首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Subcellular fractionation of pig kidney cortex revealed that aminoacylase I (EC 3.5.1.14, N-acyl-L-amino-acid aminohydrolase) is predominantly a soluble enzyme with only 0.5% of the total activity being recovered in the membrane fraction. The aminoacylase I activity associated with the membrane preparations displayed neither rapid release following incubation with phosphatidylinositol-specific phospholipase C from Bacillus thuringiensis nor the distinctive differential pattern of detergent solubilization which was seen with glycosyl-phosphatidylinositol-anchored proteins (renal dipeptidase, alkaline phosphatase). When fractionated by phase separation in Triton X-114, integral membrane proteins of kidney microvillar membranes partitioned predominantly (greater than 90%) into the detergent-rich phase. In contrast, only 3.7% of aminoacylase I activity associated with microvillar membranes partitioned into the detergent-rich phase. Aminoacylase I activity of pig kidney would therefore appear to be a hydrophilic protein in nature and is not, as suggested previously, a G-PI-anchored integral membrane protein.  相似文献   

2.
Renal dipeptidase (EC 3.4.13.11) has been solubilized from pig kidney microvillar membranes with n-octyl-beta-D-glucopyranoside and then purified by affinity chromatography on cilastatin-Sepharose. The enzyme exists as a disulphide-linked dimer of two identical subunits of Mr 45,000 each. The purified dipeptidase partitioned into the detergent-rich phase upon phase separation in Triton X-114 and reconstituted into liposomes consistent with the presence of the glycosyl-phosphatidylinositol membrane anchor. The N-terminal amino acid sequence of the amphipathic, detergent-solubilized, form of renal dipeptidase was identical with that of the hydrophilic, phospholipase-solubilized, form, locating the membrane anchor at the C-terminus of the protein. The glycosyl-phosphatidylinositol anchor of both purified and microvillar membrane renal dipeptidase was a substrate for an activity in pig plasma which displayed properties similar to those of a previously described phospholipase D. The cross-reacting determinant of the glycosyl-phosphatidylinositol anchor was generated by incubation of purified renal dipeptidase with bacterial phosphatidylinositol-specific phospholipase c, whereas the anchor-degrading activity in plasma failed to generate this determinant.  相似文献   

3.
Renal dipeptidase (EC 3.4.13.11) was solubilized from pig kidney microvillar membranes with bacterial phosphatidylinositol-specific phospholipase C and then purified by affinity chromatography on cilastatin-Sepharose. The enzyme was apparently homogeneous on SDS/polyacrylamide-gel electrophoresis with an Mr of 47,000. Immunohistochemical analysis of the distribution of the dipeptidase showed it to be concentrated in the brush-border region of the proximal tubules in close association with endopeptidase-24.11) (EC 3.4.24.11). The purified dipeptidase was shown to contain 1 mol of inositol/mol and to possess the cross-reacting determinant characteristic of the glycosyl-phosphatidylinositol membrane-anchoring domain. The glycoprotein nature of renal dipeptidase was confirmed by chemical and enzymic deglycosylation. These results establish renal dipeptidase as a glycosyl-phosphatidylinositol-anchored ectoenzyme of the microvillar membrane.  相似文献   

4.
alpha-Human atrial natriuretic peptide, a 28-amino-acid-residue peptide, was rapidly hydrolysed by pig kidney microvillar membranes in vitro, with a t1/2 of 8 min, comparable with the rate observed with angiotensins II and III. The products of hydrolysis were analysed by h.p.l.c., the pattern obtained with membranes being similar to that with purified endopeptidase-24.11 (EC 3.4.24.11). No hydrolysis by peptidyl dipeptidase A (angiotensin I converting enzyme, EC 3.4.15.1) was observed. The contribution of the various microvillar membrane peptidases was assessed by including specific inhibitors. Phosphoramidon, an inhibitor of endopeptidase-24.11, caused 80-100% suppression of the products. Captopril and amastatin (inhibitors of peptidyl dipeptidase A and aminopeptidases respectively) had no significant effect. Hydrolysis at an undefined site within the disulphide-linked ring occurred rapidly, followed by hydrolysis at other sites, including the Ser25--Phe26 bond.  相似文献   

