首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
IL-1 family ligand does not possess a typical hydrophobic signal peptide and needs a processing enzyme for maturation. The maturation process of IL-33 (IL-1F11), a new member of the IL-1 family ligand, remains unclear. Precursor IL-33 ligand affinity column isolates neutrophil proteinase 3 (PR3) from human urinary proteins. PR3 is a known IL-1 family ligand-processing enzyme for IL-1β (IL-1F2) and IL-18 (IL-1F4), including other inflammatory cytokines. We investigated PR3 in the maturation process of precursor IL-33 because we isolated urinary PR3 by using the precursor IL-33 ligand affinity column. PR3 converted inactive human and mouse precursor IL-33 proteins to biological active forms; however, the increase of PR3 incubation time abrogated IL-33 activities. Unlike caspase-1-cleaved precursor IL-18, PR3 cut precursor IL-33 and IL-18 at various sites and yielded multibands. The increased incubation period of PR3 abated mature IL-33 in a time-dependent manner. The result is consistent with the decreased bioactivity of IL-33 along with the increased PR3 incubation time. Six different human and mouse recombinant IL-33 proteins were expressed by the predicted consensus amino acid sequence of PR3 cleavage sites and tested for bioactivities. The human IL-33/p1 was highly active, but human IL-33/p2 and p3 proteins were inactive. Our results suggest the dual functions (activation/termination) of PR3 in IL-33 biological activity.  相似文献   

2.
3.
4.
IL-27 induces stronger proliferation of naive than memory human B cells and CD4(+) T cells. In B cells, this differential response is associated with similar levels of IL-27 receptor chains, IL-27Rα and gp130, in both subsets and stronger STAT1 and STAT3 activation by IL-27 in naive B cells. Here, we show that the stronger proliferative response of CD3-stimulated naive CD4(+) T cells to IL-27 is associated with lower levels of IL-27Rα but higher levels of gp130 compared with memory CD4(+) T cells. IL-27 signaling differs between naive and memory CD4(+) T cells, as shown by more sustained STAT1, -3, and -5 activation and weaker activation of SHP-2 in naive CD4(+) T cells. In the latter, IL-27 increases G0/G1 to S phase transition, cell division and, in some cases, cell survival. IL-27 proliferative effect on naive CD4(+) T cells is independent of MAPK, but is dependent on c-Myc and Pim-1 induction by IL-27 and is associated with induction of cyclin D2, cyclin D3, and CDK4 by IL-27 in a c-Myc and Pim-1-dependent manner. In BCR-stimulated naive B cells, IL-27 only increases entry in the S phase and induces the expression of Pim-1 and of cyclins A, D2, and D3. In these cells, inhibition of Pim-1 inhibits IL-27 effect on proliferation and cyclin induction. Altogether, these data indicate that IL-27 mediates proliferation of naive CD4(+) T cells and B cells through induction of both common and distinct sets of cell cycle regulators.  相似文献   

5.
Interleukin (IL)-33 (or IL-1F11) was recently identified as a ligand for the orphan IL-1 receptor family member T1/ST2 (ST2). IL-33 belongs to the IL-1 cytokine family and, upon binding to ST2, induces intracellular signals similar to those utilized by IL-1. The effects of other IL-1 family cytokines are mediated by their binding to a specific receptor and the recruitment of a co-receptor required for elicitation of signaling. The aim of this study was to characterize the co-receptor involved in IL-33 signaling. Immunoprecipitation confirmed that IL-33 specifically binds ST2 and revealed that cellular IL-1 receptor accessory protein (AcP) associates with ST2 in a ligand-dependent manner. Receptor binding measurements demonstrated that the affinity of mouse (m)IL-33 for ST2 is increased by 4-fold in presence of AcP. IL-33 dose-dependently stimulated IL-6 secretion from wild-type (WT) mast cells, while no effect of IL-33 was observed with mast cells derived from AcP-deficient mice. Finally, soluble (s)ST2-Fc and sAcP-Fc acted synergistically to inhibit IL-33 activity. These observations identify AcP as a shared co-receptor within the IL-1 family that is essential for IL-33 signaling and suggest a novel role for sAcP in modulating the activity of IL-33.  相似文献   

