首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many animal cells release ATP into the extracellular medium, and often this release is mechanosensitive. However, the mechanisms underlying this release are not well understood. Using the luciferin-luciferase bioluminescent assay we demonstrate that a Xenopus oocyte releases ATP at a basal rate approximately 0.01 fmol/s, and gentle mechanical stimulation can increase this to 50 fmol/s. Brefeldin A, nocodazole, and progesterone-induced- maturation block basal and mechanosensitive ATP release. These treatments share the common feature of disrupting the Golgi complex and vesicle trafficking to the cell surface and thereby block protein secretion and membrane protein insertion. We propose that ATP release occurs when protein transport vesicles enriched in ATP fuse with the plasma membrane. Collagenase, integrin-binding peptides, and cytochalasin D also block ATP release, indicating that extracellular, membrane and cytoskeletal elements are involved in the release process. Elevation of intracellular Ca(2+) does not evoke ATP release but potentiates mechanosensitive ATP release. Our study indicates a novel mechanism of mechanotransduction that would allow cells to regulate membrane trafficking and protein transport/secretion in response to mechanical loading.  相似文献   

2.
Airway epithelia are positioned at the interface between the body and the environment, and generate complex signaling responses to inhaled toxins and other stresses. Luminal mechanical stimulation of airway epithelial cells produces a propagating wave of elevated intracellular Ca(2+) that coordinates components of the integrated epithelial stress response. In polarized airway epithelia, this response has been attributed to IP(3) permeation through gap junctions. Using a combination of approaches, including enzymes that destroy extracellular nucleotides, purinergic receptor desensitization, and airway cells deficient in purinoceptors, we demonstrated that Ca(2+) waves induced by luminal mechanical stimulation in polarized airway epithelia were initiated by the release of the 5' nucleotides, ATP and UTP, across both apical and basolateral membranes. The nucleotides released into the extracellular compartment interacted with purinoceptors at both membranes to trigger Ca(2+) mobilization. Physiologically, apical membrane nucleotide-release coordinates airway mucociliary clearance responses (mucin and salt, water secretion, increased ciliary beat frequency), whereas basolateral release constitutes a paracrine mechanism by which mechanical stresses signal adjacent cells not only within the epithelium, but other cell types (nerves, inflammatory cells) in the submucosa. Nucleotide-release ipsilateral and contralateral to the surface stimulated constitutes a unique mechanism by which epithelia coordinate local and distant airway defense responses to mechanical stimuli.  相似文献   

3.
Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (~250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ~70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca(2+) wave in the epithelium, and multiple Ca(2+) waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca(2+) or decreasing intracellular Ca(2+) both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca(2+)-dependent smooth muscle shortening.  相似文献   

4.
The article concentrates on the concepts of mechanosensitive ion channels that are present in practically all cells of an organism. Considered are kinetic scheme and activation principles of mechanic-sensitive ion channels. The forces affecting those channels are discussed in detail. The qualities of the channels in lipid monolayer, bilayer and real cell membrane are under consideration. Discussed are various models that analyze possibilities of channel opening depending on the membrane tension. Under discussion are the data received from studying single channels, currents in whole-cell configuration and cloned channels built into bilayer, liposomes and membrane blebs. Problems of transmitting mechanic energy to the channel through the bilayer and through the cytoskeleton are investigated. Inhibitors and activators of mechanosensitive ion channels are mentioned and their effects are considered. The functional classification of mechanosensitive ion channels is given. Described are cation SACs, potassium SACs, Ca(2+)-sensitive and Ca(2+)-insensitive SACs, anion SACs, nonselective SACs and SICs. It is proved that mechanosensitive ion channels can produce considerable currents enough to change the cell electrogenesis.  相似文献   