5.
N-Acetylated alpha-linked acidic dipeptidase (NAALA dipeptidase) is a membrane-bound metallopeptidase that cleaves glutamate from the endogenous neuropeptide N-acetyl-L-aspartyl-L-glutamate. In this report, we have solubilized NAALA dipeptidase activity from synaptosomal membranes with Triton X-100 and purified it to apparent homogeneity by sequential column chromatography on DEAE-Sepharose, CM-Sepharose, and lentil lectin-Sepharose. This procedure resulted in a 720-fold purification with 1.6% yield. The purified ezyme migrated as a single silver-stained band on a sodium dodecyl sulfate gel with an apparent molecular weight of 94 kDa. Using an enzymatic stain to visualize NAALA dipeptidase activity within a gel matrix, we have confirmed that the 94-kDa band is, indeed, NAALA dipeptidase. The purified enzyme was characterized and found to be pharmacologically similar to NAALA dipeptidase activity described previously in synaptosomal membrane extracts. Using the purified NAALA dipeptidase as antigen, we have raised specific and high titer polyclonal antibodies in guinea pig. Immunocytochemical studies show intense NAALA dipeptidase immunoreactivity in the cerebellar and renal cortices.  相似文献   

6.
Dipeptidase (dipeptide hydrolase [EC 3.4.13.11]) has been purified to homogeneity and crystallized from the cell extract of Bacillus stearothermophilus IFO 12983. The enzyme has a molecular weight of about 86,000, and is composed of two subunits identical in molecular weight (43,000). The enzyme contains 2 g atoms of zinc per mol of protein. A variety of dipeptides consisting of glycine or only L-amino acids serve as substrates of the enzyme; Km and Vmax values for L-valyl-L-alanine are 0.5 mM and 68.0 units/mg protein, respectively. The enzyme is significantly stable not only at high temperatures but also on treatment with protein denaturants such as urea and guanidine hydrochloride. The enzyme also catalyzes hydrolysis of several N-acylamino acids with Vmax values 3-30% of those for the hydrolysis of dipeptides. The thermostable dipeptidase shares various properties with bacterial aminoacylase [EC 3.5.1.14]: their subunit molecular weight, metal content and requirement, amino acid composition, and amino acid sequence in the N-terminal region are very similar.  相似文献   

7.
N-Acetyl-L-glutamate has been examined with regard to its ability to activate carbamoyl phosphate synthetase I (EC 6.3.4.16). Substance(s) inhibitory to carbamoyl phosphate synthetase, present even in the partially purified preparation of rat liver extracts, interfered with the measurement of acetylglutamate. In the experiments using chelating agents, metals were apparently involved in this inhibition. When the partially purified preparation of liver extract was placed on a Chelex 100 column, the inhibitor was eliminated and accurate measurements of acetylglutamate content could be made. Evidence supporting the validity of this improved method is given. A significant difference was observed between acetylglutamate levels determined by the present method and by the one using aminoacylase I (N-acylamino acid amidohydrolase, EC 3.5.1.14) to hydrolyze acetylglutamate followed by assay of the glutamate generated. We searched for the presence of glutamate derivatives other than acetylglutamate. When impure tissue preparations containing acetylglutamate were treated with a commercial preparation of aminoacylase, there was an excess amount of glutamate apparently derived from compounds other than acetylglutamate. This can lead to an overestimation of the tissue levels of acetylglutamate.  相似文献   

8.
The dipeptidase, dehydropeptidase I (EC 3.4.13.11), was purified to homogeneity from rat lung, rat kidney, and hog kidney. Analysis of physical parameters (subunit molecular weights, Km values for glycyldehydrophenylalanine, Ki values for dehydropeptidase I inhibitors, and immunoreactivity) showed the rat dipeptidases to be similar to each other but different from the hog dipeptidase. However, all three enzymes hydrolyzed imipenem and converted leukotriene D4 to leukotriene E4, and these activities were inhibited by cilastatin.  相似文献   