6.
7.
Insulin-like growth factor-binding protein-3 (IGFBP-3) is a multifunctional protein known for modulating mitogenic and metabolic actions of IGFs as well as exerting a variety of biological actions not involving IGFs. Here, we show that IGFBP-3 blocks specific physiological consequences of asthma in an IGF-independent manner in vitro and in vivo. IGFBP-3 treatment effectively reduced all physiological manifestations of asthma examined in vivo (airway hyper-responsiveness, cellular and pathological changes in bronchoalveolar lavage fluid and lung tissue, and expression of numerous proinflammatory molecules). These unique IGFBP-3 effects were further confirmed in IGFBP-3-transgenic mice, thus strengthening the notion of IGFBP-3 actions within the respiratory system. Using human epithelial cells, we demonstrated the following: 1) IGFBP-3 blocks TNF-α-induced expression of proinflammatory molecules; 2) IGFBP-3 attenuates the TNF-α-induced migratory response of eosinophils; and 3) IGFBP-3 negatively regulates TNF-α-induced expression of the key NF-κB regulatory molecules IκBα and p65-NF-κB at the post-translational level. We identified that IGFBP-3 degrades IκBα and p65-NF-κB proteins through IGFBP-3 receptor (IGFBP-3R)-mediated activation of caspases thereby inhibiting TNF-α-induced activation of NF-κB signaling cascades. This unique IGFBP-3/IGFBP-3R action was further confirmed by demonstrating complete inhibition of IGFBP-3 action in the presence of caspase inhibitors as well as IGFBP-3R siRNAs. Non-IGF-binding IGFBP-3 mutants further proved the IGF-independent action of IGFBP-3. Our findings indicate that IGFBP-3 inhibits airway inflammation and hyper-responsiveness via an IGF-independent mechanism that involves activation of IGFBP-3R signaling and cross-talk with NF-κB signaling. The IGFBP-3/IGFBP-3R system therefore plays a pivotal role in the pathogenesis of asthma and can serve as a newly identified potential therapeutic target for this debilitating disease.  相似文献   

8.
9.
Supplemental oxygen inhalation is frequently used to treat severe respiratory failure; however, prolonged exposure to hyperoxia causes hyperoxic acute lung injury (HALI), which induces acute respiratory distress syndrome and leads to high mortality rates. Recent investigations suggest the possible role of NLRP3 inflammasomes, which regulate IL-1β production and lead to inflammatory responses, in the pathophysiology of HALI; however, their role is not fully understood. In this study, we investigated the role of NLRP3 inflammasomes in mice with HALI. Under hyperoxic conditions, NLRP3−/− mice died at a higher rate compared with wild-type and IL-1β−/− mice, and there was no difference in IL-1β production in their lungs. Under hyperoxic conditions, the lungs of NLRP3−/− mice exhibited reduced inflammatory responses, such as inflammatory cell infiltration and cytokine expression, as well as increased and decreased expression of MMP-9 and Bcl-2, respectively. NLRP3−/− mice exhibited diminished expression and activation of Stat3, which regulates MMP-9 and Bcl-2, in addition to increased numbers of apoptotic alveolar epithelial cells. In vitro experiments revealed that alveolar macrophages and neutrophils promoted Stat3 activation in alveolar epithelial cells. Furthermore, NLRP3 deficiency impaired the migration of neutrophils and chemokine expression by macrophages. These findings demonstrate that NLRP3 regulates Stat3 signaling in alveolar epithelial cells by affecting macrophage and neutrophil function independent of IL-1β production and contributes to the pathophysiology of HALI.  相似文献   

10.
We previously showed that thrombin induces interleukin (IL)-8/CXCL8 expression via the protein kinase C (PKC)α/c-Src-dependent IκB kinase α/β (IKKα/β)/NF-κB signaling pathway in human lung epithelial cells. In this study, we further investigated the roles of Rac1, phosphoinositide 3-kinase (PI3K), and Akt in thrombin-induced NF-κB activation and IL-8/CXCL8 expression. Thrombin-induced IL-8/CXCL8 release and IL-8/CXCL8-luciferase activity were attenuated by a PI3K inhibitor (LY294002), an Akt inhibitor (1-L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), and the dominant negative mutants of Rac1 (RacN17) and Akt (AktDN). Treatment of cells with thrombin caused activation of Rac and Akt. The thrombin-induced increase in Akt activation was inhibited by RacN17 and LY294002. Stimulation of cells with thrombin resulted in increases in IKKα/β activation and κB-luciferase activity; these effects were inhibited by RacN17, LY294002, an Akt inhibitor, and AktDN. Treatment of cells with thrombin induced Gβγ, p85α, and Rac1 complex formation in a time-dependent manner. These results imply that thrombin activates the Rac1/PI3K/Akt pathway through formation of the Gβγ, Rac1, and p85α complex to induce IKKα/β activation, NF-κB transactivation, and IL-8/CXCL8 expression in human lung epithelial cells.  相似文献   

