首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Autosomal dominant and recessive distal renal tubular acidosis (dRTA) can be caused by mutations in the anion exchanger 1 (AE1 or SLC4A1) gene, which encodes the erythroid chloride/bicarbonate anion exchanger membrane glycoprotein (eAE1) and a truncated kidney isoform (kAE1). The biosynthesis and trafficking of kAE1 containing a novel recessive missense dRTA mutation (kAE1 S773P) was studied in transiently transfected HEK-293 cells, expressing the mutant alone or in combination with wild-type kAE1 or another recessive mutant, kAE1 G701D. The kAE1 S773P mutant was expressed at a three times lower level than wild-type, had a 2-fold decrease in its half-life, and was targeted for degradation by the proteasome. It could not be detected at the plasma membrane in human embryonic kidney cells and showed predominant endoplasmic reticulum immunolocalization in both human embryonic kidney and LLC-PK1 cells. The oligosaccharide on a kAE1 S773P N-glycosylation mutant (N555) was not processed to the complex form indicating impaired exit from the endoplasmic reticulum. The kAE1 S773P mutant showed decreased binding to an inhibitor affinity resin and increased sensitivity to proteases, suggesting that it was not properly folded. The other recessive dRTA mutant, kAE1 G701D, also exhibited defective trafficking to the plasma membrane. The recessive kAE1 mutants formed dimers like wild-type AE1 and could hetero-oligomerize with wild-type kAE1 or with each other. Hetero-oligomers of wild-type kAE1 with recessive kAE1 S773P or G701D, in contrast to the dominant kAE1 R589H mutant, were delivered to the plasma membrane.  相似文献   

2.
Abstract

Novel compound heterozygous mutations, G701D, a recessive mutation, and A858D, a mild dominant mutation, of human solute carrier family 4, anion exchanger, member 1 (SLC4A1) were identified in two pediatric patients with distal renal tubular acidosis (dRTA). To examine the interaction, trafficking, and cellular localization of the wild-type and two mutant kidney AE1 (kAE1) proteins, we expressed the proteins alone or together in human embryonic kidney (HEK) 293T and Madin-Darby canine kidney (MDCK) epithelial cells. In individual expressions, wild-type kAE1 was localized at the cell surface of HEK 293T and the basolateral membrane of MDCK cells. In contrast, kAE1 G701D was mainly retained intracellularly, while kAE1 A858D was observed intracellularly and at the cell surface. In co-expression experiments, wild-type kAE1 formed heterodimers with kAE1 G701D and kAE1 A858D, and promoted the cell surface expression of the mutant proteins. The co-expressed kAE1 G701D and A858D could also form heterodimers but showed predominant intracellular retention in HEK 293T and MDCK cells. Thus impaired trafficking of the kAE1 G701D and A858D mutants would lead to a profound decrease in functional kAE1 at the basolateral membrane of α-intercalated cells in the distal nephron of the patients with dRTA.  相似文献   

3.
The human chloride/bicarbonate AE1 (anion exchanger) is a dimeric glycoprotein expressed in the red blood cell membrane,and expressed as an N-terminal (Delta1-65) truncated form, kAE1(kidney AE1), in the basolateral membrane of alpha-intercalated cells in the distal nephron. Mutations in AE1 can cause SAO (Southeast Asian ovalocytosis) or dRTA (distal renal tubular acidosis), an inherited kidney disease resulting in impaired acid secretion. The dominant SAO mutation (Delta400-408) that results in an inactive transporter and altered erythrocyte shape occurs in manydRTA families, but does not itself result in dRTA. Compound heterozygotes of four dRTA mutations (R602H, G701D, DeltaV850 and A858D) with SAO exhibit dRTA and abnormal red blood cell properties. Co-expression of kAE1 and kAE1 SAO with the dRTAmutantswas studied in polarized epithelial MDCK(Madin-Darbycanine kidney) cells. Like SAO, the G701D and DeltaV850 mutants were predominantly retained intracellularly, whereas the R602H and A858D mutants could traffic to the basolateral membrane. When co-expressed in transfected cells, kAE1 WT (wild-type)and kAE1 SAO could interact with the dRTA mutants. MDCK cells co-expressing kAE1 SAO with kAE1 WT, kAE1 R602Hor kAE1 A858D showed a decrease in cell-surface expression of the co-expressed proteins. When co-expressed, kAE1 WT colocalized with the kAE1 R602H, kAE1 G701D, kAE1 DeltaV850 and kAE1 A858D mutants at the basolateral membrane, whereaskAE1 SAO co-localized with kAE1 WT, kAE1 R602H, kAE1 G701D, kAE1 DeltaV850 and kAE1 A858D in MDCK cells. The decrease in cell-surface expression of the dRTAmutants as a result of the interaction with kAE1 SAO would account for the impaired expression of functional kAE1 at the basolateral membrane of alpha-intercalated cells, resulting in dRTA in compound heterozygous patients.  相似文献   

