首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Pregnancy and the follicular phase of the ovarian cycle show elevation of uterine blood flow and associated increases in uterine artery endothelium (UAE) endothelial nitric oxide (NO) synthase (eNOS) expression. Nonetheless, a role for increased NO production during pregnancy and the follicular phase has only been inferred by indirect measures. The recent development of a uterine artery endothelial cell model further suggests that pregnancy is associated with reprogramming of cell signaling, such that eNOS may become more Ca(2+) sensitive and be subject to regulation by Ca(2+)-independent kinases. This study describes for the first time the direct and simultaneous monitoring of NO production and intracellular free Ca(2+) concentration ([Ca(2+)](i)) in freshly isolated UAE from pregnant, follicular, and luteal sheep. The pharmacological agonists ionomycin (calcium ionophore) and thapsigargin (TG; endoplasmic reticulum Ca(2+) pump inhibitor) were used to maximally elevate [Ca(2+)](i) and fully activate eNOS as a measure of eNOS expression. NO production stimulated by ionomycin (5 microM) and TG (10 microM) were 1.95- and 2.05-fold, respectively, in pregnant-UAE and 1.34- and 1.37-fold in follicular-UAE compared with luteal-UAE. In contrast, the physiological agonist ATP (100 microM) stimulated a 3.43-fold increase in NO in pregnant-UAE and a 1.90-fold increase in follicular-UAE compared with luteal-UAE, suggesting that pregnancy and follicular phase enhance eNOS activation beyond changes in expression in vivo. 2-aminoethoxydiphenyl borate (APB; an inositol 1,4,5-trisphosphate receptor blocker) totally prevented the ATP-induced [Ca(2+)](i) response but only partially inhibited NO production. Thus pregnancy-enhanced eNOS activation in UAE is mediated through [Ca(2+)](i)-insensitive pathways as well as through a greater eNOS sensitivity to [Ca(2+)](i).  相似文献   

2.
Normal pregnancy and the follicular phase of the ovarian cycle are both estrogen-dominated physiological states that are characterized by elevations in uterine blood flow and endothelial nitric oxide synthase (eNOS) protein expression in the uterine artery (UA) endothelium. It is unknown if elevations in mRNA level account for the changes in protein or eNOS activity. We tested the hypothesis that pregnancy and the follicular phase are associated with increases in eNOS mRNA and the consequent elevated expression of eNOS protein results in increased circulating nitric oxide (NO) levels. UA were obtained from pregnant (PREG; n = 8; 110-130 days gestation; term = 145 +/- 3 days), nonpregnant luteal (LUT; n = 6), nonpregnant follicular (FOL; n = 6), and nonpregnant ovariectomized (OVEX; n = 6) sheep. Circulating NO levels were analyzed as total NO(2)-NO(3) (NO(x)). Western analysis performed on UA endothelial-isolated proteins demonstrated that eNOS protein levels were OVEX = LUT < or = FOL < PREG (P < 0.05), whereas eNOS mRNA expression (RT-PCR) in UA endothelial cells obtained by limited collagenase digestion was OVEX < LUT < FOL < PREG (P < 0.05). Pregnancy dramatically elevated eNOS protein (4.1- to 6.9-fold) and mRNA (2.4- to 6.9-fold) over LUT controls (P < 0.01). Circulating NO(x) levels were not altered by ovariectomy or the ovarian cycle but were elevated from 4.4 +/- 1.1 microM in LUT to 12 +/- 4, 22 +/- 3, and 41 +/- 3 microM at 110, 120, and 130 days gestation (P < 0.01). Systemic NO(x) levels in singleton (12.5 +/- 1.6 microM) were less (P < 0.01) than in multiple (twin 27.6 +/- 6.5 microM; triplet = 46 +/- 10 microM) pregnancies. Therefore, the follicular phase and, to a much greater extent, pregnancy are associated with elevations in UA endothelium-derived eNOS expression, although significant increases in systemic NO(x) levels were only observed in the PREG group (multiple > singleton). Thus, although UA endothelial increases in eNOS protein and mRNA levels are associated with high estrogen states, increases in local UA NO production may require additional eNOS protein activation to play its important role in the maintenance of uterine blood flow in pregnancy.  相似文献   