9.
Clones expressing renal dipeptidase (EC 3.4.13.11) have been isolated from a pig kidney cortex cDNA library after employing the polymerase chain reaction technique to amplify a region of the dipeptidase cDNA. The complete primary sequence of the enzyme has been deduced from a full length cDNA clone. This predicts a protein of 409 amino acids, a cleavable N-terminal signal sequence of 16 residues and two N-linked glycosylation sites. At the C-terminus of the predicted sequence is a stretch of mainly hydrophobic amino acids which is presumed to direct the attachment of the glycosyl-phosphatidylinositol membrane anchor. Expression of the mRNA for pig renal dipeptidase in Xenopus laevis oocytes led to the production of a disulphide-linked dimeric protein of subunit Mr 48,600 which was recognized by a polyclonal antiserum raised to renal dipeptidase purified from pig kidney cortex. Bacterial phosphatidylinositol-specific phospholipase C released renal dipeptidase from the surface of the oocytes and converted the amphipathic detergent-solubilized form of the dipeptidase to a hydrophilic form, indicating that Xenopus laevis oocytes can process expressed proteins to their glycosyl-phosphatidylinositol anchored form.  相似文献   

10.
Yamada S  Tanaka Y  Ando S 《The FEBS journal》2005,272(23):6001-6013
Anserinase (Xaa-methyl-His dipeptidase, EC 3.4.13.5) is a dipeptidase that mainly catalyzes the hydrolysis of Nalpha-acetylhistidine in the brain, retina and vitreous body of all poikilothermic vertebrates. The gene encoding anserinase has not been previously identified. We report the molecular identification of anserinase, purified from brain of Nile tilapia Oreochromis niloticus. The determination of the N-terminal sequence of the purified anserinase allowed the design of primers permitting the corresponding cDNA to be cloned by PCR. The anserinase cDNA has an ORF of 1485 nucleotides and encodes a signal peptide of 18 amino acids and a mature protein of 476 amino acids with a predicted molecular mass of 53.3 kDa. Sequence analysis showed that anserinase is a member of the M20A metallopeptidase subfamily in MEROPS peptidase database, to which 'serum' carnosinase (EC 3.4.13.20) and cytosolic nonspecific dipeptidase (EC 3.4.13.18, CNDP) belong. A cDNA encoding CNDP-like protein was also isolated from tilapia brain. Whereas anserinase mRNA was detected only in brain, retina, kidney and skeletal muscle, CNDP-like protein mRNA was detected in all tissues examined.  相似文献   

11.
Renal dipeptidase (EC 3.4.13.11) has been purified from human kidney cortex by affinity chromatography on cilastatin-Sepharose following solubilization with either n-octyl-beta-D-glucopyranoside or bacterial phosphatidylinositol-specific phospholipase C (PI-PLC). Phase separation in Triton X-114 revealed that the detergent-solubilized form was amphipathic and retained the glycosyl-phosphatidylinositol membrane anchor whereas the phospholipase solubilized form was hydrophilic. Both forms of the enzyme existed as a disulphide-linked dimer of two identical subunits of Mr 59,000 each. The glycosyl-phosphatidylinositol anchor of purified human renal dipeptidase was hydrolysed by a range of bacterial PI-PLCs and by a plasma phospholipase D. Mild acid treatment and nitrous acid deamination of the hydrophilic form revealed that the cross-reacting determinant, characteristic of the glycosyl-phosphatidylinositol anchor, was due exclusively to the inositol 1,2-cyclic phosphate ring epitope. The N-terminal amino acid sequences of the amphipathic and hydrophilic forms were identical, locating the membrane anchor at the C-terminus. The N-terminal sequence of human renal dipeptidase showed a high degree of similarity with that of the pig enzyme, and enzymic deglycosylation revealed that the difference in size of renal dipeptidase between these two species is due almost entirely to differences in the extent of N-linked glycosylation.  相似文献   