5.
Neither Pseudomonas aeruginosa nor flagellin affected cytosolic Ca(2+) concentration ([Ca](i)) in airway epithelial cell lines JME and Calu-3, but bacteria or flagellin activated NF-kappaB, IL-8 promoter, and IL-8 secretion. ATP (purinergic agonist) and thapsigargin (blocks Ca(2+) pump, releases endoplasmic reticulum Ca(2+), and triggers Ca(2+) entry through plasma membrane channels) both increased [Ca](i) but hardly stimulated NF-kappaB and IL-8. ATP and thapsigargin elicited larger, synergistic activations of NF-kappaB and IL-8 secretion when combined with flagellin. BAPTA-AM (to buffer [Ca](i)) or Ca(2+)-free solution reduced increases in [Ca](i) due to ATP or thapsigargin and also reduced NF-kappaB activation and IL-8 secretion triggered by flagellin, ATP, thapsigargin, ATP + flagellin, and thapsigargin + flagellin. IL-8 promoter analysis showed that AP-1 and CCAAT/enhancer-binding protein (C/EBP)beta/nuclear factor for IL-6 (NF-IL6) sites were important for IL-8 expression, and the NF-kappaB-binding site was critical for activation by all agonists and for activation by [Ca](i). Thus increased [Ca](i) was not required for P. aeruginosa- or flagellin-activated NF-kappaB and IL-8 expression and secretion, and increased [Ca](i) was only weakly stimulatory during activation by ATP or thapsigargin. However, ATP- or thapsigargin-induced increases in [Ca](i) synergized with flagellin or P. aeruginosa, and buffering or reducing [Ca](i) reduced these responses. Thus [Ca](i) plays an important regulatory role in P. aeruginosa- or flagellin-activated innate immune responses in airway epithelia. Dose-dependent responses indicated that flagellin-ATP synergism occurred most prominently at ATP concentrations ([ATP]) > 10 microM and [flagellin] >10(-8) g/ml and during steady increases rather than oscillations in [Ca](i).  相似文献   

6.
Renal epithelial cells release ATP constitutively under basal conditions and release higher quantities of purine nucleotide in response to stimuli. ATP filtered at the glomerulus, secreted by epithelial cells along the nephron, and released serosally by macula densa cells for feedback signaling to afferent arterioles within the glomerulus has important physiological signaling roles within kidneys. In autosomal recessive polycystic kidney disease (ARPKD) mice and humans, collecting duct epithelial cells lack an apical central cilium or express dysfunctional proteins within that monocilium. Collecting duct principal cells derived from an Oak Ridge polycystic kidney (orpk ( Tg737 ) ) mouse model of ARPKD lack a well-formed apical central cilium, thought to be a sensory organelle. We compared these cells grown as polarized cell monolayers on permeable supports to the same cells where the apical monocilium was genetically rescued with the wild-type Tg737 gene that encodes Polaris, a protein essential to cilia formation. Constitutive ATP release under basal conditions was low and not different in mutant versus rescued monolayers. However, genetically rescued principal cell monolayers released ATP three- to fivefold more robustly in response to ionomycin. Principal cell monolayers with fully formed apical monocilia responded three- to fivefold greater to hypotonicity than mutant monolayers lacking monocilia. In support of the idea that monocilia are sensory organelles, intentionally harsh pipetting of medium directly onto the center of the monolayer induced ATP release in genetically rescued monolayers that possessed apical monocilia. Mechanical stimulation was much less effective, however, on mutant orpk collecting duct principal cell monolayers that lacked apical central monocilia. Our data also show that an increase in cytosolic free Ca(2+) primes the ATP pool that is released in response to mechanical stimuli. It also appears that hypotonic cell swelling and mechanical pipetting stimuli trigger release of a common ATP pool. Cilium-competent monolayers responded to flow with an increase in cell Ca(2+) derived from both extracellular and intracellular stores. This flow-induced Ca(2+) signal was less robust in cilium-deficient monolayers. Flow-induced Ca(2+) signals in both preparations were attenuated by extracellular gadolinium and by extracellular apyrase, an ATPase/ADPase. Taken together, these data suggest that apical monocilia are sensory organelles and that their presence in the apical membrane facilitates the formation of a mature ATP secretion apparatus responsive to chemical, osmotic, and mechanical stimuli. The cilium and autocrine ATP signaling appear to work in concert to control cell Ca(2+). Loss of a cilium-dedicated autocrine purinergic signaling system may be a critical underlying etiology for ARPKD and may lead to disinhibition and/or upregulation of multiple sodium (Na(+)) absorptive mechanisms and a resultant severe hypertensive phenotype in ARPKD and, possibly, other diseases.  相似文献   

