首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In guinea pig gallbladder epithelial cells, an increase in intracellular cAMP levels elicits the rise of anion channel activity. We investigated by patch-clamp techniques whether K(+) channels were also activated. In a cell-attached configuration and in the presence of theophylline and forskolin or 8-Br-cAMP in the cellular incubation bath, an increase of the open probability (P(o)) values for Ca(2+)-activated K(+) channels with a single-channel conductance of about 160 pS, for inward current, was observed. The increase in P(o) of these channels was also seen in an inside-out configuration and in the presence of PKA, ATP, and cAMP, but not with cAMP alone; phosphorylation did not influence single-channel conductance. In the inside-out configuration, the opioid loperamide (10(-5) M) was able to reduce P(o) when it was present either in the microelectrode filling solution or on the cytoplasmic side. Detection in the epithelial cells by RT-PCR of the mRNA corresponding to the alpha subunit of large-conductance Ca(2+)-activated K(+) channels (BK(Ca)) indicates that this gallbladder channel could belong to the BK family. Immunohistochemistry experiments confirm that these cells express the BK alpha subunit, which is located on the apical membrane. Other K(+) channels with lower conductance (40 pS) were not activated either by 8-Br-cAMP (cell-attached) or by PKA + ATP + cAMP (inside-out). These channels were insensitive to TEA(+) and loperamide. The data demonstrate that under conditions that induce secretion, phosphorylation activates anion channels as well as Ca(2+)-dependent, loperamide-sensitive K(+) channels present on the apical membrane.  相似文献   

2.
Ca(2+) activation of Cl and K channels is a key event underlying stimulated fluid secretion from parotid salivary glands. Cl channels are exclusively present on the apical plasma membrane (PM), whereas the localization of K channels has not been established. Mathematical models have suggested that localization of some K channels to the apical PM is optimum for fluid secretion. A combination of whole cell electrophysiology and temporally resolved digital imaging with local manipulation of intracellular [Ca(2+)] was used to investigate if Ca(2+)-activated K channels are present in the apical PM of parotid acinar cells. Initial experiments established Ca(2+)-buffering conditions that produced brief, localized increases in [Ca(2+)] after focal laser photolysis of caged Ca(2+). Conditions were used to isolate K(+) and Cl(-) conductances. Photolysis at the apical PM resulted in a robust increase in K(+) and Cl(-) currents. A localized reduction in [Ca(2+)] at the apical PM after photolysis of Diazo-2, a caged Ca(2+) chelator, resulted in a decrease in both K(+) and Cl(-) currents. The K(+) currents evoked by apical photolysis were partially blocked by both paxilline and TRAM-34, specific blockers of large-conductance "maxi-K" (BK) and intermediate K (IK), respectively, and almost abolished by incubation with both antagonists. Apical TRAM-34-sensitive K(+) currents were also observed in BK-null parotid acini. In contrast, when the [Ca(2+)] was increased at the basal or lateral PM, no increase in either K(+) or Cl(-) currents was evoked. These data provide strong evidence that K and Cl channels are similarly distributed in the apical PM. Furthermore, both IK and BK channels are present in this domain, and the density of these channels appears higher in the apical versus basolateral PM. Collectively, this study provides support for a model in which fluid secretion is optimized after expression of K channels specifically in the apical PM.  相似文献   

3.
Based on electrophysiological studies, Ca(2+)-activated K(+) channels and voltage-gated Ca(2+) channels appear to be located in close proximity in neurons. Such colocalization would ensure selective and rapid activation of K(+) channels by local increases in the cytosolic calcium concentration. The nature of the apparent coupling is not known. In the present study we report a direct coassembly of big conductance Ca(2+)-activated K(+) channels (BK) and L-type voltage-gated Ca(2+) channels in rat brain. Saturation immunoprecipitation studies were performed on membranes labeled for BK channels and precipitated with antibodies against alpha(1C) and alpha(1D) L-type Ca(2+) channels. To confirm the specificity of the interaction, precipitation experiments were carried out also in reverse order. Also, additive precipitation was performed because alpha(1C) and alpha(1D) L-type Ca(2+) channels always refer to separate ion channel complexes. Finally, immunochemical studies showed a distinct but overlapping expression pattern of the two types of ion channels investigated. BK and L-type Ca(2+) channels were colocalized in various compartments throughout the rat brain. Taken together, these results demonstrate a direct coassembly of BK channels and L-type Ca(2+) channels in certain areas of the brain.  相似文献   