12.
The hydrolysis of acetylamino acids by highly purified hog kidney aminoacylase I (N-acylamino acid amidohydrolase, EC 3.5.1.14) was investigated using flow injection analysis to determine reaction rates. We show that the distinctly bell-shaped pH versus activity profiles observed in previous studies do not reflect protonic equilibria in the enzyme, but were created by buffer effects. At low pH, anions such as phosphate, nitrate or chloride markedly increase Km. These effects are reversed at higher pH. In zwitterionic 'Good' buffers (Mes, Mops, and Bicine), maximal velocities are almost independent of pH between 6.5 and 9 for all substrates studied (Ac-LAla, Ac-LGlu, Ac-LMet, Ac-LPhe). Below pH 6.5, the catalytic constants decrease with pH, apparently due to the protonation of a carboxylate with a pKa of 5.5-6. The pH dependence of Km markedly varies among different substates. We conclude that the observed profiles all result from the dissociation of an active-site residue with a pKa of 8-8.5, which we tentatively identify as an active-site cysteine residue. A working model of aminoacylase catalysis is presented that accounts for most of the known facts.  相似文献   

13.
Glutathione-degrading enzymes of microvillus membranes   总被引:4,自引:0,他引:4  
Microvillus membranes from rat kidney, jejunum, and epididymis have been purified by the Ca precipitation method. The membranes exhibit enrichment in specific activities of gamma-glutamyl transpeptidase, aminopeptidase M, and a dipeptidase. The latter has been characterized and shown to be the principal activity responsible for the hydrolysis of S derivatives of Cys-Gly (including cystinyl-bis-glycine (Cys-bis-Gly) and 5-hydroxy-6-S-cysteinylglycyl-1-7,9-trans-11,14-cis-eicosatetraenoic acid (leukotriene D4)). A method is described for the simultaneous purification of papain-solubilized forms of the three enzymes from renal microvilli. Dipeptidase (Mr = 105,000) appears to be a zinc metalloprotein composed of two Mr = 50,000 subunits. The enzyme is severalfold more effective in the hydrolysis of dipeptides than aminopeptidase M. Dipeptidase, in contrast to aminopeptidase M, is inhibited by thiol compounds; Cys-Gly, in particular, is a potent inhibitor (Ki = 20 microM). The inhibition of dipeptidase by thiols has been employed to probe the relative significance of dipeptidase and aminopeptidase M in the metabolism of glutathione and its derivatives at the membrane surface.  相似文献   

14.
A new thermostable dipeptidase gene was cloned from the thermophile Brevibacillus borstelensis BCS-1 by genetic complementation of the D-Glu auxotroph Escherichia coli WM335 on a plate containing D-Ala-D-Glu. Nucleotide sequence analysis revealed that the gene included an open reading frame coding for a 307-amino-acid sequence with an M(r) of 35,000. The deduced amino acid sequence of the dipeptidase exhibited 52% similarity with the dipeptidase from Listeria monocytogenes. The enzyme was purified to homogeneity from recombinant E. coli WM335 harboring the dipeptidase gene from B. borstelensis BCS-1. Investigation of the enantioselectivity (E) to the P(1) and P(1)' site of Ala-Ala revealed that the ratio of the specificity constant (k(cat)/K(m)) for L-enantioselectivity to the P(1) site of Ala-Ala was 23.4 +/- 2.2 [E = (k(cat)/K(m))(L,D)/(k(cat)/K(m))(D,D)], while the D-enantioselectivity to the P(1)' site of Ala-Ala was 16.4 +/- 0.5 [E = (k(cat)/K(m))(L,D)/(k(cat)/K(m))(L,L)] at 55 degrees C. The enzyme was stable up to 55 degrees C, and the optimal pH and temperature were 8.5 and 65 degrees C, respectively. The enzyme was able to hydrolyze L-Asp-D-Ala, L-Asp-D-AlaOMe, Z-D-Ala-D-AlaOBzl, and Z-L-Asp-D-AlaOBzl, yet it could not hydrolyze D-Ala-L-Asp, D-Ala-L-Ala, D-AlaNH(2), and L-AlaNH(2.) The enzyme also exhibited beta-lactamase activity similar to that of a human renal dipeptidase. The dipeptidase successfully synthesized the precursor of the dipeptide sweetener Z-L-Asp-D-AlaOBzl.  相似文献   