7.
Secretagogue-stimulated intracellular Ca(2+) signals are fundamentally important for initiating the secretion of the fluid and ion component of saliva from parotid acinar cells. The Ca(2+) signals have characteristic spatial and temporal characteristics, which are defined by the specific properties of Ca(2+) release mediated by inositol 1,4,5-trisphosphate receptors (InsP(3)R). In this study we have investigated the role of adenine nucleotides in modulating Ca(2+) release in mouse parotid acinar cells. In permeabilized cells, the Ca(2+) release rate induced by submaximal [InsP(3)] was increased by 5 mM ATP. Enhanced Ca(2+) release was not observed at saturating [InsP(3)]. The EC(50) for the augmented Ca(2+) release was ~8 μM ATP. The effect was mimicked by nonhydrolysable ATP analogs. ADP and AMP also potentiated Ca(2+) release but were less potent than ATP. In acini isolated from InsP(3)R-2-null transgenic animals, the rate of Ca(2+) release was decreased under all conditions but now enhanced by ATP at all [InsP(3)]. In addition the EC(50) for ATP potentiation increased to ~500 μM. These characteristics are consistent with the properties of the InsP(3)R-2 dominating the overall features of InsP(3)R-induced Ca(2+) release despite the expression of all isoforms. Finally, Ca(2+) signals were measured in intact parotid lobules by multiphoton microscopy. Consistent with the release data, carbachol-stimulated Ca(2+) signals were reduced in lobules exposed to experimental hypoxia compared with control lobules only at submaximal concentrations. Adenine nucleotide modulation of InsP(3)R in parotid acinar cells likely contributes to the properties of Ca(2+) signals in physiological and pathological conditions.  相似文献   

8.
9.
Ca(2+) activated Cl(-) transport is found in airways and other organs and is abnormal in cystic fibrosis, polycystic kidney disease and infectious diarrhea. The molecular identity of Ca(2+) activated Cl(-) channels (CaCC) in the airways is still obscure. Bestrophin proteins were described to form CaCC and to regulate voltage gated Ca(2+) channels. The present Ussing chamber recordings on tracheas of bestrophin 1 knockout (vmd2(-/-)) mice indicate a reduced Cl(-) secretion when activated by the purinergic agonist ATP (0.1-1 muM). As two paralogs, best1 and best2, are present in mouse tracheal epithelium, we examined the contribution of each paralog to Ca(2+) activated Cl(-) secretion. In whole cell patch-clamp measurements on primary airway epithelial cells from vmd2(-/-) tracheas, ATP activated Cl(-) currents were reduced by 50%. Additional knockdown of mbest2 in vmd2(-/-) cells by short interfering RNA further suppressed ATP-induced Cl(-) currents down to 20% of that observed in cells from vmd2(+/+) animals. Moreover, RNAi-suppression of both mbest1 and mbest2 reduced CaCC in vmd2(+/+) cells. Direct activation of CaCC by increase of intracellular Ca(2+) was also reduced in whole cell recordings of vmd2(-/-) cells. These results clearly suggest a role of bestrophin 1 and 2 for Ca(2+) dependent Cl(-) secretion in mouse airways.  相似文献   

