmed a strong correlation between brachial and femoral artery endothelial function, it is unclear to what extent brachial artery FMD represents a systemic index of endothelial function in humans. We conducted a retrospective analysis of data from our laboratory to evaluate relationships between the upper (i.e., brachial artery) vs. lower limb (superficial femoral n = 75; popliteal artery n = 32) endothelium-dependent FMD and endothelium-independent glyceryl trinitrate (GTN)-mediated dilation in young, healthy individuals. We also examined the relationship between FMD assessed in both brachial arteries (n = 42). There was no correlation between brachial and superficial femoral artery FMD (r(2) = 0.008; P = 0.46) or between brachial and popliteal artery FMD (r(2) = 0.003; P = 0.78). However, a correlation was observed in FMD between both brachial arteries (r(2) = 0.34; P < 0.001). Brachial and superficial femoral artery GTN were modestly correlated (r(2) = 0.13; P = 0.007), but brachial and popliteal artery GTN responses were not (r(2) = 0.08; P = 0.11). Collectively, these data indicate that conduit artery vasodilator function in the upper limbs (of healthy humans) is not predictive of that in the lower limbs, whereas measurement of FMD in one arm appears to be predictive of FMD in the other. These data do not support the hypothesis that brachial artery FMD in healthy humans represents a systemic index of endothelial function.  相似文献   

10.
Exercise training reverses endothelial dysfunction, but the effect in young, healthy subjects is less clear. We determined the influence of maximal oxygen uptake (VO2max) and a single bout of high-intensity exercise on flow-mediated dilatation (FMD), brachial artery diameter, peak blood flow, nitric oxide (NO) bioavailability, and antioxidant status in highly endurance-trained men and their sedentary counterparts. Ten men athletes (mean +/- SEM age 23.5 +/- 0.9 years, height 182.6 +/- 2.4 cm, weight 72.5 +/- 2.4 kg, VO2max 75.9 +/- 0.8 mL.kg.min) and seven healthy controls (age 25.4 +/- 1.2 years, height 183.9 +/- 3.74 cm, weight 92.8 +/- 3.9 kg, VO2max 47.7 +/- 1.7 mL.kg.min) took part in the study. FMD, brachial artery diameter, and peak blood flow were measured using echo-Doppler before, 1 hour, 24 hours, and 48 hours after a single bout of interval running for 5 x 5 minutes at 90% of maximal heart rate. NO bioavailability and antioxidant status in blood were measured at all time points. Maximal arterial diameter and peak flow were 10-15% (P < 0.02) and 28-35% (P < 0.02) larger, respectively, in athletes vs. controls at all time points, and similar FMD were observed, apart from a transient decay of FMD in athletes 1 hour post exercise. NO bioavailability increased significantly after exercise in both groups and decreased to baseline levels after 24 hours in controls but remained increased 80% and 93% above baseline 24 and 48 hours post exercise in athletes. Antioxidant status was equal in the two groups at baseline and increased by approximately 10% 1 hour post exercise, an effect that lasted for 24 hours. Athletes had larger arterial diameter but similar FMD as untrained subjects, i.e., athletes had larger capacity for blood transport compared with their untrained counterparts. The observed FMD, bioavailability of NO, and antioxidant status in blood were highly dependent on the time elapsed after the exercise session.  相似文献   

11.
We sought to identify the relationship between shear stimuli and flow-mediated vasodilation and to determine whether small muscle mass exercise training could provoke limb-specific improvements in endothelial function in older subjects. In five young (22 +/- 1 yr old) and six old (71 +/- 2 yr old) subjects, ultrasound Doppler measurements were taken in the arm (brachial artery) and leg (deep and superficial femoral arteries) after suprasystolic cuff occlusion with and without ischemic exercise to evaluate flow-mediated dilation (FMD) in both limbs. Older subjects were reevaluated after 6 wk of single-leg knee extensor exercise training. Before the training, a significant FMD was observed in the arm of young (3 +/- 1%) but not old (1 +/- 1%) subjects, whereas a significant leg FMD was observed in both groups (5 +/- 1% old vs. 3 +/- 1% young). However, arm vasodilation was similar between young and old when normalized for shear rate, and cuff occlusion with superimposed handgrip exercise provoked additional shear, which proportionately improved the FMD response in both groups. Exercise training significantly improved arm FMD (5 +/- 1%), whereas leg FMD was unchanged. However, ischemic handgrip exercise did not provoke additional arm vasodilation after training, which may indicate an age-related limit to shear-induced vasodilation. Together, these data demonstrate that vascular reactivity is dependent on limb and degree of shear stimuli, challenging the convention of diminished endothelial function typically associated with age. Likewise, exercise training improved arm vasodilation, indicating some preservation of vascular plasticity with age.  相似文献   