4.
Mutations in the SLC4A1 gene encoding the anion exchanger 1 (AE1) can cause distal renal tubular acidosis (dRTA), a disease often due to mis-trafficking of the mutant protein. In this study, we investigated whether trafficking of a Golgi-retained dRTA mutant, G701D kAE1, or two dRTA mutants retained in the endoplasmic reticulum, C479W and R589H kAE1, could be functionally rescued to the plasma membrane of Madin-Darby Canine Kidney (MDCK) cells. Treatments with DMSO, glycerol, the corrector VX-809, or low temperature incubations restored the basolateral trafficking of G701D kAE1 mutant. These treatments had no significant rescuing effect on trafficking of the mis-folded C479W or R589H kAE1 mutants. DMSO was the only treatment that partially restored G701D kAE1 function in the plasma membrane of MDCK cells. Our experiments show that trafficking of intracellularly retained dRTA kAE1 mutants can be partially restored, and that one chemical treatment rescued both trafficking and function of a dRTA mutant. These studies provide an opportunity to develop alternative therapeutic solutions for dRTA patients.  相似文献   

5.
Anion Exchanger 1 (AE1) is present in the erythrocyte and also in the α-intercalated cell; different mutations can cause either red cell disease or distal renal tubular acidosis (dRTA). Recently, we described a cation leak property in four dRTA-causing AE1 mutants, three autosomal dominant (AD) European mutants, one autosomal recessive (AR) from Southeast Asia, G701D. G701D had a very large leak property and is unusually common in SE Asia. We hypothesized that this property might confer a survival advantage. We characterized three other AR dRTA-associated AE1 mutants found in SE Asia, S773P, Δ850 and A858D via transport experiments in AE1-expressing Xenopus oocytes. These three SE Asian mutants also had cation leaks of similar magnitude to that seen in G701D, a property that distinguishes them as a discrete group. The clustering of these cation-leaky AE1 mutations to malarious areas of SE Asia suggests that they may confer malaria resistance.  相似文献   

6.
Distal renal tubular acidosis (dRTA), a kidney disease resulting in defective urinary acidification, can be caused by dominant or recessive mutations in the kidney Cl-/HCO3- anion exchanger (kAE1), a glycoprotein expressed in the basolateral membrane of alpha-intercalated cells. We compared the effect of two dominant (R589H and S613F) and two recessive (S773P and G701D) dRTA point mutations on kAE1 trafficking in Madin-Darby canine kidney (MDCK) epithelial cells. In contrast to wild-type (WT) kAE1 that was localized to the basolateral membrane, the dominant mutants (kAE1 R589H and S613F) were retained in the endoplasmic reticulum (ER) in MDCK cells, with a few cells showing in addition some apical localization. The recessive mutant kAE1 S773P, while misfolded and largely retained in the ER in non-polarized MDCK cells, was targeted to the basolateral membrane after polarization. The other recessive mutants, kAE1 G701D and designed G701E, G701R but not G701A or G701L mutants, were localized to the Golgi in both non-polarized and polarized cells. The results suggest that introduction of a polar mutation into a transmembrane segment resulted in Golgi retention of the recessive G701D mutant. When coexpressed, the dominant mutants retained kAE1 WT intracellularly, while the recessive mutants did not. Coexpression of recessive G701D and S773P mutants in polarized cells showed that these proteins could interact, yet no G701D mutant was detected at the basolateral membrane. Therefore, compound heterozygous patients expressing both recessive mutants (G701D/S773P) likely developed dRTA due to the lack of a functional kAE1 at the basolateral surface of alpha-intercalated cells.  相似文献   

