首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study, using mouse embryonic fibroblast (MEF) cells derived from ROCK1−/− and ROCK2−/− mice, is designed to dissect roles for ROCK1 and ROCK2 in regulating actin cytoskeleton reorganization induced by doxorubicin, a chemotherapeutic drug. ROCK1−/− MEFs exhibited improved actin cytoskeleton stability characterized by attenuated periphery actomyosin ring formation and preserved central stress fibers, associated with decreased myosin light chain 2 (MLC2) phosphorylation but preserved cofilin phosphorylation. These effects resulted in a significant reduction in cell shrinkage, detachment, and predetachment apoptosis. In contrast, ROCK2−/− MEFs showed increased periphery membrane folding and impaired cell adhesion, associated with reduced phosphorylation of both MLC2 and cofilin. Treatment with inhibitor of myosin (blebbistatin), inhibitor of actin polymerization (cytochalasin D), and ROCK pan-inhibitor (Y27632) confirmed the contributions of actomyosin contraction and stress fiber instability to stress-induced actin cytoskeleton reorganization. These results support a novel concept that ROCK1 is involved in destabilizing actin cytoskeleton through regulating MLC2 phosphorylation and peripheral actomyosin contraction, whereas ROCK2 is required for stabilizing actin cytoskeleton through regulating cofilin phosphorylation. Consequently, ROCK1 and ROCK2 can be functional different in regulating stress-induced stress fiber disassembly and cell detachment.  相似文献   

2.
Phosphatase inhibitors microcystin-LR, tautomycin, and okadaic acid caused contraction and increased 20-kDa myosin light chain (MLC20) phosphorylation in Ca(2+)-free solutions in both phasic and tonic smooth muscle permeabilized with beta-escin, and inhibited the heavy meromyosin (HMM) phosphatase activity of smooth muscle homogenates with the same potency sequence: microcystin-LR greater than tautomycin greater than okadaic acid. The sensitivity to all three inhibitors was significantly higher, the half-times of relaxation and dephosphorylation were 4-6 times longer, and the HMM phosphatase and MLC20 kinase activity/smooth muscle cell wet weight was 2.0- and 1.9-fold lower in the tonic, femoral artery, than in the phasic, ileum or portal vein, smooth muscle. Preincubation with 0.2 microM inhibitor-2 decreased the HMM phosphatase activity by 35% in the ileum and by 60% in the femoral artery. The results suggest that the HMM phosphatases of smooth muscle have properties common to type 1 protein phosphatases, but are inhibited only partially by high concentrations of inhibitor-2, and that the lower HMM phosphatase activity of tonic smooth muscle may contribute to its greater sensitivity to phosphatase inhibitors and its slower rate of relaxation.  相似文献   

3.
A variety of contractile stimuli increases actin polymerization, which is essential for smooth muscle contraction. However, the mechanism(s) of actin polymerization associated with smooth muscle contraction is not fully understood. We tested the hypothesis that phosphorylated myosin triggers actin polymerization. The present study was conducted in isolated intact or beta-escin-permeabilized rat small mesenteric arteries. Reductions in the 20-kDa myosin regulatory light chain (MLC20) phosphorylation were achieved by inhibiting MLC kinase with ML-7. Increases in MLC20 phosphorylation were achieved by inhibiting myosin light chain phosphatase with microcystin. Isometric force, the degree of actin polymerization as indicated by the F-actin-to-G-actin ratio, and MLC20 phosphorylation were determined. Reductions in MLC20 phosphorylation were associated with a decreased force development and actin polymerization. Increased MLC20 phosphorylation was associated with an increased force generation and actin polymerization. We also found that a heptapeptide that mimics the actin-binding motif of myosin II enhanced microcystin-induced force generation and actin polymerization without affecting MLC20 phosphorylation in beta-escin-permeabilized vessels. Collectively, our data demonstrate that MLC20 phosphorylation is capable of triggering actin polymerization. We further suggest that the binding of myosin to actin triggers actin polymerization and enhances the force development in arterial smooth muscle.  相似文献   