15.
Oku T  Ando S  Hayakawa T  Baba K  Nishi R  Shiozaki K  Yamada S 《Peptides》2011,32(4):648-655
Imidazole-related dipeptides, such as carnosine and anserine, occur widely in skeletal muscles of jawed vertebrates. All of the known enzymes that catalyze the hydrolysis of these dipeptides belong to the M20A metallopeptidase subfamily; two secretory enzymes, serum carnosinase (EC 3.4.13.20) and anserinase (EC 3.4.13.5), and one non-secretory enzyme, cytosolic nonspecific dipeptidase (EC 3.4.13.18). Here we report the enzymatic characterization and molecular identification of an unidentified enzyme, which catalyzes the hydrolysis of these dipeptides, from the skeletal muscle of Far Eastern brook lamprey (Lethenteron reissneri). A 60-kDa subunit protein of the enzyme was purified to near homogeneity. We cloned two M20A genes from the skeletal muscle of Far Eastern brook lamprey; one was a secretory-type gene encoding for the 60-kD protein, and another was a non-secretory-type gene presumably encoding for cytosolic nonspecific dipeptidase. Our findings indicate that the purified enzyme is a N-glycosylated secretory M20A dipeptidase distributed specifically in the jawless vertebrate group, and may be derived from a common ancestor gene between serum carnosinase and anserinase. We propose that this dipeptidase is a novel secretory M20A enzyme and is classified as neither serum carnosinase nor anserinase.  相似文献   

16.
P Hugueney  B Camara 《FEBS letters》1990,273(1-2):235-238
Farnesyl pyrophosphate synthase (FPP) displaying dimethylallyl transferase activity (EC 2.5.1.1) and geranyl transferase activity (EC 2.5.1.10) was purified from Capsicum fruits. This prenyltransferase has a molecular mass of 89,000 +/- 5000 Da resulting from the association of two apparently identical subunits having a molecular mass of 43,000 +/- 2000 Da. Antibodies raised against Capsicum FPP synthase selectively blocked the transferase activity. Analysis of the immunological relationships between FPP synthase and geranylgeranyl pyrophosphate synthase (EC 2.5.1.1, EC 2.5.1.10 and EC 2.5.1.30) revealed that these two enzymes though performing the same mechanism of catalysis and accepting identical substrates have different antigenic determinants. Thus, in connection to previous work, this immunological study suggests that Capsicum FPP is strictly located in the extraplastidial compartment.  相似文献   

17.
A range of cross-linked enzyme aggregates (CLEAs) was prepared from commercially available aminoacylase I. Results from three test reactions showed that aminoacylase does not possess aminolysis or alcoholysis activity, both previously ascribed to this enzyme. This result was confirmed using aminoacylase purified by chromatographic techniques, which leads us to conclude that the previously observed acylations of esters and amines is due to other enzymes present as impurities in the crude aminoacylase I.  相似文献   

18.
Oku T  Ando S  Tsai HC  Yamashita Y  Ueno H  Shiozaki K  Nishi R  Yamada S 《Biochimie》2012,94(6):1281-1290
Three enzymes, carnosine dipeptidase I (EC 3.4.13.20, CNDP1), carnosine dipeptidase II (EC 3.4.13.18, CNDP2), and Xaa-methyl-His dipeptidase (or anserinase: EC 3.4.13.5, ANSN), are known to be capable of catalyzing the hydrolysis of carnosine (β-alanyl-l-histidine), in vertebrates. Here we report the purification and identification of two unidentified carnosine-cleaving enzymes from Japanese eel (Anguilla japonica). Two different dipeptidases were successfully purified to homogeneity from the skeletal muscle; one exhibited a broad substrate specificity, while the other a narrow specificity. N-terminal amino-acid sequencing, deglycosylation analysis, and genetic analysis clearly revealed that the former is a homodimer of glycosylated subunits, encoded by ANSN, and the latter is another homodimer of glycosylated subunits, encoded by CNDP1; that is, Xaa-methyl-His dipeptidase, and carnosine dipeptidase I respectively. This is the first report on the identification of carnosine dipeptidase I from a non-mammal. Database search revealed presence of a CNDP1 ortholog only from salmonid fishes, including Atlantic salmon and rainbow trout, but not from other ray-finned fish species, such as zebrafish, fugu, and medaka whose genomes have been completely sequenced. The mRNAs of CNDP1 and ANSN are strongly expressed in the liver of Japanese eel, compared with other tissues, while that of CNDP2 is widely distributed in all tissues tested.  相似文献   