7.
We report the novel, heterozygous AE1 mutation R730C associated with dominant, overhydrated, cation leak stomatocytosis and well-compensated anemia. Parallel elevations of red blood cell cation leak and ouabain-sensitive Na(+) efflux (pump activity) were apparently unaccompanied by increased erythroid cation channel-like activity, and defined ouabain-insensitive Na(+) efflux pathways of nystatin-treated cells were reduced. Epitope-tagged AE1 R730C at the Xenopus laevis oocyte surface exhibited severely reduced Cl(-) transport insensitive to rescue by glycophorin A (GPA) coexpression or by methanethiosulfonate (MTS) treatment. AE1 mutant R730K preserved Cl(-) transport activity, but R730 substitution with I, E, or H inactivated Cl(-) transport. AE1 R730C expression substantially increased endogenous oocyte Na(+)-K(+)-ATPase-mediated (86)Rb(+) influx, but ouabain-insensitive flux was minimally increased and GPA-insensitive. The reduced AE1 R730C-mediated sulfate influx did not exhibit the wild-type pattern of stimulation by acidic extracellular pH (pH(o)) and, unexpectedly, was partially rescued by exposure to sodium 2-sulfonatoethyl methanethiosulfonate (MTSES) but not to 2-aminoethyl methanethiosulfonate hydrobromide (MTSEA) or 2-(trimethylammonium)ethyl methanethiosulfonate bromide (MTSET). AE1 R730E correspondingly exhibited acid pH(o)-stimulated sulfate uptake at rates exceeding those of wild-type AE1 and AE1 R730K, whereas mutants R730I and R730H were inactive and pH(o) insensitive. MTSES-treated oocytes expressing AE1 R730C and untreated oocytes expressing AE1 R730E also exhibited unprecedented stimulation of Cl(-) influx by acid pH(o). Thus recombinant cation-leak stomatocytosis mutant AE1 R730C exhibits severely reduced anion transport unaccompanied by increased Rb(+) and Li(+) influxes. Selective rescue of acid pH(o)-stimulated sulfate uptake and conferral of acid pH(o)-stimulated Cl(-) influx, by AE1 R730E and MTSES-treated R730C, define residue R730 as critical to selectivity and regulation of anion transport by AE1.  相似文献   

8.
Mutations in the human kidney anion exchanger 1 (kAE1) membrane glycoprotein cause impaired urine acidification resulting in distal renal tubular acidosis (dRTA). Dominant and recessive dRTA kAE1 mutants exhibit distinct trafficking defects with retention in the endoplasmic reticulum (ER), Golgi, or mislocalization to the apical membrane in polarized epithelial cells. We examined the interaction of kAE1 with the quality control system responsible for the folding of membrane glycoproteins and the retention and degradation of misfolded mutants. Using small molecule inhibitors to disrupt chaperone interactions, two functional, dominant kAE1 mutants (R589H and R901stop), retained in the ER and targeted to the proteasome for degradation by ubiquitination, were rescued to the basolateral membrane of Madin-Darby canine kidney cells. In contrast, the Golgi-localized, recessive G701D and the severely misfolded, ER-retained dominant Southeast Asian ovalocytosis (SAO) mutants were not rescued. These results show that functional dRTA mutants are retained in the ER due to their interaction with molecular chaperones, particularly calnexin, and that disruption of these interactions can promote their escape from the ER and cell surface rescue.  相似文献   