4.
Electrophysiological studies of H441 human distal airway epithelial cells showed that thapsigargin caused a Ca(2+)-dependent increase in membrane conductance (G(Tot)) and hyperpolarization of membrane potential (V(m)). These effects reflected a rapid rise in cellular K(+) conductance (G(K)) and a slow fall in amiloride-sensitive Na(+) conductance (G(Na)). The increase in G(Tot) was antagonized by Ba(2+), a nonselective K(+) channel blocker, and abolished by clotrimazole, a KCNN4 inhibitor, but unaffected by other selective K(+) channel blockers. Moreover, 1-ethyl-2-benzimidazolinone (1-EBIO), which is known to activate KCNN4, increased G(K) with no effect on G(Na). RT-PCR-based analyses confirmed expression of mRNA encoding KCNN4 and suggested that two related K(+) channels (KCNN1 and KCNMA1) were absent. Subsequent studies showed that 1-EBIO stimulates Na(+) transport in polarized monolayers without affecting intracellular Ca(2+) concentration ([Ca(2+)](i)), suggesting that the activity of KCNN4 might influence the rate of Na(+) absorption by contributing to G(K). Transient expression of KCNN4 cloned from H441 cells conferred a Ca(2+)- and 1-EBIO-sensitive K(+) conductance on Chinese hamster ovary cells, but this channel was inactive when [Ca(2+)](i) was <0.2 microM. Subsequent studies of amiloride-treated H441 cells showed that clotrimazole had no effect on V(m) despite clear depolarizations in response to increased extracellular K(+) concentration ([K(+)](o)). These findings thus indicate that KCNN4 does not contribute to V(m) in unstimulated cells. The present data thus establish that H441 cells express KCNN4 and highlight the importance of G(K) to the control of Na(+) absorption, but, because KCNN4 is quiescent in resting cells, this channel cannot contribute to resting G(K) or influence basal Na(+) absorption.  相似文献   

5.
Increasing evidence suggests that P2 receptors (P2Rs) in airway epithelial cells perform critical functions in auto- or paracrine regulation of fluid and mucus secretion. In the present study, we characterized the effects of P2R stimulation on Na(+)-K(+)-2Cl(-) cotransporter (NKCC) activity in normal human nasal epithelial (NHNE) cells. [Ca(2+)](i) and pH(i) were measured in primary cultures of NHNE cells using a double perfusion chamber, which enabled us to analyze membrane-specific transporter activities. NKCC activities were estimated by the pH(i) reduction due to Na(+)-dependent and bumetanide-sensitive intracellular uptake of NH(4)(+). NKCC activities were observed in the basolateral membrane, but not in the luminal membrane, of NHNE cells. Interestingly, P2Rs were expressed in both membranes, and the stimulation of either luminal or basolateral P2R increased NKCC activity. Blockades of luminal Cl(-) channels, basolateral K(+) channels, or protein kinase C did not affect the activation of NKCC by basolateral P2R stimulation. The effects of luminal P2R stimulation were partially reduced by Cl(-) channel blockers. However, chelation of intracellular Ca(2+) by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) treatment completely blocked the stimulatory effects of luminal and basolateral P2Rs on NKCC. In addition, increasing [Ca(2+)](i) by treatment with ionomycin-stimulated NKCC activity. These results provide evidence that stimulation of P2Rs directly activates basolateral NKCC by Ca(2+)-dependent pathways in NHNE cells, which is an important aspect of the purinergic regulation of ion and fluid secretions in human airway epithelia under physiologic and pathologic conditions.  相似文献   

6.
7.
Electrolyte transport across the adult alveolar epithelium plays an important role in maintaining a thin fluid layer along the apical surface of the alveolus that facilitates gas exchange across the epithelium. Most of the work published on the transport properties of alveolar epithelial cells has focused on the mechanisms and regulation of Na(+) transport and, in particular, the role of amiloride-sensitive Na(+) channels in the apical membrane and the Na(+)-K(+)-ATPase located in the basolateral membrane. Less is known about the identity and role of Cl(-) and K(+) channels in alveolar epithelial cells, but studies are revealing important functions for these channels in regulation of alveolar fluid volume and ionic composition. The purpose of this review is to examine previous work published on Cl(-) and K(+) channels in alveolar epithelial cells and to discuss the conclusions and speculations regarding their role in alveolar cell transport function.  相似文献   