12.
On the basis of cross-sectional data, we previously reported that the absolute, but not the relative (%), rate of decline in maximal oxygen consumption (VO(2 max)) with age is greater in endurance-trained compared with healthy sedentary women. We tested this hypothesis by using a longitudinal approach. Eight sedentary (63 +/- 2 yr at follow-up) and 16 endurance-trained (57 +/- 2) women were reevaluated after a mean follow-up period of 7 yr. At baseline, VO(2 max) was ~70% higher in endurance-trained women (48.1 +/- 1.7 vs. 28.1 +/- 0.8 ml. kg(-1). min(-1). yr(-1)). At follow-up, body mass, fat-free mass, maximal respiratory exchange ratio, and maximal rating of perceived exertion were not different from baseline in either group. The absolute rate of decline in VO(2 max) was twice as great (P < 0.01) in the endurance-trained (-0.84 +/- 0.15 ml. kg(-1). min(-1). yr(-1)) vs. sedentary (-0.40 +/- 0.12 ml. kg(-1). min(-1). yr(-1)) group, but the relative rates of decline were not different (-1.8 +/- 0.3 vs. -1.5 +/- 0.4% per year). Differences in rates of decline in VO(2 max) were not related to changes in body mass or maximal heart rate. However, among endurance-trained women, the relative rate of decline in VO(2 max) was positively related to reductions in training volume (r = 0.63). Consistent with this, the age-related reduction in VO(2 max) in a subgroup of endurance-trained women who maintained or increased training volume was not different from that of sedentary women. These longitudinal data indicate that the greater decrease in maximal aerobic capacity with advancing age observed in middle-aged and older endurance-trained women in general compared with their sedentary peers is due to declines in habitual exercise in some endurance-trained women. Endurance-trained women who maintain or increase training volume demonstrated age-associated declines in maximal aerobic capacity not different from healthy sedentary women.  相似文献   

13.
The mechanisms mediating arterial stiffening with aging and menopause are not completely understood. We determined whether administration of tetrahydrobiopterin (BH(4)), a critical cofactor for endothelial nitric oxide synthase to produce nitric oxide, would increase vascular endothelial-dependent vasodilatory tone and decrease arterial stiffness in estrogen-deficient postmenopausal women. Additionally, we examined whether the beneficial effects of estrogen on vascular function were possibly related to BH(4). Arterial stiffness (carotid artery compliance) and endothelial-dependent vasodilation [brachial artery flow-mediated dilation (FMD)] were measured in postmenopausal (n = 24; 57 ± 1 yr, mean ± SE) and eumenorrheic premenopausal (n = 9; 33 ± 2 yr) women before and 3 h after the oral administration of BH(4). Subsequently, in postmenopausal women, vascular testing (before and after BH(4)) was repeated following randomization to either 2 days of transdermal estradiol or placebo. Baseline carotid artery compliance and brachial artery FMD were lower in postmenopausal than in premenopausal women (P < 0.0001). BH(4) administration increased carotid artery compliance (0.61 ± 0.05 to 0.73 ± 0.04 mm(2)·mmHg(-1)·10(-1) vs. baseline, P < 0.0001) and brachial artery FMD (P < 0.001) in postmenopausal women but had no effect in premenopausal women (P = 0.62). Carotid artery compliance (0.59 ± 0.05 to 0.78 ± 0.06 mm(2)·mmHg(-1)·10(-1), P < 0.001) and FMD increased in postmenopausal women in response to estradiol (P = 0.02) but were not further improved with the coadministration of BH(4), possibly because estrogen increased BH(4) bioavailability. Carotid artery compliance and FMD increased with BH(4) in the placebo group (P = 0.02). Although speculative, these results suggest that reduced vascular BH(4) may be an important contributor to arterial stiffening in estrogen-deficient postmenopausal women, related in part to reduced endothelial-dependent vasodilatory tone.  相似文献   