3.
Involvement of Gi/o in the PAR-4-induced NO production in endothelial cells   总被引:2,自引:0,他引:2  
We investigated the involvement of G(i/o) protein in NO production following the activation of proteinase-activated receptor-4 (PAR-4) in cultured bovine aortic endothelial cells. AYPGKF-NH(2) (PAR-4 activating peptide), thrombin, and ionomycin induced a concentration-dependent NO production, with the maximal production seen at 30 microM, 0.1U/ml, and 1 microM, respectively. Ionomycin elevated [Ca(2+)](i) in a concentration-dependent manner. However, AYPGKF-NH(2) and thrombin induced no [Ca(2+)](i) elevation. The loading of cells with BAPTA almost completely inhibited both the NO production and [Ca(2+)](i) elevation induced by 1 microM ionomycin, while it had no significant effect on the AYPGKF-NH(2)-induced NO production. Treatment with pertussis toxin inhibited the AYPGKF-NH(2)-induced NO production, while it had no effect on the ionomycin-induced NO production. Our findings thus demonstrate, for the first time, that PAR-4 activation induced NO production in a manner mostly independent of the Ca(2+) signal and also that G(i/o) is involved in such NO production in vascular endothelial cells.  相似文献   

4.
Vascular endothelial growth factor (VEGF) exerts its angiogenic effects partly through the activation of endothelial nitric-oxide synthase (eNOS). Association with heat shock protein 90 (hsp90) and phosphorylation by Akt were recently shown to separately activate eNOS upon VEGF stimulation in endothelial cells. Here, we examined the interplay between these different mechanisms in VEGF-exposed endothelial cells. We documented that hsp90 binding to eNOS is, in fact, the crucial event triggering the transition from the Ca(2+)-dependent activation of eNOS to the phosphorylation-mediated potentiation of its activity by VEGF. Accordingly, we showed that early VEGF stimulation first leads to the Ca(2+)/calmodulin disruption of the caveolin-eNOS complex and promotes the association between eNOS and hsp90. eNOS-bound hsp90 can then recruit VEGF-activated (phosphorylated) Akt to the complex, which in turn can phosphorylate eNOS. Further experiments in transfected COS cells expressing either wild-type or S1177A mutant eNOS led us to identify the serine 1177 as the critical residue for the hsp90-dependent Akt-mediated activation of eNOS. Finally, we documented that although the VEGF-induced phosphorylation of eNOS leads to a sustained production of NO independently of a maintained increase in [Ca(2+)](i), this late stage of eNOS activation is strictly conditional on the initial VEGF-induced Ca(2+)-dependent stimulation of the enzyme. These data establish the critical temporal sequence of events leading to the sustained activation of eNOS by VEGF and suggest new ways of regulating the production of NO in response to this cytokine through the ubiquitous chaperone protein, hsp90.  相似文献   

5.
An organotypic cell culture (OCC) model of the rat hypothalamic paraventricular nucleus (PVN) was established to monitor intracellular calcium levels ([Ca(2+)](i)) of magnocellular neurons in response to glutamate and nitric oxide (NO). The histoarchitectural organization of these cultures was characterized either by immunohistochemical labeling of vasopressin, neuronal nitric oxide synthase (nNOS) and the neuronal marker NeuN or by the enzyme histochemical NADPH-diaphorase staining. A distinct NeuN positive cell population in 14-days old OCC's was confirmed as being the PVN by its vasopressin- and nNOS-immunostained neurons as well as by its NADPH-diaphorase labeling. Life cell imaging was performed using the [Ca(2+)](i) sensor Fluo-4 to measure [Ca(2+)](i) transients in response to bath applications of glutamate, high potassium (60 mM), and ATP. The glutamate-induced [Ca(2+)](i) response was mimicked by AMPA but not NMDA in the PVN. NMDA, however, elicited a [Ca(2+)](i) transient in a different area of the OCC that corresponds to the suprachiasmatic nucleus indicating the potential effectiveness of the stimulus. The AMPA-receptor blocker NBQX abolished the glutamate-induced response in the PVN. An inhibition of endogenous NO production by the NOS inhibitor L-NAME decreased the amplitude of AMPA- and glutamate-induced [Ca(2+)](i) rises. Taken together, these data suggest that AMPA mediates the glutamate-induced [Ca(2+)](i) rises within the PVN, where endogenous NO is able to modulate such glutamate signaling in OCC.  相似文献   