8.
A synthetic Cl(-) channel-forming peptide, C-K4-M2GlyR, applied to the apical membrane of human epithelial cell monolayers induces transepithelial Cl(-) and fluid secretion. The sequence of the core peptide, M2GlyR, corresponds to the second membrane-spanning region of the glycine receptor, a domain thought to line the pore of the ligand-gated Cl(-) channel. Using a pharmacological approach, we show that the flux of Cl(-) through the artificial Cl(-) channel can be regulated by modulating basolateral K(+) efflux through Ca(2+)-dependent K(+) channels. Application of C-K4-M2GlyR to the apical surface of monolayers composed of human colonic cells of the T84 cell line generated a sustained increase in short-circuit current (I(SC)) and caused net fluid secretion. The current was inhibited by the application of clotrimazole, a non-specific inhibitor of K(+) channels, and charybdotoxin, a potent inhibitor of Ca(2+)-dependent K(+) channels. Direct activation of these channels with 1-ethyl-2-benzimidazolinone (1-EBIO) greatly amplified the Cl(-) secretory current induced by C-K4-M2GlyR. The effect of the combination of C-K4-M2GlyR and 1-EBIO on I(SC) was significantly greater than the sum of the individual effects of the two compounds and was independent of cAMP. Treatment with 1-EBIO also increased the magnitude of fluid secretion induced by the peptide. The cooperative action of C-K4-M2GlyR and 1-EBIO on I(SC) was attenuated by Cl(-) transport inhibitors, by removing Cl(-) from the bathing solution and by basolateral treatment with K(+) channel blockers. These results indicate that apical membrane insertion of Cl(-) channel-forming peptides such as C-K4-M2GlyR and direct activation of basolateral K(+) channels with benzimidazolones may coordinate the apical Cl(-) conductance and the basolateral K(+) conductance, thereby providing a pharmacological approach to modulating Cl(-) and fluid secretion by human epithelia deficient in cystic fibrosis transmembrane conductance regulator Cl(-) channels.  相似文献   

9.
Recent data show that proinflammatory stimuli may modify significantly ion transport in the airway epithelium and therefore the properties of the airway surface fluid. We have studied the effect of IL-4, a cytokine involved in the pathogenesis of asthma, on transepithelial ion transport in the human bronchial epithelium in vitro. Incubation of polarized bronchial epithelial cells with IL-4 for 6-48 h causes a marked inhibition of the amiloride-sensitive Na(+) channel as measured in short circuit current experiments. On the other hand, IL-4 evokes a 2-fold increase in the current activated by a cAMP analog, which reflects the activity of the cystic fibrosis transmembrane conductance regulator (CFTR). Similarly, IL-4 enhances the response to apical UTP, an agonist that activates Ca(2+)-dependent Cl(-) channels. These effects are mimicked by IL-13 and blocked by an antagonist of IL-4Ralpha. RT-PCR experiments show that IL-4 elicits a 7-fold decrease in the level of the gamma amiloride-sensitive Na(+) channel mRNA, one of the subunits of the amiloride-sensitive Na(+) channel, and an increase in CFTR mRNA. Our data suggest that IL-4 may favor the hydration of the airway surface by decreasing Na(+) absorption and increasing Cl(-) secretion. This could be required to fluidify the mucus, which is hypersecreted during inflammatory conditions. On the other hand, the modifications of ion transport could also affect the ion composition of airway surface fluid.  相似文献   