14.
Sedentary aging results in a diminished rapid cutaneous vasodilator response to local heating. We investigated whether this diminished response was due to altered contributions of noradrenergic sympathetic nerves by assessing 1) the age-related decline and 2) the effect of aerobic fitness. Using laser-Doppler flowmetry, we measured skin blood flow (SkBF) in young (24 ± 1 yr) and older (64 ± 1 yr) endurance-trained and sedentary men (n = 7 per group) at baseline and during 35 min of local skin heating to 42°C at 1) untreated forearm sites, 2) forearm sites treated with bretylium tosylate (BT), which prevents neurotransmitter release from noradrenergic sympathetic nerves, and 3) forearm sites treated with yohimbine + propranolol (YP), which antagonizes α- and β-adrenergic receptors. SkBF was converted to cutaneous vascular conductance (CVC = SkBF/mean arterial pressure) and normalized to maximal CVC (%CVC(max)) achieved by skin heating to 44°C. Pharmacological agents were administered using microdialysis. In the young trained group, the rapid vasodilator response was reduced at BT and YP sites (P < 0.05); by contrast, in the young sedentary and older trained groups, YP had no effect (P > 0.05), but BT did (P > 0.05). Neither BT nor YP affected the rapid vasodilator response in the older sedentary group (P > 0.05). These data suggest that the age-related reduction in the rapid vasodilator response is due to an impairment of sympathetic-dependent mechanisms, which can be partly attenuated with habitual aerobic exercise. Rapid vasodilation involves noradrenergic neurotransmitters in young trained men and nonadrenergic sympathetic cotransmitters (e.g., neuropeptide Y) in young sedentary and older trained men, possibly as a compensatory mechanism. Finally, in older sedentary men, the rapid vasodilation appears not to involve the sympathetic system.  相似文献   

15.
Resistance and aerobic exercise is recommended for cardiovascular health and disease prevention. However, the accompanying increase in arterial pressure during resistance exercise may be detrimental to vascular health. This study tests the vascular benefits of aerobic compared with resistance exercise on preventing impaired vascular function induced by a single weight lifting session that is associated with acute hypertension. Healthy, lean sedentary (SED) subjects, weight lifters, runners (>15 miles/wk), and cross trainers (chronic aerobic and resistance exercisers), underwent a single progressive leg press weight lifting session with blood pressure measurements. Brachial artery flow-mediated vasodilation (FMD; an index of arterial endothelial function) was determined using ultrasonography immediately before and after weight lifting. Sublingual nitroglycerin (0.4 mg) was used to determine endothelium-independent dilation after weight lifting. All subjects were normotensive with similar blood pressure responses during exercise. Baseline FMD was lower in runners (5.4 ± 0.5%; n = 13) and cross trainers (4.44 ± 0.3%; n = 13) vs. SED (8.5 ± 0.8%; n = 13; P = 0.037). Brachial FMD improved in conditioned weight lifters (to 8.8 ± 0.9%; P = 0.007) and runners (to 7.6 ± 0.6%; P < 0.001) but not cross trainers (to 5.3 ± 0.6%; P = NS) after acute hypertension. FMD was decreased in SED (to 5.7 ± 0.4%; P = 0.019). Dilation to nitroglycerin was similar among groups. These data suggest that endothelial responses are maintained after exposure to a single bout of weight lifting in resistance and aerobic athletes. Resistance and aerobic exercise may confer similar protection against acute vascular insults such as exertional hypertension.  相似文献   