4.
The Ca2+ sensitivities of tonic (pulmonary and femoral artery) and phasic (portal vein and ileum) smooth muscles and the effects of guanosine 5'-O-(gamma-thiotriphosphate) (GTP gamma S) and norepinephrine on Ca2+ sensitivity of force development and myosin light chain (MLC20) phosphorylation were determined in permeabilized preparations that retained coupled receptors and endogenous calmodulin. The Ca2+ sensitivity of force was higher (approximately 3-fold) in the tonic than in the phasic smooth muscles. The nucleotide specificity of Ca2+ sensitization was: GTP gamma S much greater than GTP greater than ITP much greater than CTP = UTP. Baseline phosphorylation (7% at pCa greater than 8) and maximal phosphorylation (58% at pCa 5.0) were both lower in portal vein than in femoral artery (20 and 97%). Norepinephrine and GTP gamma S increased phosphorylation at constant [Ca2+] (pCa 7.0-6.5). MLC20 phosphorylation induced by norepinephrine was completely inhibited by guanosine 5'-O-(beta-thiodiphosphate) (GDP beta S). In portal vein at pCa 5, GTP gamma S increased phosphorylation from 58%, the maximal Ca2(+)-activated value, to 75%, and at pCa greater than 8, from 7 to 13%. In femoral artery at pCa 5, neither phosphorylation (97%) nor force was affected by GTP gamma S, while at pCa greater than 8, GTP gamma S caused an increase in force (16% of maximum) with a borderline increase in MLC20 phosphorylation (from 20 to 27%). MLC20 phosphorylation (up to 100%) was positively correlated with force. The major results support the hypothesis that the G-protein coupled Ca2(+)-sensitizing effect of agonists on force development is secondary to increased MLC20 phosphorylation.  相似文献   

5.
KCl causes smooth muscle contraction by elevating intracellular free Ca2+, whereas receptor stimulation activates an additional mechanism, termed Ca2+ sensitization, that can involve activation of RhoA-associated kinase (ROK) and PKC. However, recent studies support the hypothesis that KCl may also increase Ca2+ sensitivity. Our data showed that the PKC inhibitor GF-109203X did not, whereas the ROK inhibitor Y-27632 did, inhibit KCl-induced tonic (5 min) force and myosin light chain (MLC) phosphorylation in rabbit artery. Y-27632 also inhibited BAY K 8644- and ionomycin-induced MLC phosphorylation and force but did not inhibit KCl-induced Ca2+ entry or peak ( approximately 15 s) force. Moreover, KCl and BAY K 8644 nearly doubled the amount of ROK colocalized to caveolae at 30 s, a time that preceded inhibition of force by Y-27632. Colocalization was not inhibited by Y-27632 but was abolished by nifedipine and the calmodulin blocker trifluoperazine. These data support the hypothesis that KCl caused Ca2+ sensitization via ROK activation. We discuss a novel model for ROK activation involving translocation to caveolae that is dependent on Ca2+ entry and involves Ca2+-calmodulin activation.  相似文献   

6.
The mechanisms of phorbol ester- and thrombin-mediated pulmonary artery endothelial barrier dysfunction were compared. Phorbol ester dibutyrate (PDBU) mediated slow force velocity and less force than thrombin. Taxol did not attenuate PDBU-mediated tension, while it reversed nocodazole-mediated tension. PDBU-mediated tension was not affected by acrylamide; PDBU increased cell stiffness and produced greater declines in transendothelial resistance (TER) than acrylamide. Thus PDBU caused a net increase in tension and did not unload microtubule or intermediate filaments. Microfilament remodeling, determined on the basis of immunocytochemistry and actin solubility, lacked the sensitivity and specificity to predict actin-dependent mechanical properties. Thrombin increased myosin light chain (MLC) kinase site-specific MLC phosphorylation, according to peptide map analysis, whereas PDBU did not increase PKC-specific MLC phosphorylation. The initial PDBU-mediated tension development temporally correlated with PDBU-mediated decline in TER and increased low-molecular-weight caldesmon (l-CaD) phosphorylation. PDBU-mediated tension development and decreases in TER were associated with a temporal loss of endothelial cell-matrix adhesion, based on a numerical model of TER. Although, on the basis of immunocytochemistry, thrombin-mediated tension was associated with actin insolubility, actin reorganization, and gap formation, these changes did not predict thrombin-mediated gap formation, based on TER and time-lapse differential interference contrast microscopy. These data suggest that PDBU may disrupt endothelial barrier function through loss of cell-matrix adhesion through l-CaD-dependent actin contraction.  相似文献   