10.
Stimulation of muscarinic receptors in the duodenal mucosa raises cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)), thereby regulating duodenal epithelial ion transport. However, little is known about the downstream molecular targets that account for this Ca(2+)-mediated biological action. Ca(2+)-activated K(+) (K(Ca)) channels are candidates, but the expression and function of duodenal K(Ca) channels are poorly understood. Therefore, we determined whether K(Ca) channels are expressed in the duodenal mucosa and investigated their involvement in Ca(2+)-mediated duodenal epithelial ion transport. Two selective blockers of intermediate-conductance Ca(2+)-activated K(+) (IK(Ca)) channels, clotrimazole (30 muM) and 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34; 10 muM), significantly inhibited carbachol (CCh)-induced duodenal short-circuit current (I(sc)) and duodenal mucosal bicarbonate secretion (DMBS) in mice but did not affect responses to forskolin and heat-stable enterotoxin of Escherichia coli. Tetraethylammonium, 4-aminopyridine, and BaCl(2) failed to inhibit CCh-induced I(sc) and DMBS. A-23187 (10 muM), a Ca(2+) ionophore, and 1-ethyl-2-benzimidazolinone (1-EBIO; 1 mM), a selective opener of K(Ca) channels, increased both I(sc) and DMBS. The effect of 1-EBIO was more pronounced with serosal than mucosal addition. Again, both clotrimazole and TRAM-34 significantly reduced A23187- or 1-EBIO-induced I(sc) and DMBS. Moreover, clotrimazole (20 mg/kg ip) significantly attenuated acid-stimulated DMBS of mice in vivo. Finally, the molecular identity of IK(Ca) channels was verified as KCNN4 (SK4) in freshly isolated murine duodenal mucosae by RT-PCR and Western blotting. Together, our results suggest that the IK(Ca) channel is one of the downstream molecular targets for [Ca(2+)](cyt) to mediate duodenal epithelial ion transport.  相似文献   

11.
The lactogenic hormone prolactin (PRL) has been known to affect Ca(2+) and electrolyte transport in the intestinal epithelium. In the present study we analyzed ion transport in mouse proximal and distal colon, and acute changes induced by PRL. In the proximal colon, carbachol activated a Ca(2+) dependent Cl(-) secretion that was sensitive to DIDS and NFA. In the distal colon, both ATP and carbachol activated K(+) secretion. Ca(2+) -activated KCl transport in proximal and distal colon was inhibited by PRL (200 ng/ml), while amiloride sensitive Na(+) absorption and cAMP induced Cl(-) secretion remained unaffected. Luminal large conductance Ca(2+) -activated K(+) (BK) channels were largely responsible for Ca(2+) -activated K(+) secretion in the distal colon, and basolateral BK channels supported Ca(2+) -activated Cl(-) secretion in the proximal colon. Ca(2+) chelating by BAPTA-AM attenuated effects of carbachol and abolished effects of PRL. Both inhibition of PI3 kinase with wortmannin and blockage of MAP kinases with SB 203580 or U 0126, interfered with the acute inhibitory effect of PRL on ion transport, while blocking of Jak/Stat kinases with AG 490 was without effects. PRL attenuated the increase in intracellular Ca(2+) that was caused by stimulation of isolated colonic crypts with carbachol. Thus PRL inhibits Ca(2+) dependent Cl(-) and K(+) secretion by interfering with intracellular Ca(2+) signaling and probably by activating PI3 kinase and MAP kinase pathways.  相似文献   

12.
Intermediate-conductance K(+) (Kcnn4) channels in the apical and basolateral membranes of epithelial cells play important roles in agonist-induced fluid secretion in intestine and colon. Basolateral Kcnn4 channels have been well characterized in situ using patch-clamp methods, but the investigation of Kcnn4 channels in apical membranes in situ has been hampered by a layer of mucus that prevents seal formation. In the present study, we used patch-clamp methods to characterize Kcnn4 channels in the apical membrane of IEC-18 cells, a cell line derived from rat small intestine. A monolayer of IEC-18 cells grown on a permeable support is devoid of mucus, and tight junctions enable selective access to the apical membrane. In inside-out patches, Ca(2+)-dependent K(+) channels observed with iberiotoxin (a Kcnma1/large-conductance, Ca(2+)-activated K(+) channel blocker) and apamin (a Kcnn1-3/small-conductance, Ca(2+)-activated K(+) channel blocker) present in the pipette solution exhibited a single-channel conductance of 31 pS with inward rectification. The currents were reversibly blocked by TRAM-34 (a Kcnn4 blocker) with an IC(50) of 8.7 ± 2.0 μM. The channels were not observed when charybdotoxin, a peptide inhibitor of Kcnn4 channels, was added to the pipette solution. TRAM-34 was less potent in inhibiting Kcnn4 channels in patches from apical membranes than in patches from basolateral membranes, which was consistent with a preferential expression of Kcnn4c and Kcnn4b isoforms in apical and basolateral membranes, respectively. The expression of both isoforms in IEC-18 cells was confirmed by RT-PCR and Western blot analyses. This is the first characterization of Kcnn4 channels in the apical membrane of intestinal epithelial cells.  相似文献   