9.
Transient receptor potential vanilloid subtype I (TRPV1) is a thermosensory ion channel that is also gated by chemical substances such as vanilloids. Adjacent to the channel gate, this polymodal thermoTRP channel displays a TRP domain, referred to as AD1, that plays a role in subunit association and channel gating. Previous studies have shown that swapping the AD1 in TRPV1 with the cognate from the TRPV2 channel (AD2) reduces protein expression and produces a nonfunctional chimeric channel (TRPV1-AD2). Here, we used a stepwise, sequential, cumulative site-directed mutagenesis approach, based on rebuilding the AD1 domain in the TRPV1-AD2 chimera, to unveil the minimum number of amino acids needed to restore protein expression and polymodal channel activity. Unexpectedly, we found that virtually full restitution of the AD1 sequence is required to reinstate channel expression and responses to capsaicin, temperature, and voltage. This strategy identified E692, R701, and T704 in the TRP domain as important for TRPV1 activity. Even conservative mutagenesis at these sites (E692D/R701K/T704S) impaired channel expression and abolished TRPV1 activity. However, the sole mutation of these positions in the TRPV1-AD2 chimera (D692E/K701R/S704T) was not sufficient to rescue channel gating, implying that other residues in the TRP domain are necessary to endow activity to TRPV1-AD2. A biophysical analysis of a functional chimera suggested that mutations in the TRP domain raised the energetics of channel gating by altering the coupling of stimuli sensing and pore opening. These findings indicate that inter- and/or intrasubunit interactions in the TRP domain are essential for correct TRPV1 gating.  相似文献   

10.
The autosomal recessive trait of thiopurine S-methytransferase (TPMT) deficiency is associated with severe hematopoietic toxicity when patients are treated with standard doses of mercaptopurine, azathioprine, or thioguanine. To define the molecular mechanism of this genetic polymorphism, we cloned and characterized the cDNA of a TPMT-deficient patient, which revealed a novel mutant allele (TPMT*3) containing two nucleotide transitions (G460-->A and A719-->G) producing amino acid changes at codons 154 (Ala-->Thr) and 240 (Tyr--> Cys), differing from the rare mutant TPMT allele we previously identified (i.e., TPMT*2 with only G238-->C). Site-directed mutagenesis and heterologous expression established that either TPMT*3 mutation alone leads to a reduction in catalytic activity (G460-->A, ninefold reduction; A719-->G, 1.4-fold reduction), while the presence of both mutations leads to complete loss of activity. Using mutation specific PCR-RFLP analysis, the TPMT*3 allele was detected in genomic DNA from approximately 75 percent of unrelated white subjects with heterozygous phenotypes, indicating that TPMT*3 is the most prevalent mutant allele associated with TPMT-deficiency in Caucasians.  相似文献   

11.
Mutations in SLC4A1, encoding the chloride-bicarbonate exchanger AE1, cause distal renal tubular acidosis (dRTA), a disease of defective urinary acidification by the distal nephron. In this study we report a novel missense mutation, G609R, causing dominant dRTA in affected members of a large Caucasian pedigree who all exhibited metabolic acidosis with alkaline urine, prominent nephrocalcinosis, and progressive renal impairment. To investigate the potential disease mechanism, the consequent effects of this mutation were determined. We first assessed anion transport function of G609R by expression in Xenopus oocytes. Western blotting and immunofluorescence demonstrated that the mutant protein was expressed at the oocyte cell surface. Measuring chloride and bicarbonate fluxes revealed normal 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-inhibitable anion exchange, suggesting that loss-of-function of kAE1 cannot explain the severe disease phenotype in this kindred. We next expressed epitope-tagged wild-type or mutant kAE1 in Madin-Darby canine kidney cells. In monolayers grown to polarity, mutant kAE1 was detected subapically and at the apical membrane, as well as at the basolateral membrane, in contrast to the normal basolateral appearance of wild-type kAE1. These findings suggest that the seventh transmembrane domain that contains Gly-609 plays an important role in targeting kAE1 to the correct cell surface compartment. They confirm that dominant dRTA is associated with non-polarized trafficking of the protein, with no significant effect on anion transport function in vitro, which remains an unusual mechanism of human disease.  相似文献   