11.
The ribosomal S6 kinase 2 (RSK2) is a member of the p90 ribosomal S6 kinase (p90RSK) family of proteins and plays a critical role in proliferation, cell cycle, and cell transformation. Here, we report that RSK2 phosphorylates caspase-8, and Thr-263 was identified as a novel caspase-8 phosphorylation site. In addition, we showed that EGF induces caspase-8 ubiquitination and degradation through the proteasome pathway, and phosphorylation of Thr-263 is associated with caspase-8 stability. Finally, RSK2 blocks Fas-induced apoptosis through its phosphorylation of caspase-8. These data provide a direct link between RSK2 and caspase-8 and identify a novel molecular mechanism for caspase-8 modulation by RSK2.  相似文献   

12.
In a proteomic search for heparan sulfate-binding proteins on monocytes, we identified HMGB1 (high mobility group protein B1). The extracellular role of HMGB1 as a cytokine has been studied intensively and shown to be important as a danger-associated molecular pattern protein. Here, we report that the activity of HMGB1 depends on heparan sulfate. Binding and competition studies demonstrate that HMGB1 interacts with CHO and endothelial cell heparan sulfate. By site-directed mutagenesis, we identified a loop region that connects the A-box and B-box domains of HMGB1 as responsible for heparan sulfate binding. HMGB1-induced Erk1/2 and p38 phosphorylation is abolished when endothelial heparan sulfate is removed or blocked pharmacologically, resulting in decreased HMGB1-induced endothelial sprouting. However, mutated HMGB1 that lacks the heparan sulfate-binding site retained its signaling activity. We show the major receptor for HMGB1, receptor for advanced glycation end products (RAGE), also binds to heparan sulfate and that RAGE and heparan sulfate forms a complex. Our data establishes that the functional receptor for HMGB1 consists of a complex of RAGE and cell surface heparan sulfate.  相似文献   

13.
IL-33 (or IL-1F11) was recently identified as a ligand for the previously orphaned IL-1 family receptor T1/ST2. Previous studies have established that IL-33 and T1/ST2 exert key functions in Th2 responses. In this study, we demonstrate that IL-33 induces the production of pro-inflammatory mediators in mast cells. IL-33 dose and time-dependently stimulated IL-6 secretion by P815 mastocytoma cells and primary mouse bone marrow-derived mast cells (BMMC). This effect was dependent on T1/ST2 binding. In addition, IL-33 also induced IL-1β, TNF-α, MCP-1, and PGD2 production in BMMC. By RNase protection assay, we demonstrated that IL-33 increased IL-6 and IL-1β mRNA expression. These effects of IL-33 appeared to occur independently of mast cell degranulation, The results of this study show for the first time that IL-33, a novel member of the IL-1 family of cytokines, stimulates the production of pro-inflammatory mediators by mast cells in addition to its effect on T helper 2 responses. These findings open new perspectives for the treatment of inflammatory diseases by targeting IL-33.  相似文献   

14.
15.
Visual arrestin specifically binds to photoactivated and phosphorylated rhodopsin and inactivates phototransduction. In contrast, the p44 splice variant can terminate phototransduction by binding to nonphosphorylated light-activated rhodopsin. Here we report the crystal structure of bovine p44 at a resolution of 1.85 Å. Compared to native arrestin, the p44 structure reveals significant differences in regions crucial for receptor binding, namely flexible loop V–VI and polar core regions. Additionally, electrostatic potential is remarkably positive on the N-domain and the C-domain. The p44 structure represents an active conformation that serves as a model to explain the ‘constitutive activity’ found in arrestin variants.  相似文献   