13.
Short-lived, localized Ca(2+) events mediate Ca(2+) signaling with high efficiency and great fidelity largely as a result of the close proximity between Ca(2+)-permeable ion channels and their molecular targets. However, in most cases, direct evidence of the spatial relationship between these two types of molecules is lacking, and, thus, mechanistic understanding of local Ca(2+) signaling is incomplete. In this study, we use an integrated approach to tackling this issue on a prototypical local Ca(2+) signaling system composed of Ca(2+) sparks resulting from the opening of ryanodine receptors (RYRs) and spontaneous transient outward currents (STOCs) caused by the opening of Ca(2+)-activated K(+) (BK) channels in airway smooth muscle. Biophysical analyses of STOCs and Ca(2+) sparks acquired at 333 Hz demonstrate that these two events are associated closely in time, and approximately eight RYRs open to give rise to a Ca(2+) spark, which activates ~15 BK channels to generate a STOC at 0 mV. Dual immunocytochemistry and 3-D deconvolution at high spatial resolution reveal that both RYRs and BK channels form clusters and RYR1 and RYR2 (but not RYR3) localize near the membrane. Using the spatial relationship between RYRs and BK channels, the spatial-temporal profile of [Ca(2+)] resulting from Ca(2+) sparks, and the kinetic model of BK channels, we estimate that an average Ca(2+) spark caused by the opening of a cluster of RYR1 or RYR2 acts on BK channels from two to three clusters that are randomly distributed within an ~600-nm radius of RYRs. With this spatial organization of RYRs and BK channels, we are able to model BK channel currents with the same salient features as those observed in STOCs across a range of physiological membrane potentials. Thus, this study provides a mechanistic understanding of the activation of STOCs by Ca(2+) sparks using explicit knowledge of the spatial relationship between RYRs (the Ca(2+) source) and BK channels (the Ca(2+) target).  相似文献   

14.
Interaction of large conductance Ca(2+)- and voltage-activated K(+) (BK(Ca)) channels with Na(+)/K(+)-ATPase, caveolin-1, and cholesterol was studied in human melanoma IGR39 cells. Functional BK(Ca) channels were enriched in caveolin-rich and detergent-resistant membranes, i.e. rafts, and blocking of the channels by a specific BK(Ca) blocker paxilline reduced proliferation of the cells. Disruption of rafts by selective depletion of cholesterol released BK(Ca) channels from these domains with a consequent increase in their activity. Consistently, cholesterol enrichment of the cells increased the proportion of BK(Ca) channels in rafts and decreased their activity. Immunocytochemical analysis showed that BK(Ca) channels co-localize with Na(+)/K(+)-ATPase in a cholesterol-dependent manner, thus suggesting their co-presence in rafts. Supporting this, ouabain, a specific blocker of Na(+)/K(+)-ATPase, inhibited BK(Ca) whole-cell current markedly in control cells but not in cholesterol-depleted ones. This inhibition required the presence of external Na(+). Collectively, these data indicate that the presence of Na(+)/K(+)-ATPase in rafts is essential for efficient functioning of BK(Ca) channels, presumably because the pump maintains a low intracellular Na(+) proximal to the BK(Ca) channel. In conclusion, cholesterol could play an important role in cellular ion homeostasis and thus modulate many cellular functions and cell proliferation.  相似文献   