6.
In PC-Cl3 rat thyroid cell line, ATP and UTP provoked a transient increase in [Ca(2+)](i), followed by a lower sustained phase. Removal of extracellular Ca(2+) reduced the initial transient response and completely abolished the plateau phase. Thapsigargin (TG) caused a rapid rise in [Ca(2+)](i) and subsequent addition of ATP was without effect. The transitory activation of [Ca(2+)](i) was dose-dependently attenuated in cells pretreated with the specific inhibitor of phospholipase C (PLC), U73122. These data suggest that the ATP-stimulated increment of [Ca(2+)](i) required InsP(3) formation and binding to its specific receptors in Ca(2+) stores. Desensitisation was demonstrated with respect to the calcium response to ATP and UTP in Fura 2-loaded cells. Further studies were performed to investigate whether the effect of ATP on Ca(2+) entry into PC-Cl3 cells was via L-type voltage-dependent Ca(2+) channels (L-VDCC) and/or by the capacitative pathway. Nifedipine decreased ATP-induced increase on [Ca(2+)](i). Addition of 2 mM Ca(2+) induced a [Ca(2+)](i) rise after pretreatment of the cells with TG or with 100 microM ATP in Ca(2+)-free medium. These data indicate that Ca(2+) entry into PC-Cl3 stimulated with ATP occurs through both an L-VDCC and through a capacitative pathway. Using buffers with differing Na(+) concentrations, we found that the effects of ATP were dependent of extracellular Na(+), suggesting that a Na(+)/Ca(2+) exchange mechanism is also operative. These data suggest the existence, in PC-Cl3 cell line, of a P2Y purinergic receptor able to increase the [Ca(2+)](i) via PLC activation, Ca(2+) store depletion, capacitative Ca(2+) entry and L-VDCC activation.  相似文献   

7.
The mechanisms of adaptation of uterine artery vascular tone to pregnancy are not fully understood. The present study tested the hypothesis that pregnancy decreases the PKC-mediated Ca(2+) sensitivity of the contractile process and attenuates myogenic tone in resistance-sized uterine arteries. In pressurized uterine arteries from nonpregnant (NPUA) and near-term pregnant (PUA) sheep, we measured, simultaneously in the same tissue, vascular diameter and vessel wall intracellular Ca(2+) concentration ([Ca(2+)](i)) as a function of intraluminal pressure. In both NPUA and PUA, membrane depolarization with KCl caused a rapid increase in [Ca(2+)](i) and a decrease in diameter. A pressure increase from 20 to 100 mmHg resulted in a transient increase in diameter that was associated with an increase in [Ca(2+)](i), followed by myogenic contractions in the absence of further changes in [Ca(2+)](i). In addition, activation of PKC by phorbol 12,13-dibutyrate induced a decrease in diameter in the absence of changes in [Ca(2+)](i). Pressure-dependent myogenic responses were significantly decreased in PUA compared with NPUA. However, pressure-induced increases in [Ca(2+)](i) were not significantly different between PUA and NPUA. The ratio of changes in diameter to changes in [Ca(2+)](i) was significantly greater for pressure-induced contraction of NPUA than that of PUA. Inhibition of PKC by calphostin C significantly attenuated the pressure-induced vascular tone and eliminated the difference of myogenic responses between NPUA and PUA. In contrast, the MAPKK (MEK) inhibitor PD-098059 had no effect on NPUA but significantly enhanced myogenic responses of PUA. In the presence of PD-098059, there was no difference in pressure-induced myogenic responses between NPUA and PUA. The results suggest that pregnancy downregulates pressure-dependent myogenic tone of the uterine artery, which is partly due to increased MEK/ERK activity and decreased PKC signal pathway leading to a decrease in Ca(2+) sensitivity of myogenic mechanism in the uterine artery during pregnancy.  相似文献   