19.
Pyrodictium brockii is a hyperthermophilic archaebacterium with an optimal growth temperature of 105 degrees C. P. brockii is also a chemolithotroph, requiring H2 and CO2 for growth. We have purified the hydrogen uptake hydrogenase from membranes of P. brockii by reactive red affinity chromatography and sucrose gradient centrifugation. The molecular mass of the holoenzyme was 118,000 +/- 19,000 Da in sucrose gradients. The holoenzyme consisted of two subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The large subunit had a molecular mass of 66,000 Da, and the small subunit had a molecular mass of 45,000 Da. Colorometric analysis of Fe and S content in reactive red-purified hydrogenase revealed 8.7 +/- 0.6 mol of Fe and 6.2 +/- 1.2 mol of S per mol of hydrogenase. Growth of cells in 63NiCl2 resulted in label incorporation into reactive red-purified hydrogenase. Growth of cells in 63NiCl2 resulted in label incorporation into reactive red-purified hydrogenase. Temperature stability studies indicated that the membrane-bound form of the enzyme was more stable than the solubilized purified form over a period of minutes with respect to temperature. However, the membranes were not able to protect the enzyme from thermal inactivation over a period of hours. The artificial electron acceptor specificity of the pure enzyme was similar to that of the membrane-bound form, but the purified enzyme was able to evolve H2 in the presence of reduced methyl viologen. The Km of membrane-bound hydrogenase for H2 was approximately 19 microM with methylene blue as the electron acceptor, whereas the purified enzyme had a higher Km value.  相似文献   

20.
A comprehensive survey of 11 peptidases, all of which are markers for renal microvillar membranes, has been made in membrane fractions prepared from pig choroid plexus. Two fractionation schemes were explored, both depending on a MgCl2-precipitation step, the preferred one having advantages in speed and yield of the activities. The specific activities of the peptidases in the choroid-plexus membranes were, with the exception of carboxypeptidase M, lower than in renal microvillar membranes: those of aminopeptidase N, peptidyl dipeptidase A ('angiotensin-converting enzyme') and gamma-glutamyltransferase were 3-5-fold lower, those of aminopeptidase A and endopeptidase-24.11 were 12-15 fold lower, and those of dipeptidyl peptidase IV and aminopeptidase W were 50-70-fold lower. Carboxypeptidase M had a similar activity in both membranes. Alkaline phosphatase and (Na+ + K+)-activated ATPase were more active in the choroid-plexus membranes. No activity for microsomal dipeptidase, aminopeptidase P and carboxypeptidase P could be detected. Six of the peptidases and (Na+ + K+)-activated ATPase were also studied by immunoperoxidase histochemistry at light- and electron-microscopic levels. Endopeptidase-24.11 and (Na+ + K+)-activated ATPase were uniquely located on the brush border, and the other two peptidases appeared to be much more abundant on the endothelial lining of microvessels. Dipeptidyl peptidase IV and aminopeptidase W were also detected in microvasculature. Pial membranes associated with the brain and spinal cord also stained positively for endopeptidase-24.11, aminopeptidase N and peptidyl dipeptidase A. The immunohistochemical studies indicated the subcellular fractionation did not discriminate between membranes derived from epithelial cells (i.e. microvilli) and those from endothelial cells. The possible significance of these studies in relation to neuropeptide metabolism and the control of cerebrospinal fluid production is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号