10.
Nucleotides within the airway surface liquid (ASL) regulate airway epithelial ion transport rates by Ca(2+) -and protein kinase C-dependent mechanisms via activation of specific P2Y receptors. Extracellular adenine nucleotides also serve as precursors for adenosine, which promotes cyclic AMP-mediated activation of the cystic fibrosis transmembrane regulator chloride channel via A(2b) adenosine receptors. A biological role for extracellular ATP in ASL volume homeostasis has been suggested by the demonstration of regulated ATP release from airway epithelia. However, nucleotide hydrolysis at the airway surface makes it difficult to assess the magnitude of ATP release and the relative abundance of adenyl purines and, hence, to define their biological functions. We have combined ASL microsampling and high performance liquid chromatography analysis of fluorescent 1,N(6)-ethenoadenine derivatives to measure adenyl purines in ASL. We found that adenosine, AMP, and ADP accumulated in high concentrations relative to ATP within the ASL covering polarized primary human normal or cystic fibrosis airway epithelial cells. By using immortalized epithelial cell monolndogenayers that eously express a luminal A(2b) adenosine receptor, we found that basal as well asforskolin-promoted cyclic AMP production was reduced by exogenous adenosine deaminase, suggesting that A(2b) receptors sense endogenous adenosine within the ASL. The physiological role of adenosine was further established by illustrating that adenosine removal or inhibition of adenosine receptors in primary cultures impaired ASL volume regulation. Our data reveal a complex pattern of nucleotides/nucleosides in ASL under resting conditions and suggest that adenosine may play a key role in regulating ASL volume homeostasis.  相似文献   

11.
Cystic fibrosis (CF) is caused by defective cyclic AMP-dependent cystic fibrosis transmembrane conductance regulator Cl(-) channels. Thus, CF epithelia fail to transport Cl(-) and water. A postulated therapeutic avenue in CF is activation of alternative Ca(2+)-dependent Cl(-) channels. We hypothesized that stimulation of Ca(2+) entry from the extracellular space could trigger a sustained Ca(2+) signal to activate Ca(2+)-dependent Cl(-) channels. Cytosolic [Ca(2+)](i) was measured in non-polarized human CF (IB3-1) and non-CF (16HBE14o(-)) airway epithelial cells. Primary human CF and non-CF airway epithelial monolayers as well as Calu-3 monolayers were used to assess anion secretion. In vivo nasal potential difference measurements were performed in non-CF and two different CF mouse (DeltaF508 homozygous and bitransgenic gut-corrected but lung-null) models. Zinc and ATP induced a sustained, reversible, and reproducible increase in cytosolic Ca(2+) in CF and non-CF cells with chemistry and pharmacology most consistent with activation of P2X purinergic receptor channels. P2X purinergic receptor channel-mediated Ca(2+) entry stimulated sustained Cl(-) and HCO(3)(-) secretion in CF and non-CF epithelial monolayers. In non-CF mice, zinc and ATP induced a significant Cl(-) secretory response similar to the effects of agonists that increase intracellular cAMP levels. More importantly, in both CF mouse models, Cl(-) permeability of nasal epithelia was restored in a sustained manner by zinc and ATP. These effects were reversible and reacquirable upon removal and readdition of agonists. Our data suggest that activation of P2X calcium entry channels may have profound therapeutic benefit for CF that is independent of cystic fibrosis transmembrane conductance regulator genotype.  相似文献   