8.
Vascular endothelial growth factor (VEGF) is a potent endothelial cell-specific mitogen that promotes angiogenesis, vascular hyperpermeability, and vasodilation by autocrine mechanisms involving nitric oxide (NO) and prostacyclin (PGI(2)) production. These experiments used immunoprecipitation and immunoassay procedures to characterize the signaling pathways by which VEGF induces NO and PGI(2) formation in cultured endothelial cells. The data showed that VEGF stimulates complex formation of the flk-1/kinase-insert domain-containing receptor (KDR) VEGF receptor with c-Src and that Src activation is required for VEGF induction of phospholipase C gamma1 activation and inositol 1,4,5-trisphosphate formation. Reporter cell assays showed that VEGF promotes a approximately 50-fold increase in NO formation, which peaks at 5-20 min. This effect is mediated by a signaling cascade initiated by flk-1/KDR activation of c-Src, leading to phospholipase C gamma1 activation, inositol 1,4,5-trisphosphate formation, release of [Ca(2+)](i) and nitric oxide synthase activation. Immunoassays of VEGF-induced 6-keto prostaglandin F(1alpha) formation as an indicator of PGI(2) production revealed a 3-4-fold increase that peaked at 45-60 min. The PGI(2) signaling pathway follows the NO pathway through release of [Ca(2+)](i), but diverges prior to NOS activation and also requires activation of mitogen-activated protein kinase. These results suggest that NO and PGI(2) function in parallel in mediating the effects of VEGF.  相似文献   

9.
Endothelial nitric-oxide synthase (eNOS), a Ca(2+)/calmodulin-dependent enzyme, is critical for vascular homeostasis. While eNOS is membrane-associated through its N-myristoylation, the significance of membrane association in locating eNOS near sources of Ca(2+) entry is uncertain. To assess the Ca(2+) source required for eNOS activation, chimera containing the full-length eNOS cDNA and HA-tagged aequorin sequence (EHA), and MHA (myristoylation-deficient EHA) were generated and transfected into COS-7 cells. The EHA chimera was primarily targeted to the plasma membrane while MHA was located intracellularly. Both constructs retained enzymatic eNOS activity and aequorin-mediated Ca(2+) sensitivity. The plasma membrane-associated EHA and intracellular MHA were compared in their ability to sense changes in local Ca(2+) concentration, demonstrating preferential sensitivity to Ca(2+) originating from intracellular pools (MHA) or from capacitative Ca(2+) entry (EHA). Measurements of eNOS activation in intact cells revealed that the eNOS enzymatic activity of EHA was more sensitive to Ca(2+) influx via capacitative Ca(2+) entry than intracellular release, whereas MHA eNOS activity was more responsive to intracellular Ca(2+) release. When eNOS activation by CCE was compared with that generated by an equal rise in [Ca(2+)](i) due to the Ca(2+) ionophore ionomycin, a 10-fold greater increase in NO production was found in the former condition. These results demonstrate that EHA and MHA chimera are properly targeted and retain full functions of eNOS and aequorin, and that capacitative Ca(2+) influx is the principle stimulus for sustained activation of eNOS on the plasma membrane in intact cells.  相似文献   

10.
A two-dimensional intracellular Ca(2+) ([Ca(2+)](i)) imaging system was used to examine the relationship between [Ca(2+)](i) handling and the proliferation of MC3T3-E1 osteoblast-like cells. The resting [Ca(2+)](i) level in densely cultured cells was 1.5 times higher than the [Ca(2+)](i) level in sparsely cultured cells or in other cell types (mouse fibroblasts, rat vascular smooth muscle cells, and bovine endothelial cells). A high resting [Ca(2+)](i) level may be specific for MC3T3-E1 cells. MC3T3-E1 cells were stimulated with ATP (10 microM), caffeine (10 mM), thapsigargin (1 microM), or ionomycin (10 microM), and the effect on the [Ca(2+)](i) level of MC3T3-E1 cells was studied. The percentage of responding cells and the degree of [Ca(2+)](i) elevation were high in the sparsely cultured cells and low in densely cultured cells. The rank order for the percentage of responding cells and magnitude of the Ca(2+) response to the stimuli was ionomycin > thapsigargin = ATP > caffeine and suggests the existence of differences among the various [Ca(2+)](i) channels. All Ca(2+) responses in the sparsely cultured MC3T3-E1 cells, unlike in other cell types, disappeared after the cells reached confluence. Heptanol treatment of densely cultured cells restored the Ca(2+) response, suggesting that cell-cell contact is involved with the confluence-dependent disappearance of the Ca(2+) response. Immunohistological analysis of type 1 inositol trisphosphate receptors and electron microscopy showed distinct expression of inositol trisphosphate receptor proteins and smooth-surfaced endoplasmic reticulum in sparsely cultured cells but reduced levels in densely cultured cells. These results indicate that the underlying basis of confluence-dependent [Ca(2+)](i) regulation is down-regulation of smooth-surfaced endoplasmic reticulum by cell-cell contacts.  相似文献   