12.
Failure of distal nephrons to excrete excess acid results in the "distal renal tubular acidoses" (dRTA). Early childhood features of autosomal recessive dRTA include severe metabolic acidosis with inappropriately alkaline urine, poor growth, rickets, and renal calcification. Progressive bilateral sensorineural hearing loss (SNHL) is evident in approximately one-third of patients. We have recently identified mutations in ATP6B1, encoding the B-subunit of the collecting-duct apical proton pump, as a cause of recessive dRTA with SNHL. We now report the results of genetic analysis of 13 kindreds with recessive dRTA and normal hearing. Analysis of linkage and molecular examination of ATP6B1 indicated that mutation in ATP6B1 rarely, if ever, accounts for this phenotype, prompting a genomewide linkage search for loci underlying this trait. The results strongly supported linkage with locus heterogeneity to a segment of 7q33-34, yielding a maximum multipoint LOD score of 8.84 with 68% of kindreds linked. The LOD-3 support interval defines a 14-cM region flanked by D7S500 and D7S688. That 4 of these 13 kindreds do not support linkage to rdRTA2 and ATP6B1 implies the existence of at least one additional dRTA locus. These findings establish that genes causing recessive dRTA with normal and impaired hearing are different, and they identify, at 7q33-34, a new locus, rdRTA2, for recessive dRTA with normal hearing.  相似文献   

13.
The GPA1 gene of Saccharomyces cerevisiae encodes a protein that is highly homologous to the alpha subunit of mammalian hetrotrimeric G proteins and is essential for haploid cell growth. A mutation of the GPA1 protein, GPA1Val-50, in which Gly-50 was replaced by valine, could complement the growth defect of a GPA1 disruption, gpal::HIS3. However, cells with gpa1::HIS3 expressing the GPA1Val-50 protein were supersensitive to alpha-factor in a short-term incubation but resumed growth after long-term incubation even after exposure to high concentrations of alpha-factor. The former phenotype associated with GPA1Val-50 is recessive, and the latter phenotype is dominant to GPA1+. The supersensitivity of GPA1Val-50 to alpha-factor was dependent on STE2 and STE4, which demonstrates that this GPA1Val-50-produced phenotype requires the mating-factor receptor and the beta subunit of the G protein. The double mutant of sst2-1 GPA1Val-50 recovered from division arrest, which suggested that SST2 is not required for recovery of the GPA1Val-50 mutant.  相似文献   

14.
A novel type of somatic mutation that causes the expression of a high-affinity purine base permease (B. Aronow, D. Toll, J. Patrick, P. Hollingsworth, K. McCartan, and B. Ullmann, Mol. Cell Biol. 6:2957-2962, 1986) has been inserted into nucleoside transport-deficient S49 cells. Two classes of mutants expressing this nucleobase permease were generated. The first, as exemplified by the AE1HADPAB2 cell line, possessed an augmented capacity to transport low concentrations of the three purine bases, hypoxanthine, guanine, and adenine. The second class of mutants, as typified by the AE1HADPAB5 clone, possessed an augmented capability to translocate low levels of hypoxanthine and guanine, but not adenine. Neither the AE1HADPAB2 nor the AE1HADPAB5 cells could transport nucleosides, suggesting that the expression of the high-affinity base transporter did not reverse the mutation in the nucleoside transport system. The transport of purine bases by both AE1HADPAB2 and AE1HADPAB5 cells was much less sensitive than that by wild-type cells to inhibition by dipyridamole, 4-nitrobenzylthionosine, and N-ethylmaleimide, potent inhibitors of nucleoside and nucleobase transport in wild-type S49 cells. Fusion of the AE1HADPAB2 and AE1HADPAB5 cell lines with wild-type cells indicated that the expression of the high-affinity base transporter behaved in a dominant fashion, while the nucleoside transport deficiency was a recessive trait. These data suggest that the high-affinity purine base transporter of mutant cells and the nucleoside transport function of wild-type cells are products of different genes and that expression of the former probably requires the unmasking or alteration of a specific genetic locus that is silent or different in wild-type cells.  相似文献   