15.
By analysis of whole cell membrane currents in Na(+)-absorbing H441 human airway epithelial cells, we have identified a K(+) conductance (G(K)) resistant to Ba(2+) but sensitive to bupivacaine or extracellular acidification. In polarized H441 monolayers, we have demonstrated that bupivacaine, lidocaine, and quinidine inhibit basolateral membrane K(+) current (I(Bl)) whereas Ba(2+) has only a weak inhibitory effect. I(Bl) was also inhibited by basolateral acidification, and, although subsequent addition of bupivacaine caused a further fall in I(Bl), acidification had no effect after bupivacaine, demonstrating that cells grown under these conditions express at least two different bupivacaine-sensitive K(+) channels, only one of which is acid sensitive. Basolateral acidification also inhibited short-circuit current (I(SC)), and basolateral bupivacaine, lidocaine, quinidine, and Ba(2+) inhibited I(SC) at concentrations similar to those needed to inhibit I(Bl), suggesting that the K(+) channels underlying I(Bl) are part of the absorptive mechanism. Analyses using RT-PCR showed that mRNA encoding several two-pore domain K(+) (K2P) channels was detected in cells grown under standard conditions (TWIK-1, TREK-1, TASK-2, TWIK-2, KCNK-7, TASK-3, TREK-2, THIK-1, and TALK-2). We therefore suggest that K2P channels underlie G(K) in unstimulated cells and so maintain the driving force for Na(+) absorption. Since this ion transport process is vital to lung function, K2P channels thus play an important but previously undocumented role in pulmonary physiology.  相似文献   

16.
The major function of epithelial tissues is to maintain proper ion, solute, and water homeostasis. The tubule of the renal nephron has an amazingly simple structure, lined by epithelial cells, yet the segments (i.e., proximal tubule vs. collecting duct) of the nephron have unique transport functions. The functional differences are because epithelial cells are polarized and thus possess different patterns (distributions) of membrane transport proteins in the apical and basolateral membranes of the cell. K(+) channels play critical roles in normal physiology. Over 90 different genes for K(+) channels have been identified in the human genome. Epithelial K(+) channels can be located within either or both the apical and basolateral membranes of the cell. One of the primary functions of basolateral K(+) channels is to recycle K(+) across the basolateral membrane for proper function of the Na(+)-K(+)-ATPase, among other functions. Mutations of these channels can cause significant disease. The focus of this review is to provide an overview of the basolateral K(+) channels of the nephron, providing potential physiological functions and pathophysiology of these channels, where appropriate. We have taken a "K(+) channel gene family" approach in presenting the representative basolateral K(+) channels of the nephron. The basolateral K(+) channels of the renal epithelia are represented by members of the KCNK, KCNJ, KCNQ, KCNE, and SLO gene families.  相似文献   

17.
In order to assess the role of different classes of K(+) channels in recirculation of K(+) across the basolateral membrane of rabbit distal colon epithelium, the effects of various K(+) channel inhibitors were tested on the activity of single K(+) channels from the basolateral membrane, on macroscopic basolateral K(+) conductance, and on the rate of Na(+) absorption and Cl(-) secretion. In single-channel measurements using the lipid bilayer reconstitution system, high-conductance (236 pS), Ca(2+)-activated K(+) (BK(Ca)) channels were most frequently detected; the second most abundant channel was a low-conductance K(+) channel (31 pS) that exhibited channel rundown. In addition to Ba(2+) and charybdotoxin (ChTX), the BK(Ca) channels were inhibited by quinidine, verapamil and tetraethylammonium (TEA), the latter only when present on the side of the channel from which K(+) flow originates. Macroscopic basolateral K(+) conductance, determined in amphotericin-permeabilised epithelia, was also markedly reduced by quinidine and verapamil, TEA inhibited only from the lumen side, and serosal ChTX was without effect. The chromanol 293B and the sulphonylurea tolbutamide did not affect BK(Ca) channels and had no or only a small inhibitory effect on macroscopic basolateral K(+) conductance. Transepithelial Na(+) absorption was partly inhibited by Ba(2+), quinidine and verapamil, suggesting that BK(Ca) channels are involved in basolateral recirculation of K(+) during Na(+) absorption in rabbit colon. The BK(Ca) channel inhibitors TEA and ChTX did not reduce Na(+) absorption, probably because TEA does not enter intact cells and ChTX is 'knocked off' its extracellular binding site by K(+) outflow from the cell interior. Transepithelial Cl(-) secretion was inhibited completely by Ba(2+) and 293B, partly by quinidine but not by the other K(+) channel blockers, indicating that the small (<3 pS) K(V)LQT1 channels are responsible for basolateral K(+) exit during Cl(-) secretion. Hence different types of K(+) channels mediate basolateral K(+) exit during transepithelial Na(+) and Cl(-) transport.  相似文献   