16.
The effects of regular submaximal exercise on dietary protein requirements, whole body protein turnover, and urinary 3-methylhistidine were determined in six young (26.8 +/- 1.2 yr) and six middle-aged (52.0 +/- 1.9 yr) endurance-trained men. They consumed 0.6, 0.9, or 1.2 g.kg-1.day-1 of high-quality protein over three separate 10-day periods, while maintaining training and constant body weight. Nitrogen measurements in diet, urine, and stool and estimated sweat and miscellaneous nitrogen losses showed that they were all in negative nitrogen balance at a protein intake of 0.6 g.kg-1.day-1. The estimated protein requirement was 0.94 +/- 0.05 g.kg-1.day-1 for the 12 men, with no effect of age. Whole body protein turnover, using [15N]glycine as a tracer, and 3-methylhistidine excretion were not different in the two groups, despite lower physical activity of the middle-aged men. Protein intake affected whole body protein flux and synthesis but not 3-methylhistidine excretion. These data show that habitual endurance exercise was associated with dietary protein needs greater than the current Recommended Dietary Allowance of 0.8 g.kg-1.day-1. However, whole body protein turnover and 3-methylhistidine excretion were not different from values reported for sedentary men.  相似文献   

17.
Numerical and functional impairment of circulating endothelial progenitor cells (EPCs) is thought to contribute to vascular aging and the associated increase in cardiovascular risk. We tested the following hypotheses: 1) EPC clonogenic and migratory capacity decrease progressively with age in healthy, sedentary adult men; and 2) regular aerobic exercise will improve EPC clonogenic and migratory capacity in previously sedentary middle-aged and older men. Peripheral blood samples were collected from 46 healthy sedentary men: 10 young (26 +/- 1 yr), 15 middle-aged (47 +/- 1 yr), and 21 older (63 +/- 1 yr). Mononuclear cells were isolated and preplated for 2 days, and nonadherent cells were further cultured for 7 days to determine EPC colony-forming units. Migratory activity of EPCs was determined using a modified Boyden chamber. Ten sedentary middle-aged and older men (59 +/- 3 yr) were studied before and after a 3-mo aerobic exercise intervention. The number of EPC colony-forming units was approximately 75% lower (P < 0.01) in middle-aged (12 +/- 3) and older (8 +/- 2) compared with young (40 +/- 7) men. There was no difference in colony count between middle-aged and older men. EPC migration (fluorescent units) was significantly reduced in older (453 +/- 72) compared with young (813 +/- 114) and middle-aged (760 +/- 114) men. The exercise intervention increased (P < 0.05) both EPC colony-forming units (10 +/- 3 to 22 +/- 5) and migratory activity (683 +/- 96 to 1,022 +/- 123) in previously sedentary middle-aged and older men. These results provide further evidence that aging adversely affects EPC function. Regular aerobic-endurance exercise, however, is an effective lifestyle intervention strategy for improving EPC clonogenic and migratory capacity in middle-aged and older healthy men.  相似文献   

18.
We tested the hypothesis that resting metabolic rate (RMR) declines with age in physically active men (endurance exercise > or =3 times/wk) and that this decline is related to weekly exercise volume (h/wk) and/or daily energy intake. Accordingly, we studied 137 healthy adult men who had been weight stable for > or =6 mo: 32 young [26 +/- 1 (SE) yr] and 34 older (62 +/- 1 yr) sedentary males (internal controls); and 39 young (27 +/- 1 yr) and 32 older (63 +/- 2 yr) physically active males (regular endurance exercise). RMR was measured by indirect calorimetry (ventilated hood system) after an overnight fast and approximately 24 h after exercise. Because RMR is related to fat-free mass (FFM; r = 0.76, P < 0.001, current study), FFM was covaried to adjust RMR (RMR(adj)). RMR(adj) was lower with age in both the sedentary (72.0 +/- 2.0 vs. 64.0 +/- 1.3 kcal/h, P < 0.01) and the physically active (76.6 +/- 1.1 vs. 67.9 +/- 1.2 kcal/h, P < 0.01) males. In the physically active men, RMR(adj) was related to both exercise volume (no. of h/wk, regardless of intensity; r = 0.56, P < 0.001) and estimated energy intake (r = 0.58, P < 0.001). Consistent with these relations, RMR(adj) was not significantly different in subgroups of young and older physically active men matched either for exercise volume (h/wk; n = 11 each) or estimated energy intake (kcal/day; n = 6 each). These results indicate that 1) RMR, per unit FFM, declines with age in highly physically active men; and 2) this decline is related to age-associated reductions in exercise volume and energy intake and does not occur in men who maintain exercise volume and/or energy intake at a level similar to that of young physically active men.  相似文献   

