首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A library of heptapeptides displayed on the surface of filamentous phage M13 was evaluated as a potential source of affinity ligands for the purification of Rhizomucor miehei lipase. Two independent selection (biopanning) protocols were employed: the enzyme was either physically adsorbed on polystyrene or chemically immobilized on small magnetic beads. From screening with the polystyrene-adsorbed lipase it was found that there was a rapid enrichment of the library with “doublet” clones i.e. the phage species which carried two consecutive sequences of heptapeptides, whilst no such clones were observed from the screening using lipase attached to magnetic beads. The binding of the best clones to the enzyme was unambiguously confirmed by ELISA. However the synthetic heptapeptide of identical sequence to the best “monomeric” clone did not act as a satisfactory affinity ligand after immobilization on Sepharose. This indicated that the interaction with lipase was due to both the heptapeptide and the presence of a part of the phage coat protein. This conclusion was further verified by immobilizing the whole phage on the surface of magnetic beads and using the resulting conjugate as an affinity adsorbent. The scope of application of this methodology and the possibility of preparing phage-based affinity materials are briefly discussed.  相似文献   

2.
3.
4.
The covalent coupling of an mRNA to the protein that it encodes (mRNA display) provides a powerful tool for analysis of protein function in the post-genomic era. This coupling allows the selective enrichment of individual members from libraries of displayed proteins and the subsequent regeneration of an enriched library using the RNA moiety. Tissue-specific libraries from poly(A)(+) mRNA were prepared by priming first and second strand cDNA synthesis with oligonucleotides containing nine random 3' nucleotides, the fixed regions of which encoded the requisite sequences for formation of mRNA display constructs and a library-specific sequence tag. Starting with a pool of uniquely tagged libraries from different tissues, an iterative selection was performed for binding partners of the anti-apoptotic protein Bcl-X(L). After four rounds of selection, the pool was deconvoluted by polymerase chain reaction amplification with library-specific primers. Subsequent clonal sequence analysis revealed the selection of three members of the Bcl-2 family known to bind to Bcl-X(L). In addition, several proteins not previously demonstrated to interact with Bcl-X(L) were identified. The relative binding affinities of individual selected peptides were determined, as was their susceptibility to competition with a BH3 domain peptide. Based on these data, a putative BH3 domain was identified in most peptides.  相似文献   

5.
mRNA display is a powerful yet challenging in vitro selection technique that can be used to identify proteins with desired properties from both natural proteome and combinatorial polypeptide libraries. The physical conjugation between a protein and its own RNA presents unique challenges in manipulating the displayed proteins at a low nanomolar scale in an RNase-free environment. The following protocol outlines the generation of cDNA libraries derived from natural organisms as well as the steps required for generation of mRNA-protein fusion molecules, in vitro functional selection and regeneration of the selected cDNA library. The selection procedures for the identification of protease substrates and Ca(2+)-dependent calmodulin-binding proteins from natural cDNA libraries are presented as examples. The method can be generally applied to the identification of protein sequences with desired properties from various natural proteome libraries. One round of mRNA display-based selection can be accomplished in ~7 d.  相似文献   

6.
Phage display as a tool for the directed evolution of enzymes   总被引:9,自引:0,他引:9  
Since its introduction in 1985, phage display has had a tremendous impact on the discovery of peptides that bind to a variety of receptors, the generation of binding sites within predefined scaffolds, and the creation of high-affinity antibodies without immunization. Its application to enzymology has required the development of techniques that couple enzymatic activity to selection protocols based on affinity chromatography. Here, we describe both indirect methods, using transition-state analogues and suicide substrates, and direct methods, using the ability of active phage-enzymes to transform substrate into product. The methods have been applied to large libraries for mechanistic-based studies and to generate variants with new or improved properties. In addition, such techniques have been successfully used to select catalytic antibodies and improve their catalytic efficiency.  相似文献   