7.
Alveolar epithelial cells (AECs) maintain integrity of the blood-gas barrier with actin-anchored intercellular tight junctions. Stretched type I-like AECs undergo magnitude- and frequency-dependent actin cytoskeletal remodeling into perijunctional actin rings. On the basis of published studies in human pulmonary artery endothelial cells (HPAECs), we hypothesize that RhoA activity, Rho kinase (ROCK) activity, and phosphorylation of myosin light chain II (MLC2) increase in stretched type I-like AECs in a manner that is dependent on stretch magnitude, and that RhoA, ROCK, or MLC2 activity inhibition will attenuate stretch-induced actin remodeling and preserve barrier properties. Primary type I-like AEC monolayers were stretched biaxially to create a change in surface area (ΔSA) of 12%, 25%, or 37% in a cyclic manner at 0.25 Hz for up to 60 min or left unstretched. Type I-like AECs were also treated with Rho pathway inhibitors (ML-7, Y-27632, or blebbistatin) and stained for F-actin or treated with the myosin phosphatase inhibitor calyculin-A and quantified for monolayer permeability. Counter to our hypothesis, ROCK activity and MLC2 phosphorylation decreased in type I-like AECs stretched to 25% and 37% ΔSA and did not change in monolayers stretched to 12% ΔSA. Furthermore, RhoA activity decreased in type I-like AECs stretched to 37% ΔSA. In contrast, MLC2 phosphorylation in HPAECs increased when HPAECs were stretched to 12% ΔSA but then decreased when they were stretched to 37% ΔSA, similar to type I-like AECs. Perijunctional actin rings were observed in unstretched type I-like AECs treated with the Rho pathway inhibitor blebbistatin. Myosin phosphatase inhibition increased MLC2 phosphorylation in stretched type I-like AECs but had no effect on monolayer permeability. In summary, stretch alters RhoA activity, ROCK activity, and MLC2 phosphorylation in a manner dependent on stretch magnitude and cell type.  相似文献   

8.
Electrical and mechanical responses of frog atrial trabeculae were studied simultaneously using the double-sucrose gap method. Action potentials and twitch tension could be successively generated in fibers in which the slow inward calcium channel current was not observed. As a rule, this could be obtained in the course of a long experiment (3 to 4 hours). Peak tension was shown to increase monotonically with membrane potential in these preparations. In preparations with the slow inward current the total peak tension could be separated into two components. The first component (tonic) monotonically increased with the membrane potential and was probably related to Na/Ca exchange (Horackova 1984). The potential dependency of the second (phasic) component correlated with that of the slow inward calcium current. Only the tonic but not the phasic component could be observed in preparations without the presence of the slow inward calcium current. The tonic component prevailed when both the slow inward current and phasic tension were greatly reduced by nifedipine. Long experiments, long depolarizing clamp pulses, a metabolic inhibitor 2,4-dinitrophenol, inhibitors of Na/K pump ouabain and AR-L57, toxins promoting intracellular sodium accumulation (aconitine, scorpion toxin) were all shown to increase the tonic tension, but not the slow inward current; they induced a transition from biphasic tension-voltage curve into a monotonically increasing one. We concluded that these procedures and agents greatly stimulate Ca influx via Na/Ca exchange. These results show that Na/Ca exchange can function as a reserve system of Ca2+ used for contraction, thus supporting the heart function, especially under unfavourable metabolic conditions.  相似文献   