11.
Endothelial second messenger responses may contribute to the pathology of high vascular pressure but remain poorly understood because of the lack of direct in situ quantification. In lung venular capillaries, we determined endothelial cytosolic Ca(2+) concentration [Ca(2+)](i) by the fura 2 ratioing method. Pressure elevation increased mean endothelial [Ca(2+)](i) by Ca(2+) influx through gadolinium-inhibitable channels and amplified [Ca(2+)](i) oscillations by Ca(2+) release from intracellular stores. Endothelial [Ca(2+)](i) transients were induced by pressure elevations of as little as 5 cmH(2)O and increased linearly with higher pressures. Heptanol inhibition of [Ca(2+)](i) oscillations in a subset of endothelial cells indicated that oscillations originated from pacemaker endothelial cells and were propagated to adjacent nonpacemaker cells by gap junctional communication. Our findings indicate the presence of a sensitive, active endothelial response to pressure challenge in lung venular capillaries that may be relevant in the pathogenesis of pressure-induced lung microvascular injury.  相似文献   

12.
Eicosapentaenoic acid (EPA), but not its metabolites (docosapentaenoic acid and docosahexaenoic acid), stimulated nitric oxide (NO) production in endothelial cells in situ and induced endothelium-dependent relaxation of bovine coronary arteries precontracted with U46619. EPA induced a greater production of NO, but a much smaller and more transient elevation of intracellular Ca(2+) concentration ([Ca(2+)]i), than did a Ca(2+) ionophore (ionomycin). EPA stimulated NO production even in endothelial cells in situ loaded with a cytosolic Ca(2+) chelator 1,2-bis-o-aminophenoxythamine-N',N',N'-tetraacetic acid, which abolished the [Ca(2+)]i elevations induced by ATP and EPA. The EPA-induced vasorelaxation was inhibited by N(omega)-nitro-L-arginine methyl ester. Immunostaining analysis of endothelial NO synthase (eNOS) and caveolin-1 in cultured endothelial cells revealed eNOS to be colocalized with caveolin in the cell membrane at a resting state, while EPA stimulated the translocation of eNOS to the cytosol and its dissociation from caveolin, to an extent comparable to that of the eNOS translocation induced by a [Ca(2+)]i-elevating agonist (10 microM bradykinin). Thus, EPA induces Ca(2+)-independent activation and translocation of eNOS and endothelium-dependent vasorelaxation.  相似文献   

13.
It was previously shown that in rat thyroid PC-Cl3 cell line, a purinergic P2Y receptor increases the concentration of free cytosolic Ca(2+) ([Ca(2+)](i)) via phospholipase C activation. We here studied whether in a transformed cell line (PC-E1Araf) derived from parental PC-Cl3 cells, ATP is still able to transduce the [Ca(2+)](i)-based intracellular signal.We demonstrate the expression of mRNA for P2Y2 in both PC-Cl3 and PC-E1Araf cells; mRNAs for P2Y1, P2Y4, P2Y6 and P2Y11 were absent. In both cell lines activation of P2Y2 receptor provokes a transient increase in [Ca(2+)](i) followed by a lower sustained phase persisting for over 5min in PC-Cl3 and only 1.5 min in PC-E1Araf cells. In both cell lines the [Ca(2+)](i) reached a plateau level significantly higher than the basal [Ca(2+)](i) level persisting for over 10 min. Removal of extracellular Ca(2+) reduced the initial transient response to ATP in PC-Cl3, but not in PC-E1Araf cells, and completely abolished the plateau phase in both cell lines.In the presence of extracellular Ca(2+) thapsigargin (TG) caused a rise in [Ca(2+)](i) significantly higher in PC-Cl3 than transformed PC-E1Araf cells, while in Ca(2+)-free medium the effect of TG was similar in both cell lines. The capacitative Ca(2+)-entry in PC-Cl3 resulted significantly higher than in PC-E1Araf cells.Further studies were performed in order to investigate whether the different effects of ATP on [Ca(2+)](i) was due to variation in divalent cation plasma membrane permeability. PC-E1Araf cells showed a much lower permeability to Ca(2+), Ba(2+), Sr(2+), Mn(2+), and Co(2+) that may be responsible for the differences in purinergic Ca(2+) signaling pathway with respect to parental PC-Cl3 cells.  相似文献   