7.
Directed evolution is a powerful approach to study the molecular basis of protein evolution and to engineer proteins for a wide range of applications in synthetic organic chemistry and biotechnology. There are many methods based on random or focused mutagenesis to engineer successfully any protein trait. Focused approaches such as site-directed and saturation mutagenesis have become methods of choice for improving protein activity, selectivity, stability and many other traits because the screening step can be practically handled (bottleneck in directed evolution). Although novel mutagenesis methods based on CRISPR or solid-phase gene synthesis can eliminate bias when creating protein libraries, traditional PCR approaches, although imperfect, remain widely used due to their ease and low cost. One of the most common approaches in focused mutagenesis relies on NNK mutagenesis, however, the primer-based 22c-trick and small-intelligent methods have emerged as key tools for constructing less biased and unbiased libraries when all 20 canonical amino acids are needed for various reasons. In this minireview, we assess studies employing such methods for library creation and their areas of application. We also discuss the advantages and disadvantages of both methods and provide a perspective for creating smarter libraries.  相似文献   

8.
Ja WW  Roberts RW 《Biochemistry》2004,43(28):9265-9275
The G protein regulatory (GPR) motif is a approximately 20-residue conserved domain that acts as a guanine dissociation inhibitor (GDI) for G(i/o)(alpha) subunits. Here, we describe the isolation of peptides derived from a GPR consensus sequence using mRNA display selection libraries. Biotinylated G(i)(alpha)(1), modified at either the N or C terminus, serves as a high-affinity binding target for mRNA-displayed GPR peptides. In vitro selection using mRNA display libraries based on the C terminus of the GPR motif revealed novel peptide sequences with conserved residues. Surprisingly, selected peptides contain mutations to a highly conserved Arg in the GPR motif, previously shown to be crucial for binding and inhibition activities. The dominant peptide from the selection, R6A, and a minimal 9-mer peptide, R6A-1, do not contain Arg residues yet retain high affinity (K(D) = 60 and 200 nM, respectively) and specificity for the GDP-bound state of G(i)(alpha)(1), as measured by surface plasmon resonance. The selected peptides also maintain GDI activity for G(i)(alpha)(1), inhibiting both the exchange of GDP in GTPgammaS binding assays and the AlF(4)(-)-stimulated enhancement of intrinsic tryptophan fluorescence. The kinetics of GDI activity, however, are different for the selected peptides and demonstrate biphasic kinetics, suggesting a complex mechanism for inhibition. Like the GPR motif, the R6A and R6A-1 peptides compete with G(betagamma) subunits for binding to G(i)(alpha)(1), suggesting their use as activators of G(betagamma) signaling.  相似文献   

9.
Biological in vitro selection techniques, such as RNA aptamer methods and mRNA display, have proven to be powerful approaches for engineering molecules with novel functions. These techniques are based on iterative amplification of biopolymer libraries, interposed by selection for a desired functional property. Rare, promising compounds are enriched over multiple generations of a constantly replicating molecular population, and subsequently identified. The restriction of such methods to DNA, RNA, and polypeptides precludes their use for small-molecule discovery. To overcome this limitation, we have directed the synthesis of combinatorial chemistry libraries with DNA "genes," making possible iterative amplification of a nonbiological molecular species. By differential hybridization during the course of a traditional split-and-pool combinatorial synthesis, the DNA sequence of each gene is read out and translated into a unique small-molecule structure. This "chemical translation" provides practical access to synthetic compound populations 1 million-fold more complex than state-of-the-art combinatorial libraries. We carried out an in vitro selection experiment (iterated chemical translation, selection, and amplification) on a library of 10(6) nonnatural peptides. The library converged over three generations to a high-affinity protein ligand. The ability to genetically encode diverse classes of synthetic transformations enables the in vitro selection and potential evolution of an essentially limitless collection of compound families, opening new avenues to drug discovery, catalyst design, and the development of a materials science "biology."  相似文献   

10.
《Gene》1997,187(1):9-18
Phage display is now an established method to select antibody fragments specific for a wide range of diverse antigens. In particular, isolation of human monoclonal antibodies has become a reality and for most purposes bacterial expression of the selected recombinant antibody fragments is sufficient. However, there are some cases where the expression of complete human immunoglobulin in mammalian cells is, if not essential, at least desirable. For this reason we have designed and constructed a set of mammalian expression vectors which permit facile and rapid cloning of antibody genes for both transient and stable expression in mammalian cells. Immunoglobulin genes may be cloned into these expression vectors as V regions or as Fabs for expression as either complete antibodies or as Fab fragments, using restriction sites which are rare in human V genes. All the important elements in the vectors – promoter, leader sequence, constant domains and selectable markers – are flanked by unique restriction sites, allowing simple substitution of elements. The vectors have been evaluated using the variable regions from the neutralizing anti-nerve growth factor (NGF) antibody, αD11, and the V regions from 2E10, a scFv selected from a scFv phagemid library.  相似文献   