9.
The possible involvement of the Rho-p160ROCK (Rho coiled-coil kinase) pathway in the signaling induced by the chemokine Stromal cell-derived factor (SDF)-1alpha has been studied in human PBL. SDF-1alpha induced activation of RhoA, but not that of Rac. RhoA activation was followed by p160ROCK activation mediated by RhoA, which led to myosin light chain (MLC) phosphorylation, which was dependent on RhoA and p160ROCK activities. The kinetics of MLC activation was similar to that of RhoA and p160ROCK. The role of this cascade in overall cell morphology and functional responses to the chemokine was examined employing different chemical inhibitors. Inhibition of either RhoA or p160ROCK did not block SDF-1alpha-induced short-term actin polymerization, but induced the formation of long spikes arising from the cell body, which were found to be microtubule based. This morphological change was associated with an increase in microtubule instability, which argues for an active microtubule polymerization in the formation of these spikes. Inhibition of the Rho-p160ROCK-MLC kinase signaling cascade at different steps blocked lymphocyte migration and the chemotaxis induced by SDF-1alpha. Our results indicate that the Rho-p160ROCK axis plays a pivotal role in the control of the cell shape as a step before lymphocyte migration toward a chemotactic gradient.  相似文献   

10.
Using a strain measurement technique, we studied the mechanisms of the effect of a nitric oxide (NO) donor, nitroglycerin (NG), on contractions of smooth muscles of the main pulmonary artery of the rabbit induced by phenylephrine and caffeine in normal Krebs solution (NKS) or in nominally calcium-free solution (NCFS). Phenylephrine applications caused contractions consisting of an initial fast phasic low-amplitude component followed by a tonic higher-amplitude component. After caffeine-induced monophasic low-amplitude contraction, tension of the smooth muscle strip shifted below the conventional zero. Addition of NG to NKS resulted in a decrease in the smooth muscle tension below the conventional zero. Under the influence of NG, the initial phasic component of phenylephrine-induced contraction was partially suppressed, whereas the next tonic component was suppressed to a greater extent. At the same time, NG exerted nearly no influence on the amplitude of caffeine-induced contractions. Washing out by NKS of phenylephrine dissolved in NCFS resulted in initiation of a fast phasic high-amplitude contraction. Such a contraction did not develop either in the presence of NG or phenylephrine in NCFS or in the case of washing out of caffeine dissolved in NCFS. Our findings allow us to conclude that phenylephrine or caffeine added to the superfusate induce contractions of the smooth muscle cells (SMC) of the main pulmonary artery of the rabbit due to activation of Ca2+ release from the respective intracellular calcium stores. In addition, calcium ions entering SMC through the calcium channels of the plasma membrane are also involved in activation of the phenylephrine-induced contraction. The inhibitory effect of NG on the phenylephrine-induced contraction is related to the influence of NO on the release of Ca2+ from the inositol trisphosphate-sensitive intracellular calcium store and receptor-operated inflow of Ca2+ to SMC. Nitroglycerin did not significantly influence the caffeine-induced contraction and, therefore, Ca2+ release from the caffeine-sensitive store.  相似文献   

11.
Structure and physiology of the locust femoral chordotonal organ   总被引:1,自引:0,他引:1  
The connective chordotonal organs (COs) in the femora of the prothoracic and mesothoracic legs of the locust Schistocerca gregaria are divided into two parts, the proximal and the distal scoloparia. The proximal scoloparium contains about 150 small neurons and is anchored to the femoral cuticle. The distal scoloparium contains about 50 larger neurons and is connected at its proximal end to both the cuticle and the flexor tibiae muscle.Records were made from the distal scoloparium, classifying units by spike size. The tibial position/total activity response curve is ∪-shaped but when a small number of units is selected the responses occur only when the tibia is on one side of its centre position. The tonic responses display considerable hysteresis and a degree of adaptation which varies with the tibial angle. Units with phasic and phasic-tonic responses are common and their responsiveness depends on the range of angles the tibia is moved through. The same units respond strongly to flexor tibiae contraction with the tibia either fixed or free, and so may serve as receptors for tension in that muscle.The CO mediates phasic resistance reflexes in all three extensor tibiae motoneurons and tonic reflexes in the extensor ‘slow’ neuron. It is suggested that the very detailed information furnished by the CO is used in a complex way in the control of the femoral muscles.  相似文献   