14.
Nitric oxide (NO) produced in the endothelium via the enzyme endothelial nitric-oxide synthase (eNOS) is an important vasoactive compound. Wild-type (WT) eNOS is localized to the plasma membrane and perinuclear/Golgi region by virtue of N-terminal myristoylation and palmitoylation. Acylation-deficient mutants (G2AeNOS) remain cytosolic and release less NO in response to Ca2+-elevating agonists; a disparity that we hypothesized was attributed to the greater distance between G2AeNOS and plasma membrane Ca2+ influx channels. The reduced activity of G2AeNOS versus WT was reversed upon disruption of cellular integrity with detergents or sonication. NO production from both constructs relied almost exclusively on the influx of extracellular Ca2+, and elevating intracellular Ca2+ to saturating levels with 10 microM ionomycin in the presence of 10 mM extracellular Ca2+ equalized NO production. To identify the contribution of calcium to the differences in activity between these enzymes, we created Ca2+/CaM-independent eNOS mutants by deleting the two putative autoinhibitory domains of eNOS. There was no difference in NO production between WT and G2A-targeted Ca2+-independent eNOS, suggesting that Ca2+ was the factor responsible. When eNOS constructs were fused in-frame to the bioluminescent probe aequorin, membrane-bound probes were exposed to higher [Ca2+] in unstimulated cells but upon ionomycin stimulation, the probes experienced equal amounts of Ca2+. The WT and G2A enzymes displayed significant differences in the phosphorylation state of Ser617, Ser635, and Ser1179, and mutating all three sites to alanine or restoring phosphorylation with the phosphatase inhibitor calyculin abolished the differences in activity. We therefore conclude that the disparity in NO production between WTeNOS and G2AeNOS is not caused by different localized [Ca2+] upon stimulation with ionomycin, but rather differences in phosphorylation state between the two constructs.  相似文献   

15.
We developed an in situ assay system to simultaneously monitor intracellular Ca(2+) concentration ([Ca(2+)](i), fura 2 as indicator) and nitric oxide (NO) levels [4,5-diaminofluorescein as probe] in the intact endothelium of small bovine coronary arteries by using a fluorescent microscopic imaging technique with high-speed wavelength switching. Bradykinin (BK; 1 microM) stimulated a rapid increase in [Ca(2+)](i) followed by an increase in NO production in the endothelial cells. The protein tyrosine phosphatase inhibitor phenylarsine oxide (PAO; 10 microM) induced a gradual, small increase in [Ca(2+)](i) and a slow increase in intracellular NO levels. Removal of extracellular Ca(2+) and depletion of Ca(2+) stores completely blocked BK-induced increase in NO production but had no effect on PAO-induced NO production. However, a further reduction of [Ca(2+)](i) by application of BAPTA-AM or EGTA with ionomycin abolished the PAO-induced NO increase. These results indicate that a simultaneous monitoring of [Ca(2+)](i) and intracellular NO production in the intact endothelium is a powerful tool to study Ca(2+)-dependent regulation of endothelial nitric oxide synthase, which provides the first direct evidence for a permissive role of Ca(2+) in tyrosine phosphorylation-induced NO production.  相似文献   