15.
Congenital afibrinogenemia is a rare autosomal recessive coagulation disorder characterised by hemorrhagic manifestations of variable entity and by severe plasma fibrinogen deficiency. Among the 31 afibrinogenemia-causing mutations so far reported, only 2 are missense mutations and both are located in the fibrinogen Bbeta-chain gene. Direct sequencing of the fibrinogen gene cluster in two afibrinogenemic Iranian siblings revealed a novel homozygous T>G transversion in exon 8 (nucleotide position 8025) of the fibrinogen Bbeta-chain gene. The resulting W437G missense mutation involves a highly conserved amino acid residue, located in the C-terminal globular D domain. The role of the W437G amino acid substitution on fibrinogen synthesis, folding, and secretion was assessed by in vitro expression experiments in COS-1 cells, followed by qualitative and quantitative analyses of intracellular and secreted mutant fibrinogen. Results of both pulse-chase experiments and enzyme-linked immunosorbent assays demonstrated intracellular retention of the mutant W437G fibrinogen and marked reduction of its secretion. These data, besides elucidating the pathogenetic role of the W437G mutation in afibrinogenemia, underline the importance of the Bbeta-chain D domain in fibrinogen folding and secretion.  相似文献   

16.
To determine the role of reactive oxygen species in erythroid differentiation, we investigated the effects of an antioxidant, N-acetyl-L-cysteine (NAC), on the differentiation of erythroid progenitors derived from mouse fetal liver. In response to erythropoietin (Epo), erythroid progenitors undergo differentiation in vitro and express erythroid-specific genes such as betamajor-globin, Alas2, MafK, p45, Eklf, and Gata1. Expression of these genes was decreased in the presence of NAC, whereas the expression of c-myb, which is downregulated during erythroid differentiation, remained constant. Moreover, NAC treatment inhibited an increase in the number of cells expressing high levels of erythroid-specific antigen TER119. Treatment with another antioxidant, pyrrolidine dithiocarbamate, also caused the attenuation of TER119 expression. These results suggest that reactive oxygen species are involved in Epo-mediated erythroid differentiation.  相似文献   

17.
18.
The Saccharomyces cerevisiae GPA1 gene encodes a protein highly homologous to the α subunit of mammalian G proteins and is essential for haploid cell growth. We have selected 77 mutants able to suppress the lethality resulting from disruption of GPA1 (gpa1::HIS3). Two strains bearing either of two recessive mutations, sgp1 and sgp2, in combination with the disruption mutation, showed a cell type nonspecific sterile phenotype, yet expressed the major α-factor gene (MFα1) as judged by the ability to express a MFα1-lacZ fusion gene. The sgp1 mutation was closely linked to gpa1::HIS3 and probably occurred at the GPA1 locus. The sgp2 mutation was not linked to GPA1 and was different from the previously identified cell type nonspecific sterile mutations (ste4, ste5, ste7, ste11 and ste12). sgp2 GPA1 cells showed a fertile phenotype, indicating that the mating defect caused by sgp2 is associated with the loss of GPA1 function. While expression of a FUS1-lacZ fusion gene was induced in wild-type cells by the addition of α-factor, mutants bearing sgp1 or sgp2 as well as gpa1::HIS3 constitutively expressed FUS1-lacZ. These observations suggest that GPA1 (SGP1) and SGP2 are involved in mating factor-mediated signal transduction, which causes both cell cycle arrest in the late G(1) phase and induction of genes necessary for mating such as FUS1.  相似文献   

19.
The mating-specific heterotrimeric G(alpha) protein of Saccharomyces cerevisiae, Gpa1, negatively regulates activation of the pheromone response pathway both by sequestering G(beta)gamma and by triggering an adaptive response through an as yet unknown mechanism. Previous genetic studies identified mutant alleles of GPA1 that downregulate the pheromone response independently of the pheromone receptor (GPA1E364K), or through a receptor-dependent mechanism (GPA1N388D). To further our understanding of the mechanism of action of these mutant alleles, their corresponding proteins were purified and subjected to biochemical analysis. The receptor-dependent activity of Gpa1N388D was further analyzed using yeast strains expressing constitutively active receptor (Ste2) mutants, and C-terminal truncation mutant forms of Gpa1. A combination of G(alpha) affinity chromatography, GTP binding/hydrolysis studies, and genetic analysis allowed us to assign a distinct mechanism of action to each of these mutant proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号