11.
H Akashi  N Osada  T Ohta 《Genetics》2012,192(1):15-31
The "nearly neutral" theory of molecular evolution proposes that many features of genomes arise from the interaction of three weak evolutionary forces: mutation, genetic drift, and natural selection acting at its limit of efficacy. Such forces generally have little impact on allele frequencies within populations from generation to generation but can have substantial effects on long-term evolution. The evolutionary dynamics of weakly selected mutations are highly sensitive to population size, and near neutrality was initially proposed as an adjustment to the neutral theory to account for general patterns in available protein and DNA variation data. Here, we review the motivation for the nearly neutral theory, discuss the structure of the model and its predictions, and evaluate current empirical support for interactions among weak evolutionary forces in protein evolution. Near neutrality may be a prevalent mode of evolution across a range of functional categories of mutations and taxa. However, multiple evolutionary mechanisms (including adaptive evolution, linked selection, changes in fitness-effect distributions, and weak selection) can often explain the same patterns of genome variation. Strong parameter sensitivity remains a limitation of the nearly neutral model, and we discuss concave fitness functions as a plausible underlying basis for weak selection.  相似文献   

12.
In vitro selection of Jun-associated proteins using mRNA display   总被引:2,自引:0,他引:2  
Although yeast two-hybrid assay and biochemical methods combined with mass spectrometry have been successfully employed for the analyses of protein–protein interactions in the field of proteomics, these methods encounter various difficulties arising from the usage of living cells, including inability to analyze toxic proteins and restriction of testable interaction conditions. Totally in vitro display technologies such as ribosome display and mRNA display are expected to circumvent these difficulties. In this study, we applied an mRNA display technique to screening for interactions of a basic leucine zipper domain of Jun protein in a mouse brain cDNA library. By performing iterative affinity selection and sequence analyses, we selected 16 novel Jun-associated protein candidates in addition to four known interactors. By means of real-time PCR and pull-down assay, 10 of the 16 newly discovered candidates were confirmed to be direct interactors with Jun in vitro. Furthermore, interaction of 6 of the 10 proteins with Jun was observed in cultured cells by means of co-immunoprecipitation and observation of subcellular localization. These results demonstrate that this in vitro display technology is effective for the discovery of novel protein–protein interactions and can contribute to the comprehensive mapping of protein–protein interactions.  相似文献   

13.
The aim of the present study was to develop the protein fragment complementation assay (PCA) for the intracellular selection of specific binding molecules from the fully synthetic HuCAL antibody library. Here, we describe the first successful selections of specific antibodies by PCA, and we discuss the opportunities and limitations of this approach. First, we enriched an antibody specific for the capsid protein D of bacteriophage lambda (gpD) by ten successive rounds of competitive liquid culture selection. In an independent approach, we selected a specific antibody for the c-Jun N-terminal kinase 2 (JNK2) in a single-step selection setup. In order to obtain specific antibodies in only a single PCA selection round, the selection system was thoroughly investigated and several strategies to reduce the amount of false positives were evaluated. When expressed in the cytoplasm of Escherichia coli, the PCA-selected scFv antibody fragments could be purified as soluble and monomeric proteins. Denaturant-induced unfolding experiments showed that both antibody fragments are stable molecules, even when the disulfide bonds are reduced. Furthermore, antigen-specificity of the PCA-selected antibody fragments is demonstrated by in vivo and in vitro experiments. As antigen binding is retained regardless of the antibody redox state, both PCA-selected antibody fragments can tolerate the loss of disulfide bridge formation. Our results illustrate that it is possible to select well-expressed, stable, antigen-specific, and intracellular functional antibodies by PCA directly.  相似文献   