18.
In endothelial cells, local Ca(2+) release from superficial endoplasmic reticulum (ER) activates BK(Ca) channels. The resulting hyperpolarization promotes capacitative Ca(2+) entry (CCE), which, unlike BK(Ca) channels, is inhibited by high Ca(2+). To understand how the coordinated activation of plasma membrane ion channels with opposite Ca(2+) sensitivity is orchestrated, the individual contribution of mitochondria and ER in regulation of subplasmalemmal Ca(2+) concentration ([Ca(2+)](pm)) was investigated. For organelle visualization, cells were transfected with DsRed and yellow cameleon targeted to mitochondria and ER. The patch pipette was placed far from any organelle (L1), close to ER (L3), or mitochondria (L2) and activity of BK(Ca) channels was used to estimate local [Ca(2+)](pm). Under standard patch conditions (130 mm K(+) in the bath), histamine increased [Ca(2+)](pm) at L1 and L3 to approximately 1.6 microm, whereas close to mitochondria [Ca(2+)](pm) remained unchanged. If mitochondria moved apart from the pipette or in the presence of carbonyl cyanide-4-trifluoromethoxyphenylhyrazone, [Ca(2+)](pm) at L2 increased in response to histamine. Under standard patch conditions Ca(2+) entry was negligible due to cell depolarization. Using a physiological patch approach (5.6 mm K(+) in the bath), changes in [Ca(2+)](pm) to histamine could be monitored without cell depolarization and, thus, in conditions where Ca(2+) entry occurred. Here, histamine induced an initial transient Ca(2+) elevation to > or =3.5 microm followed by a long lasting plateau at approximately 1.2 microm in L1 and L3, whereas mitochondria kept neighboring [Ca(2+)](pm) low during stimulation. Thus, superficial mitochondria and ER generate local domains of low and high Ca(2+) allowing simultaneous activation of BK(Ca) and CCE, despite their opposite Ca(2+) sensitivity.  相似文献   

19.
The present study investigated the ability of 5-oxo-EicosaTetraEnoic acid (5-oxo-ETE) for modulating airway smooth muscle (ASM) tone in human bronchi. 5-Oxo-ETE induced a concentration-dependent relaxing effect on human bronchi pre-contracted with methacholine (MCh) and arachidonic acid (AA). This relaxing response was highly sensitive to Iberiotoxin (IbTx), a large conducting Ca(2+)-activated K(+) channel (BK(Ca)) inhibitor. Furthermore, microelectrode measurements revealed that 5-oxo-ETE (0.1-10 microM) hyperpolarizes the membrane potential of human bronchial ASM cells. These hyperpolarizing effects were also inhibited in the presence of 10nM IbTx. Lastly, 5-oxo-ETE was shown to directly activate reconstituted BK(Ca) channels derived from human airway smooth muscles. In summary, the 5-oxo-ETE eicosanoid activates a specific K(+) conductance, involved in membrane hyperpolarization, which in turn reduces Ca(2+) entry and facilitates relaxation of smooth muscle cells.  相似文献   

20.
Bupivacaine is a local anesthetic compound belonging to the amino amide group. Its anesthetic effect is commonly related to its inhibitory effect on voltage-gated sodium channels. However, several studies have shown that this drug can also inhibit voltage-operated K(+) channels by a different blocking mechanism. This could explain the observed contractile effects of bupivacaine on blood vessels. Up to now, there were no previous reports in the literature about bupivacaine effects on large conductance voltage- and Ca(2+) -activated K(+) channels (BK(Ca)). Using the patch-clamp technique, it is shown that bupivacaine inhibits single-channel and whole-cell K(+) currents carried by BK(Ca) channels in smooth muscle cells isolated from human umbilical artery (HUA). At the single-channel level bupivacaine produced, in a concentration- and voltage-dependent manner (IC(50) 324 μM at +80 mV), a reduction of single-channel current amplitude and induced a flickery mode of the open channel state. Bupivacaine (300 μM) can also block whole-cell K(+) currents (~45% blockage) in which, under our working conditions, BK(Ca) is the main component. This study presents a new inhibitory effect of bupivacaine on an ion channel involved in different cell functions. Hence, the inhibitory effect of bupivacaine on BK(Ca) channel activity could affect different physiological functions where these channels are involved. Since bupivacaine is commonly used during labor and delivery, its effects on umbilical arteries, where this channel is highly expressed, should be taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号