12.
In Ca-free EGTA-containing solution serotonin induced a transient contraction of rabbit pulmonary artery smooth muscle which decayed to nearly steady-state level accounted for 17.7 +/- 1.6% of original contraction in Krebs solution. Both phasic and tonic components of this contraction were effectively inhibited by verapamil and Cd2+. Caffeine induced no contraction of muscle strips if it was applied after withdrawal of serotonin. But when the sequence of these drugs application was reversed, serotonin still evoked contraction with reduced phasic component. The results obtained in these experiments suggest, that serotonin-induced contraction of pulmonary artery smooth muscle is partly (less than 20%) due to mobilization of bound calcium from at least two stores located on the opposite sides of the cell membrane. Calcium released from external store site enters the cell via receptor-operated calcium channels.  相似文献   

13.
Smooth muscle is unique in its ability to maintain force at low MgATP consumption. This property, called the latch state, is more prominent in tonic than phasic smooth muscle. Studies performed at the muscle strip level have suggested that myosin from tonic muscle has a greater affinity for MgADP and therefore remains attached to actin longer than myosin from phasic muscle, allowing for cross-bridge dephosphorylation and latch-bridge formation. An alternative hypothesis is that after dephosphorylation, myosin reattaches to actin and maintains force. We investigated these fundamental properties of smooth muscle at the molecular level. We used an in vitro motility assay to measure actin filament velocity (nu(max)) when propelled by myosin purified from phasic or tonic muscle at increasing [MgADP]. Myosin was 25% thiophosphorylated and 75% unphosphorylated to approximate in vivo conditions. The slope of nu(max) versus [MgADP] was significantly greater for tonic (-0.51 +/- 0.04) than phasic muscle myosin (-0.15 +/- 0.04), demonstrating the greater MgADP affinity of myosin from tonic muscle. We then used a laser trap assay to measure the unbinding force from actin of populations of unphosphorylated tonic and phasic muscle myosin. Both myosin types attached to actin, and their unbinding force (0.092 +/- 0.022 pN for phasic muscle and 0.084 +/- 0.017 pN for tonic muscle) was not statistically different. We conclude that the greater affinity for MgADP of tonic muscle myosin and the reattachment of dephosphorylated myosin to actin may both contribute to the latch state.  相似文献   

14.
The effect of [MgADP] on relaxation from isometric tension, initiated by reducing free [Ca2+] through photolysis of the caged photolabile Ca2+ chelator diazo-2, was determined at 20 degrees C in alpha-toxin permeabilized tonic (rabbit femoral artery, Rf) and phasic (rabbit bladder, Rb) smooth muscle. In Rf, the shape of the relaxation curve was clearly biphasic, consisting of a slow "plateau" phase followed by a monotonic exponential decline with rate constant k. The duration of the plateau (d = 44 +/- 4 s, mean +/- SEM, n = 28) was well correlated (R = 0.92) with the total t1/2 of relaxation that was 66 +/- 3 s (n = 28) in the presence of 20 mM creatine phosphate (CP), and was prolonged in the absence of CP (t1/2 = 83 +/- 3 s, n = 7); addition of 100 microM MgADP further slowed relaxation (t1/2 = 132 +/- 7 s, n = 14). In Rb, a plateau was not detectable and t1/2 (= 15 +/- 2 s, n = 6) was not affected by 100 microM MgADP. In Rf the Q10 between 20 degrees C and 30 degrees C was 4.3 +/- 0.4 for d-1 and 2.8 +/- 0.3 for k (n = 8; p = 0.006). The regulatory myosin light chain (MLC20) in Rf was dephosphorylated at 0.07 +/- 0.02 s-1, from 42 +/- 3% before to 20 +/- 2% after photolysis of diazo-2, reaching basal values at a time when force had fallen by only 40%. We conclude that, in the presence of ATP, as during rigor, the affinity of dephosphorylated cross-bridges for MgADP is significantly higher in tonic than in phasic smooth muscle and contributes to the maintenance of force at low levels of phosphorylation. The MgADP dependence of the post-dephosphorylation phase of relaxation is consistent with its being rate-limited by the slow off-rate of ADP from cross-bridges that were dephosphorylated while in force-generating ADP-bound (AM*D) cross-bridge states. The fourfold faster off-rate of ADP from AM*D in the phasic, Rb, compared to tonic, Rf, smooth muscle is a major determinant of the different kinetics of relaxation in the two types of smooth muscle.  相似文献   