16.
17.
The CARMA1, Bcl10, and MALT1 proteins together constitute a signaling complex (CBM signalosome) that mediates antigen-dependent activation of NF-κB in lymphocytes, thereby representing a cornerstone of the adaptive immune response. Although CARMA1 is restricted to cells of the immune system, the analogous CARMA3 protein has a much wider expression pattern. Emerging evidence suggests that CARMA3 can substitute for CARMA1 in non-immune cells to assemble a CARMA3-Bcl10-MALT1 signalosome and mediate G protein-coupled receptor activation of NF-κB. Here we show that one G protein-coupled receptor, the type 1 receptor for angiotensin II, utilizes this mechanism for activation of NF-κB in endothelial and vascular smooth muscle cells, thereby inducing pro-inflammatory signals within the vasculature, a key factor in atherogenesis. Further, we demonstrate that Bcl10-deficient mice are protected from developing angiotensin-dependent atherosclerosis and aortic aneurysms. By uncovering a novel vascular role for the CBM signalosome, these findings illustrate that CBM-dependent signaling has functions outside the realm of adaptive immunity and impacts pathobiology more broadly than previously known.  相似文献   

18.
Signaling of the pleiotropic cytokine Interleukin-6 (IL-6) is coordinated by membrane-bound and soluble forms of the IL-6 receptor (IL-6R) in processes called classic and trans-signaling, respectively. The soluble IL-6R is mainly generated by ADAM10- and ADAM17-mediated ectodomain shedding. Little is known about the role of the 52-amino acid-residue-long IL-6R stalk region in shedding and signal transduction. Therefore, we generated and analyzed IL-6R stalk region deletion variants for cleavability and biological activity. Deletion of 10 amino acids of the stalk region surrounding the ADAM17 cleavage site substantially blocked IL-6R proteolysis by ADAM17 but only slightly affected proteolysis by ADAM10. Interestingly, additional deletion of the remaining five juxtamembrane-located amino acids also abrogated ADAM10-mediated IL-6R shedding. Larger deletions within the stalk region, that do not necessarily include the ADAM17 cleavage site, also reduced ADAM10 and ADAM17-mediated IL-6R shedding, questioning the importance of cleavage site recognition. Furthermore, we show that a 22-amino acid-long stalk region is minimally required for IL-6 classic signaling. The gp130 cytokine binding sites are separated from the plasma membrane by ∼96 Å. 22 amino acid residues, however, span maximally 83.6 Å (3.8 Å/amino acid), indicating that the three juxtamembrane fibronectin domains of gp130 are not necessarily elongated but somehow flexed to allow IL-6 classic signaling. Our findings underline a dual role of the IL-6R stalk region in IL-6 signaling. In IL-6 trans-signaling, it regulates proper proteolysis by ADAM10 and ADAM17. In IL-6 classic-signaling, it acts as a spacer to ensure IL-6·IL-6R·gp130 signal complex formation.  相似文献   

19.
Caspase activating and recruitment domain 8 (CARD8) has been implicated as a co-regulator of several pro-inflammatory and apoptotic signaling pathways. In the present study, we demonstrate a specific modulation of NOD2-induced signaling by CARD8 in intestinal epithelial cells. We show that CARD8 physically interacts with NOD2 and inhibits nodosome assembly and subsequent signaling upon muramyl-dipeptide stimulation. Furthermore, CARD8 inhibits the direct bactericidal effect of NOD2 against intracellular infection by Listeria monocytogenes. Thus, CARD8 represents a novel molecular switch involved in the endogenous regulation of NOD2-dependent inflammatory processes in epithelial cells.  相似文献   

20.
Following activation, the cytoplasmic pattern recognition receptor nucleotide-binding oligomerization domain-containing protein 1 (NOD1) interacts with its adaptor protein receptor-interacting protein 2 (RIP2) to propagate immune signaling and initiate a proinflammatory immune response. This interaction is mediated by the caspase recruitment domain (CARD) of both proteins. Polymorphisms in immune proteins can affect receptor function and predispose individuals to specific autoinflammatory disorders. In this report, we show that mutations in helix 2 of the CARD of NOD1 disrupted receptor function but did not interfere with RIP2 interaction. In particular, N43S, a rare polymorphism, resulted in receptor dysfunction despite retaining normal cellular localization, protein folding, and an ability to interact with RIP2. Mutation of Asn-43 resulted in an increased tendency to form dimers, which we propose is the source of this dysfunction. We also demonstrate that mutation of Lys-443 and Tyr-474 in RIP2 disrupted the interaction with NOD1. Mapping the key residues involved in the interaction between NOD1 and RIP2 to the known structures of CARD complexes revealed the likely involvement of both type I and type III interfaces in the NOD1·RIP2 complex. Overall we demonstrate that the NOD1-RIP2 signaling axis is more complex than previously assumed, that simple engagement of RIP2 is insufficient to mediate signaling, and that the interaction between NOD1 and RIP2 constitutes multiple CARD-CARD interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号