16.
ATP increases intracellular calcium concentration ([Ca(2+)](i)) in supraoptic nucleus (SON) neurons in hypothalamo-neurohypophyseal system explants loaded with the Ca(2+)-sensitive dye, fura 2-AM. Involvement of P2X purinergic receptors (P2XR) in this response was anticipated, because ATP stimulation of vasopressin release from hypothalamo-neurohypophyseal system explants required activation of P2XRs, and activation of P2XRs induced an increase in [Ca(2+)](i) in dissociated SON neurons. However, the ATP-induced increase in [Ca(2+)](i) persisted after removal of Ca(2+) from the perifusate ([Ca(2+)](o)). This suggested involvement of P2Y purinergic receptors (P2YR), because P2YRs induce Ca(2+) release from intracellular stores, whereas P2XRs are Ca(2+)-permeable ion channels. Depletion of [Ca(2+)](i) stores with thapsigargin (TG) prevented the ATP-induced increase in [Ca(2+)](i) in zero, but not in 2 mM [Ca(2+)](o), indicating that both Ca(2+) influx and release of intracellular Ca(2+) contribute to the ATP response. Ca(2+) influx was partially blocked by cadmium, indicating a contribution of voltage-gated Ca(2+) channels. PPADS (pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid), and iso-PPADS, P2XR antagonists, attenuated, but did not abolish, the ATP-induced increase in [Ca(2+)](i). Combined treatment with PPADS or iso-PPADS and TG prevented the response. A cocktail of P2YR agonists consisting of UTP, UDP, and 2-methylthio-ADP increased [Ca(2+)](i) (with or without tetrodotoxin) that was markedly attenuated by TG. 2-Methylthio-ADP alone induced consistent and larger increases in [Ca(2+)](i) than UTP or UDP. MRS2179, a specific P2Y(1)R antagonist, eliminated the response to ATP in zero [Ca(2+)](o). Thus, both P2XR and P2YR participate in the ATP-induced increase in [Ca(2+)](i), and the P2Y(1)R subtype is more prominent than P2Y(2)R, P2Y(4)R, or P2Y(6)R in SON.  相似文献   

17.
Vascular endothelial growth factor (VEGF) increases hydraulic conductivity (L(p)) by stimulating Ca(2+) influx into endothelial cells. To determine whether VEGF-mediated Ca(2+) influx is stimulated by release of Ca(2+) from intracellular stores, we measured the effect of Ca(2+) store depletion on VEGF-mediated increased L(p) and endothelial intracellular Ca(2+) concentration ([Ca(2+)](i)) of frog mesenteric microvessels. Inhibition of Ca(2+) influx by perfusion with NiCl(2) significantly attenuated VEGF-mediated increased [Ca(2+)](i). Depletion of Ca(2+) stores by perfusion of vessels with thapsigargin did not affect the VEGF-mediated increased [Ca(2+)](i) or the increase in L(p). In contrast, ATP-mediated increases in both [Ca(2+)](i) and L(p) were inhibited by thapsigargin perfusion, demonstrating that ATP stimulated store-mediated Ca(2+) influx. VEGF also increased Mn(2+) influx after perfusion with thapsigargin, whereas ATP did not. These data showed that VEGF increased [Ca(2+)](i) and L(p) even when Ca(2+) stores were depleted and under conditions that prevented ATP-mediated increases in [Ca(2+)](i) and L(p). This suggests that VEGF acts through a Ca(2+) store-independent mechanism, whereas ATP acts through Ca(2+) store-mediated Ca(2+) influx.  相似文献   

18.
We examined the activation and regulation of calcium release-activated calcium current (I(crac)) in RBL-1 cells in response to various Ca(2+) store-depleting agents. With [Ca(2+)](i) strongly buffered to 100 nM, I(crac) was activated by ionomycin, thapsigargin, inositol 1,4,5-trisphosphate (IP(3)), and two metabolically stable IP(3) receptor agonists, adenophostin A and L-alpha-glycerophospho-D-myoinositol-4,5-bisphosphate (GPIP(2)). With minimal [Ca(2+)](i) buffering, with [Ca(2+)](i) free to fluctuate I(crac) was activated by ionomycin, thapsigargin, and by the potent IP(3) receptor agonist, adenophostin A, but not by GPIP(2) or IP(3) itself. Likewise, when [Ca(2+)](i) was strongly buffered to 500 nM, ionomycin, thapsigargin, and adenophostin A did and GPIP(2) and IP(3) did not activate detectable I(crac). However, with minimal [Ca(2+)](i) buffering, or with [Ca(2+)](i) buffered to 500 nM, GPIP(2) was able to fully activate detectable I(crac) if uptake of Ca(2+) intracellular stores was first inhibited. Our findings suggest that when IP(3) activates the IP(3) receptor, the resulting influx of Ca(2+) quickly inactivates the receptor, and Ca(2+) is re-accumulated at sites that regulate I(crac). Adenophostin A, by virtue of its high receptor affinity, is resistant to this inactivation. Comparison of thapsigargin-releasable Ca(2+) pools following activation by different IP(3) receptor agonists indicates that the critical regulatory pool of Ca(2+) may be very small in comparison to the total IP(3)-sensitive component of the endoplasmic reticulum. These findings reveal new and important roles for IP(3) receptors located on discrete IP(3)-sensitive Ca(2+) pools in calcium feedback regulation of I(crac) and capacitative calcium entry.  相似文献   