12.
Large conductance, Ca(2+)-activated, and voltage-dependent K(+) (BK) channels control a variety of physiological processes in nervous, muscular, and renal epithelial tissues. In bronchial airway epithelia, extracellular ATP-mediated, apical increases in intracellular Ca(2+) are important signals for ion movement through the apical membrane and regulation of water secretion. Although other, mainly basolaterally expressed K(+) channels are recognized as modulators of ion transport in airway epithelial cells, the role of BK in this process, especially as a regulator of airway surface liquid volume, has not been examined. Using patch clamp and Ussing chamber approaches, this study reveals that BK channels are present and functional at the apical membrane of airway epithelial cells. BK channels open in response to ATP stimulation at the apical membrane and allow K(+) flux to the airway surface liquid, whereas no functional BK channels were found basolaterally. Ion transport modeling supports the notion that apically expressed BK channels are part of an apical loop current, favoring apical Cl(-) efflux. Importantly, apical BK channels were found to be critical for the maintenance of adequate airway surface liquid volume because continuous inhibition of BK channels or knockdown of KCNMA1, the gene coding for the BK α subunit (KCNMA1), lead to airway surface dehydration and thus periciliary fluid height collapse revealed by low ciliary beat frequency that could be fully rescued by addition of apical fluid. Thus, apical BK channels play an important, previously unrecognized role in maintaining adequate airway surface hydration.  相似文献   

13.
Airway epithelia are confronted with distinct signals emanating from the luminal and/or serosal environments. This study tested whether airway epithelia exhibit polarized intracellular free calcium (Ca(2+)(i)) and anion secretory responses to 5' triphosphate nucleotides (ATP/UTP), which may be released across both barriers of these epithelia. In both normal and cystic fibrosis (CF) airway epithelia, mucosal exposure to ATP/UTP increased Ca(2+)(i) and anion secretion, but both responses were greater in magnitude for CF epithelia. In CF epithelia, the mucosal nucleotide-induced response was mediated exclusively via Ca(2+)(i) interacting with a Ca(2+)-activated Cl(-) channel (CaCC). In normal airway epithelia (but not CF), nucleotides stimulated a component of anion secretion via a chelerythrine-sensitive, Ca(2+)-independent PKC activation of cystic fibrosis transmembrane conductance regulator. In normal and CF airway epithelia, serosally applied ATP or UTP were equally effective in mobilizing Ca(2+)(i). However, serosally applied nucleotides failed to induce anion transport in CF epithelia, whereas a PKC-regulated anion secretory response was detected in normal airway epithelia. We conclude that (1) in normal nasal epithelium, apical/basolateral purinergic receptor activation by ATP/UTP regulates separate Ca(2+)-sensitive and Ca(2+)-insensitive (PKC-mediated) anion conductances; (2) in CF airway epithelia, the mucosal ATP/UTP-dependent anion secretory response is mediated exclusively via Ca(2+)(i); and (3) Ca(2+)(i) regulation of the Ca(2+)-sensitive anion conductance (via CaCC) is compartmentalized in both CF and normal airway epithelia, with basolaterally released Ca(2+)(i) failing to activate CaCC in both epithelia.  相似文献   

14.
15.
In the present study we investigated the role of Ca(2+) in tetramethylpyrazine (TMP)-induced anion secretion in the human colonic epithelial cell line, Caco-2, using the short-circuit current (I(SC)) technique in conjunction with intracellular Ca(2+) measurements. The results showed that TMP-induced I(SC) response was significantly reduced by 58.8% and 38.3% after inhibiting Ca(2+) ATPase of endoplasmic reticulum (ER) with thapsigargin and mobilizing ER stored Ca(2+) release with ATP, respectively. Conversely, thapsigargin- and ATP-evoked I(SC) responses were also significantly reduced by pretreatment with TMP by 43.2% and 38.5%, respectively. Conversely, removal of extracellular Ca(2+), apical but not basolateral, or the presence of the Ca(2+) chelator (EGTA) significantly increased TMP-induced I(SC) by 47.1% and 37.8%, respectively. Similar to TMP, thapsigargin-induced current increase was also enhanced by chelating extracellular Ca(2+) or in Ca(2+) free solution; however, removal of extracellular Ca(2+) did not significantly affect 3-isobutyl-1-methylxanthine (IBMX)- and forskolin-induced transepithelial current. Measurement of the intracellular concentration of free Ca(2+) ([Ca(2+)](i)) with fura-2/AM showed that TMP could induce an increase in [Ca(2+)](i) but pretreatment with TMP significantly reduced thapsigargin-evoked, but not ATP-induced, [Ca(2+)](i) increase. These results suggest that the effect of TMP on colonic anion secretion is partly mediated by TMP-increased [Ca(2+)](i) by acting on a target similar to thapsigargin. The observed inhibitory effect of extracellular Ca(2+) on Ca(2+)-dependent anion secretion represents a novel mechanism by which Ca(2+)-dependent regulation of epithelial electrolyte transport may be fine-tuned by extracellular Ca(2+) in the apical domain.  相似文献   