19.
目的:探讨规律性耐力运动对脑皮层增龄性老化适应性的作用与机制。方法:将三个不同年龄段的健康SPF级雄性Sprague-Dawley大鼠分为3月龄 (青年,n=20)、13月龄 (中年,n=24)和23月龄 (老年,n=24)组,每组又随机分为静息组和运动组;静息组三组静息,运动组三组实施10周递增负荷规律的中等强度耐力运动:运动方式为跑台运动(坡度0),运动强度从最大摄氧量(V·O2max) 60%~65%逐渐递增到70%~75%,运动时间为10周;取大鼠脑皮层,HE染色测试大鼠脑皮层增龄性形态学变化,检测BDNF和SOD的蛋白表达及突触素-1(SYN1)和CaMK IIα/AMPKα1/ mTOR通路等相关基因。结果:静息各组大鼠的脑皮层结构呈现年龄增龄性衰老变化,脑皮层SOD表达呈增龄性下降趋势,BDNF表达变化呈增龄性上升趋势,SYN1和CaMK IIα表达水平随增龄性趋势变化不大,AMPKα1和SirT2以及 IP3R、AKT1、mTOR mRNA表达水平随年龄变化呈现中年略上升而老年下降趋势;与静息各组大鼠相比,运动各组大鼠脑皮层神经细胞核排列紧密有序,显微镜下观察细胞核的数量明显增加,运动促进大鼠脑皮层SOD、BDNF和突触素SYN1表达水平增加,其中老年大鼠SOD、BDNF表达水平显著上调(P<0.01),青年和老年大鼠SYN1表达水平显著上调(P<0.05),运动上调中年和老年大鼠脑皮层CaMK IIα表达水平上调(P<0.01),而对青年大鼠CaMK IIα表达水平却是下调(P<0.01),运动可上调青年大鼠脑皮层的AMPKα1表达水平(P<0.05),而对中年和老年大鼠AMPKα1的影响不显著,运动均可上调各年龄大鼠脑皮层的SirT2表达水平(P<0.05),运动上调各年龄大鼠脑皮层的IP3R/AKT1/ mTOR表达水平,其中青年IP3R显著上调(P<0.01),青年和中年mTOR显著上调(P<0.01),老年mTOR也显著上调(P<0.05)。结论:耐力运动通过上调BDNF的表达水平,调控CaMK IIα信号、激活AMPK信号通路和IP3R/AKT1/mTOR信号通路,改善脑皮层的突触可塑性。  相似文献   

20.
Insulin resistance is associated with endothelial dysfunction. Because African-American women are more insulin-resistant than white women, it is assumed that African-American women have impaired endothelial function. However, racial differences in postprandial endothelial function have not been examined. In this study, we test the hypothesis that African-American women have impaired postprandial endothelial function compared with white women. Postprandial endothelial function following a breakfast (20% protein, 40% fat, and 40% carbohydrate) was evaluated in 36 (18 African-American women, 18 white women) age- and body mass index (BMI)-matched (age: 37 ± 11 yr; BMI: 30 ± 6 kg/m(2)) women. Endothelial function, defined by percent change in brachial artery flow-mediated dilation (FMD), was measured at 0, 2, 4, and 6 h following a meal. There were no significant differences between the groups in baseline FMD, total body fat, abdominal visceral fat, and fasting levels of glucose, insulin, total cholesterol, low-density lipoprotein cholesterol, or serum estradiol. Although African-American women were less insulin-sensitive [insulin sensitivity index (mean ± SD): 3.6 ± 1.5 vs. 5.2 ± 2.6, P = 0.02], both fasting triglyceride (TG: 56 ± 37 vs. 97 ± 49 mg/dl, P = 0.007) and incremental TG area under the curve (AUC(0-6hr): 279 ± 190 vs. 492 ± 255 mg·dl(-1)·min(-1)·10(-2), P = 0.008) were lower in African-American than white women. Breakfast was associated with a significant increase in FMD in whites and African-Americans, and there was no significant difference in postprandial FMD between the groups (P > 0.1 for group × time interactions). Despite being insulin-resistant, postprandial endothelial function in African-American women was comparable to white women. These results imply that insulin sensitivity may not be an important determinant of racial differences in endothelial function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号