15.
Cell shape change and cytoskeletal reorganization are known to be involved in the chondrogenesis. Negative role of RhoA, a cytoskeleton-regulating protein, and its downstream target, Rho-associated protein kinase (ROCK) in the chondrogenesis has been studied in many different culture systems including primary chondrocytes, chondrogenic cell lines, dedifferentiated chondrocytes, and micromass culture of mesenchymal cells. To further investigate the role of RhoA and ROCK in the chondrogenesis, we examined the RhoA-ROCK-myosin light chains (MLC) pathway in low density culture of chick limb bud mesenchymal cells. We observed for the first time that inhibition of RhoA by C3 cell-permeable transferase, CT04, induced chondrogenesis of undifferentiated mesenchymal single cells following dissolution of actin stress fibers. Inhibition of RhoA activity by CT04 was confirmed by pull down assay using the Rho-GTP binding domain of Rhotekin. CT04 also inhibited ROCK activity. In contrast, inhibition of ROCK by Y27632 neither altered the actin stress fibers nor induced chondrogenesis. In addition, inhibition of RhoA or ROCK did not affect the phosphorylation of MLC. Inhibition of myosin light chain kinase (MLCK) by ML-7 or inhibition of myosin ATPase with blebbistatin dissolved actin stress fibers and induced chondrogenesis. ML-7 reduced the MLC phosphorylation. Taken together, our current study suggests that RhoA uses other pathway than ROCK/MLC in the modulation of actin stress fibers and chondrogenesis. Our data also imply that, irrespective of mechanisms, dissolution of actin stress fibers is crucial for chondrogenesis.  相似文献   

16.
17.
The internal anal sphincter (IAS) tone is important for the rectoanal continence. The RhoA/Rho kinase (ROK) pathway has been associated with the agonist-induced sustained contraction of the smooth muscle, but its role in the spontaneously tonic smooth muscle is not known. Present studies compared expression of different components of the RhoA/ROK pathway between the IAS (a truly tonic SM), the rectal smooth muscle (RSM) (a mixture of phasic and tonic), and anococcygeus smooth muscle (ASM) (a purely phasic SM) of rat. RT-PCR and Western blot analyses were performed to determine RhoA, ROCK-II, CPI-17, MYPT1, and myosin light-chain 20 (MLC20). Phosphorylated CPI-17 at threonine-38 residue (p(Thr38)-CPI-17), MYPT1 at threonine-696 residue (p(Thr696)-MYPT1), and MLC20 at threonine-18/serine-19 residues (p(Thr18/Ser19)-MLC20) were also determined in the basal state and after pretreatment with the ROK inhibitor Y 27632. In addition, we compared the effect of Y 27632 on the basal isometric tension and ROK activity in the IAS vs. the RSM. Our data show the highest levels of RhoA, ROCK-II, CPI-17, MLC20, and of phospho-MYPT1, -CPI-17, and -MLC20 in the IAS followed by in the RSM and ASM. Conversely, MYPT1 levels were lowest in the IAS and highest in the ASM. In the IAS, Y 27632 caused a concentration-dependent decrease in the basal tone, levels of phospho-MYPT1, -CPI-17, and -MLC20, and ROK activity. We conclude that RhoA/ROK plays a critical role in the basal tone in the IAS by the inhibition of MLC phosphatase via the phosphorylation of MYPT1 and CPI-17.  相似文献   