16.
Chen EY  Garnica M  Wang YC  Chen CS  Chin WC 《PloS one》2011,6(1):e16198
Nanoparticle (NP) exposure has been closely associated with the exacerbation and pathophysiology of many respiratory diseases such as Chronic Obstructive Pulmonary Disease (COPD) and asthma. Mucus hypersecretion and accumulation in the airway are major clinical manifestations commonly found in these diseases. Among a broad spectrum of NPs, titanium dioxide (TiO(2)), one of the PM10 components, is widely utilized in the nanoindustry for manufacturing and processing of various commercial products. Although TiO(2) NPs have been shown to induce cellular nanotoxicity and emphysema-like symptoms, whether TiO(2) NPs can directly induce mucus secretion from airway cells is currently unknown. Herein, we showed that TiO(2) NPs (<75 nm) can directly stimulate mucin secretion from human bronchial ChaGo-K1 epithelial cells via a Ca(2+) signaling mediated pathway. The amount of mucin secreted was quantified with enzyme-linked lectin assay (ELLA). The corresponding changes in cytosolic Ca(2+) concentration were monitored with Rhod-2, a fluorescent Ca(2+) dye. We found that TiO(2) NP-evoked mucin secretion was a function of increasing intracellular Ca(2+) concentration resulting from an extracellular Ca(2+) influx via membrane Ca(2+) channels and cytosolic ER Ca(2+) release. The calcium-induced calcium release (CICR) mechanism played a major role in further amplifying the intracellular Ca(2+) signal and in sustaining a cytosolic Ca(2+) increase. This study provides a potential mechanistic link between airborne NPs and the pathoetiology of pulmonary diseases involving mucus hypersecretion.  相似文献   

17.
Extracellular ATP and its metabolite adenosine regulate mucociliary clearance in airway epithelia. Little has been known, however, regarding the actual ATP and adenosine concentrations in the thin ( approximately 7 microm) liquid layer lining native airway surfaces and the link between ATP release/metabolism and autocrine/paracrine regulation of epithelial function. In this study, chimeric Staphylococcus aureus protein A-luciferase (SPA-luc) was bound to endogenous antigens on primary human bronchial epithelial (HBE) cell surface and ATP concentrations assessed in real-time in the thin airway surface liquid (ASL). ATP concentrations on resting cells were 1-10 nm. Inhibition of ecto-nucleotidases resulted in ATP accumulation at a rate of approximately 250 fmol/min/cm2, reflecting the basal ATP release rate. Following hypotonic challenge to promote cell swelling, cell-surface ATP concentration measured by SPA-luc transiently reached approximately 1 microm independent of ASL volume, reflecting a transient 3-log increase in ATP release rates. In contrast, peak ATP concentrations measured in bulk ASL by soluble luciferase inversely correlated with volume. ATP release rates were intracellular calcium-independent, suggesting that non-exocytotic ATP release from ciliated cells, which dominate our cultures, mediated hypotonicity-induced nucleotide release. However, the cystic fibrosis transmembrane conductance regulator (CFTR) did not participate in this function. Following the acute swelling phase, HBE cells exhibited regulatory volume decrease which was impaired by apyrase and facilitated by ATP or UTP. Our data provide the first evidence that ATP concentrations at the airway epithelial surface reach the range for P2Y2 receptor activation by physiological stimuli and identify a role for mucosal ATP release in airway epithelial cell volume regulation.  相似文献   