14.
15.
In vitro evolution of single-chain antibodies using mRNA display   总被引:2,自引:0,他引:2  
Here we describe the application of the in vitro virus mRNA display method, which involves covalent linkage of an in vitro-synthesized antibody (phenotype) to its encoding mRNA (genotype) through puromycin, for in vitro evolution of single-chain Fv (scFv) antibody fragments. To establish the validity of this approach to directed antibody evolution, we used random mutagenesis by error-prone DNA shuffling and off-rate selection to improve the affinity of an anti-fluorescein scFv as a model system. After four rounds of selection of the library of mRNA-displayed scFv mutants, we obtained six different sequences encoding affinity-matured mutants with five consensus mutations. Kinetic analysis of the mutant scFvs revealed that the off-rates have been decreased by more than one order of magnitude and the dissociation constants were improved ~30-fold. The antigen-specificity was not improved by affinity maturation, but remained similar to that of the wild type. Although the five consensus mutations of the high-affinity mutants were scattered over the scFv sequence, analysis by site-directed mutagenesis demonstrated that the critical mutations for improving affinity were the two that lay within the complementarity determining regions (CDRs). Thus, mRNA display is expected to be useful for rapid artificial evolution of high-affinity diagnostic and therapeutic antibodies by optimizing their CDRs.  相似文献   

16.
In vitro display technologies are powerful tools for screening peptides with desired functions. We previously proposed a DNA display system in which streptavidin-fused peptides are linked with their encoding DNAs via biotin labels in emulsion compartments and successfully applied it to the screening of random peptide libraries. Here we describe its application to functional and folded proteins. By introducing peptide linkers between streptavidin and fused proteins, we achieved highly efficient (>95%) formation of DNA-protein conjugates. Furthermore, we successfully enriched a glutathione-S-transferase gene by a factor of 20-30-fold per round on glutathione-coupled beads. Thus, DNA display should be useful for rapidly screening or evolving proteins based on affinity selection.  相似文献   

17.
Phage display is a useful means of identifying and selecting proteins of interest that bind specific targets. In order to examine the potential of phage display for the genome-wide screening of DNA-binding proteins, we constructed yeast genomic libraries using lambda foo-based vectors devised in this work. After affinity selection using GAL4 UAS(G) as a probe, phages expressing GAL4 were enriched approximately 5 x 10(5)-fold from the library. Approximately 90% of polypeptides encoded in correct translation reading frames by the selected phages were known or putative polynucleotide-binding proteins. This result clearly indicates that the modified lambda phage display vector in combination with our enrichment technique has great potential for the enrichment of DNA-binding proteins in a sequence-specific manner.  相似文献   

18.
Henics T  Winkler B  Pfeifer U  Gill SR  Buschle M  von Gabain A  Meinke AL 《BioTechniques》2003,35(1):196-202, 204, 206 passim
Taking advantage of whole genome sequences of bacterial pathogens in many thriving diseases with global impact, we developed a comprehensive screening procedure for the identification of putative vaccine candidate antigens. Importantly, this procedure relies on highly representative small-fragment genomic libraries that are expressed to display frame-selected epitope-size peptides on a bacterial cell surface and to interact directly with carefully selected disease-relevant high-titer sera. Here we describe the generation of small-fragment genomic libraries of Gram-positive and Gram-negative clinically significant pathogens, including Staphylococcus aureus and Staphylococcus epidermidis, Streptococcus pyogenes, Streptococcus agalactiae, and Streptococcus pneumoniae, Enterococcus faecalis, Helicobacter pylori, Chlamydia pneumoniae, the enterotoxigenic Escherichia coli, and Campylobacter jejuni. Large-scale sequencing revealed that the libraries, which provide an average of 20-fold coverage, were random and, as demonstrated with two S. aureus libraries, highly representative. Consistent with the comprehensive nature of this approach is the identification of epitopes that reside in both annotated and putatively novel open reading frames. The use of these libraries therefore allows for the rapid and direct identification of immunogenic epitopes with no apparent bias or difficulty that often associate with conventional expression methods.  相似文献   

19.

Background  

Methodologies like phage display selection, in vitro mutagenesis and the determination of allelic expression differences include steps where large numbers of clones need to be compared and characterised. In the current study we show that high-resolution melt curve analysis (HRMA) is a simple, cost-saving tool to quickly study clonal variation without prior nucleotide sequence knowledge.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号