18.
Activation of hepatic stellate cells (HSCs) results in cirrhosis and portal hypertension due to intrahepatic resistance. Activated HSCs increase their contraction after receptor agonist stimulation; however, the signaling pathways for the regulation of contraction are not fully understood. The aim of this study was to elucidate the change in contractile mechanisms of HSCs after cirrhotic activation. The expression pattern of contractile regulatory proteins was analyzed with quantitative RT-PCR and Western blotting. The phosphorylation levels of myosin light chain (MLC), 17-kDa PKC-potentiated protein phosphatase 1 inhibitor protein (CPI-17), and MLC phosphatase targeting subunit 1 (MYPT1) after endothelin-1 (ET-1) stimulation in culture-activated HSCs were measured using phosphorylation-specific antibodies. In vivo-activated HSCs were isolated from rats subjected to bile duct ligation and repeated dimethylnitrosoamine injections. HSCs showed increased expression of not only α-smooth muscle actin, but also the contractile regulatory proteins MLC kinase (MLCK), Rho kinase 2 (ROCK2), and CPI-17 during HSC activation in vitro. In culture-activated HSCs, ET-1 increased phosphorylation of CPI-17 at Thr18, which was markedly inhibited by the PKC inhibitor Ro-31-8425. ET-1 induced phosphorylation of MYPT1 at Thr853, which was suppressed by the ROCK inhibitor Y-27632. ET-1 induced sustained phosphorylation of MLC at Thr18/Ser19, which was inhibited by both Ro-31-8425 and Y-27632. Consistent with the data obtained from the in vitro study, HSCs isolated from cirrhotic rats showed increased expression of α-smooth muscle actin, MLCK, CPI-17, and ROCK2 compared with HSCs from nontreated rats. Furthermore, MLC phosphorylation in in vivo-activated HSCs was increased, according to enhanced phosphorylation of CPI-17 and MYPT1 in the presence of ET-1. These results suggest that activated HSCs may participate in constriction of hepatic sinusoids in the cirrhotic liver through both Ca(2+)-dependent (MLCK pathway) and Ca(2+)-sensitization mechanism (CPI-17 and MYPT1 pathways).  相似文献   

19.
Human length-tension curves are traditionally constructed using a model that assumes passive tension does not change during contraction (model A) even though the animal literature suggests that passive tension can decrease (model B). The study's aims were threefold: 1) measure differences in human medial gastrocnemius length-tension curves using model A vs. model B, 2) test the reliability of ultrasound constructed length-tension curves, and 3) test the robustness of fascicle length-generated length-tension curves to variations between the angle and fascicle length relationship. An isokinetic dynamometer manipulated and measured ankle angle while ultrasound was used to measure medial gastrocnemius fascicle length. Supramaximal tibial nerve stimulation was used to evoke resting muscle twitches. Length-tension curves were constructed using model A {angle-torque [A-T((A))], length-torque [L-T((A))]} or model B {length-torque [L-T((B))]} in three conditions: baseline, heel-lift (where the muscle was shortened at each angle), and baseline repeated 2 h later (+2 h). Length-tension curves constructed from model B differed from those produced via model A, indicated by a significant increase in maximum torque (≈23%) when using L-T((B)) vs. L-T((A)). No parameter measured was different between baseline and +2 h for any method, indicating good reliability when using ultrasound. Length-tension curves were unaffected by the heel-lift condition when using L-T((A)) or L-T((B)) but were affected when using A-T((A)). Since the muscle model used significantly alters human length-tension curves, and given animal data indicate model B to be more accurate when passive tension is present, we recommend that model B should be used when constructing medial gastrocnemius length-tension curves in humans in vivo.  相似文献   

20.
The first step in the analysis of the biomechanics of any organ is to obtain its constitutive equation. In pursuit of a constitutive equation describing the peristalsis of the ureter, we measured the relationship between the length of the muscle, the velocity of contraction, and the active tension development of isolated ureter segments. The results of length-tension measurements (giving the maximum tension developed in isometric contraction of a ureter segment of specific length) were similar to those obtained by previous investigators and reflected the behavior of length-tension relationship for other smooth muscles. Two aspects of the force-velocity relationship of the ureter were examined: the effect of releasing the ureter at different times after stimulation, and that at different levels of afterload. Measurements were analyzed using the hyperbolic Hill's equation in the form T/T0 = (1-v/v0) (l + cv/v0)-1 where v is the velocity of contraction, v0 is the velocity of contraction when T = 0, T is the tension in the muscle after release, T0 is the tension in the muscle immediately prior to release, and c is the dimensionless constant. The results of force-velocity measurements showed that the so-called "maximum" velocity v0, is the largest if the tension is released at a time of contraction, early in the rise portion of the contraction cycle. Further, if tension is released from an isometric contraction at a fixed time in the rise portion of the contraction cycle, the largest value of v0 is obtained when the muscle length is in the range of 0.85-0.90 Lmax. Interestingly, the in vivo length of the ureter lies also in this range, 0.85-0.90 Lmax.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号