19.
Z Ungvari  A Koller 《Journal of applied physiology》2001,91(1):522-7; discussion 504-5
To clarify the contribution of intracellular Ca(2+) concentration ([Ca(2+)](i))-dependent and -independent signaling mechanisms in arteriolar smooth muscle (aSM) to modulation of arteriolar myogenic tone by nitric oxide (NO), released in response to increases in intraluminal flow from the endothelium, changes in aSM [Ca(2+)](i) and diameter of isolated rat gracilis muscle arterioles (pretreated with indomethacin) were studied by fluorescent videomicroscopy. At an intraluminal pressure of 80 mmHg, [Ca(2+)](i) significantly increased and myogenic tone developed in response to elevations of extracellular Ca(2+) concentration. The Ca(2+) channel inhibitor nimodipine substantially decreased [Ca(2+)](i) and completely inhibited myogenic tone. Dilations to intraluminal flow (that were inhibited by N(omega)-nitro-L-arginine methyl ester) or dilations to the NO donor S-nitroso-N-acetyl-DL-penicillamine (that were inhibited by the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) were not accompanied by substantial decreases in aSM [Ca(2+)](i). 8-Bromoguanosine cGMP and the cGMP-specific phosphodiesterase inhibitor zaprinast significantly dilated arterioles yet elicited only minimal decreases in [Ca(2+)](i). Thus flow-induced endothelial release of NO elicits relaxation of arteriolar smooth muscle by a cGMP-dependent decrease of the Ca(2+) sensitivity of the contractile apparatus without substantial changes in the pressure-induced level of [Ca(2+)](i).  相似文献   

20.
Protein kinase C (PKC) plays an important role in the regulation of uterine artery contractility and its adaptation to pregnancy. The present study tested the hypothesis that PKC differentially regulates alpha(1)-adrenoceptor-mediated contractions of uterine arteries isolated from nonpregnant (NPUA) and near-term pregnant (PUA) sheep. Phenylephrine-induced contractions of NPUA and PUA sheep were determined in the absence or presence of the PKC activator phorbol 12,13-dibutyrate (PDBu). In NPUA sheep, PDBu produced a concentration-dependent potentiation of phenylephrine-induced contractions and shifted the dose-response curve to the left. In contrast, in PUA sheep, PDBu significantly inhibited phenylephrine-induced contractions and decreased their maximum response. Simultaneous measurement of contractions and intracellular free Ca(2+) concentrations ([Ca(2+)](i)) in the same tissues revealed that PDBu inhibited phenylephrine-induced [Ca(2+)](i) and contractions in PUA sheep. In NPUA sheep, PDBu increased phenylephrine-induced contractions without changing [Ca(2+)](i). Western blot analysis showed six PKC isozymes, alpha, beta(I), beta(II), delta, epsilon, and zeta, in uterine arteries, among which beta(I), beta(II), and zeta isozymes were significantly increased in PUA sheep. In contrast, PKC-alpha was decreased in PUA sheep. In addition, analysis of subcellular distribution revealed a significant decrease in the particulate-to-cytosolic ratio of PKC-epsilon in PUA compared with that in NPUA sheep. The results suggest that pregnancy induces a reversal of PKC regulatory role on alpha(1)-adrenoceptor-mediated contractions from a potentiation in NPUA sheep to an inhibition in PUA sheep. The differential expression of PKC isozymes and their subcellular distribution in uterine arteries appears to play an important role in the regulation of Ca(2+) mobilization and Ca(2+) sensitivity in alpha(1)-adrenoceptor-mediated contractions and their adaptation to pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号