18.
The phenomenology of nuclear Ca(2+) dynamics has experienced important progress revealing the broad range of cellular processes that it regulates. Although several agonists can mobilize Ca(2+) from storage in the nuclear envelope (NE) to the intranuclear compartment (INC), the mechanisms of Ca(2+) signaling in the nucleus still remain uncertain. Here we report that the NE/INC complex can function as an inositol-1,4,5-trisphosphate (InsP(3))-controlled Ca(2+) oscillator. Thin optical sectioning combined with fluorescent labeling of Ca(2+) probes show in cultured airway epithelial ciliated cells that ATP can trigger periodic oscillations of Ca(2+) in the NE ([Ca(2+)](NE)) and corresponding pulses of Ca(2+) release to the INC. Identical results were obtained in InsP(3)-stimulated isolated nuclei of these cells. Our data show that [Ca(2+)](NE) oscillations and Ca(2+) release to the INC result from the interplay between the Ca(2+)/K(+) ion-exchange properties of the intralumenal polyanionic matrix of the NE and two Ca(2+)-sensitive ion channels-an InsP(3)-receptor-Ca(2+) channel and an apamin-sensitive K(+) channel. A similar Ca(2+) signaling system operating under the same functional protocol and molecular hardware controls Ca(2+) oscillations and release in/to the endoplasmic reticulum/cytosol and in/to the granule/cytosol complexes in airway and mast cells. These observations suggest that these intracellular organelles share a remarkably conserved mechanism of InsP(3)-controlled frequency-encoded Ca(2+) signaling.  相似文献   

19.
Upon contact with airway epithelial cells, bacterial products activate Ca(2+) fluxes that are required for induction of NF-kappaB-dependent gene expression. TLR2 is apically displayed on airway cells, making it a likely transducer linking bacterial stimuli and kinases that affect Ca(2+) release. Using biochemical and genetic approaches, we demonstrate that TLR2 ligands stimulate release of Ca(2+) from intracellular stores by activating TLR2 phosphorylation by c-Src, and recruiting PI3K and phospholipase Cgamma to affect Ca(2+) release through inositol (1,4,5) trisphosphate receptors. In the absence of TLR2, murine macrophages as well as airway cells do not generate Ca(2+) fluxes or induce proinflammatory signaling. Thus, Ca(2+) participates as a second messenger in TLR2-dependent signaling and provides another target to modulate proinflammatory responses to bacterial infection.  相似文献   

20.
Effects of epidermal growth factor (EGF) on the intracellular Ca(2+) ([Ca(2+)](i)) responses to nucleotides, Ca(2+) release from thapsigargin-sensitive stores and capacitative Ca(2+) entry were investigated in cultured mouse mammary epithelial cells. EGF treatment induced proliferation of mammary epithelial cells. We checked for mitotic activity by immunocytochemistry with an anti-PCNA (proliferating cell nuclear antigen) antibody, which stains nuclei of the cells in S-phase of cell cycle. EGF treatment apparently increased the number of PCNA-stained cells compared to those treated with differentiating hormones (insulin, prolactin and cortisol) or without any hormone. Application of EGF did not induce any acute [Ca(2+)](i) response. EGF treatment for 1-2 days in culture, however, enhanced [Ca(2+)](i) responses including [Ca(2+)](i) increase by ATP, UTP and other nucelotides, Ca(2+) release from thapsigargin-sensitive stores, as well as capacitative Ca(2+) entry. Genistein, a tyrosine kinase inhibitor, prevented EGF-induced cell proliferation and the [Ca(2+) ](i) responses in a dose-dependent manner. These results indicate that EGF treatment enhances Ca(2+) mobilization and capacitative Ca(2+) entry, well correlated with cellular proliferation in mammary epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号