首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用RT-PCR技术,从HIV的非允许性H9细胞中获得载脂蛋白B mRNA编辑酶催化多肽样蛋白3G(APOBEC3G)的全长cDNA。APOBEC3G cDNA全长1 155nt,编码384个氨基酸。将APOBEC3G克隆到真核表达载体pEGFP-C3上,转染CD4 HeLa细胞,激光扫描共聚焦显微镜下可观察到表达的GFP-APOBEC3G融合蛋白定位于细胞质。  相似文献   

2.
To study how HIV-1 viral infectivity factor (Vif) mediates proteasome-dependent depletion of host factor APOBEC3G, functional and nonfunctional Vif-APOBEC3G interactions were correlated with subcellular localization. APOBEC3G localized throughout the cytoplasm and co-localized with gamma-tubulin, 20 S proteasome subunit, and ubiquitin at punctate cytoplasmic bodies that can be used to monitor the Vif-APOBEC3G interaction in the cell. Through immunostaining and live imaging, we showed that a substantial fraction of Vif localized to the nucleus, and this localization was impaired by deletion of amino acids 12-23. When co-expressed, Vif exhibited more pronounced localization to the cytoplasm and reduced the total cellular levels of APOBEC3G but rarely co-localized with APOBEC3G at cytoplasmic bodies. On the contrary, Vif(C114S), which is inactive but continues to interact with APOBEC3G, stably associated with APOBEC3G in the cytoplasm, resulting in complete co-localization at cytoplasmic bodies and a dose-dependent exclusion of Vif(C114S) from the nucleus. Following proteasome inhibition, cytoplasmic APOBEC3G levels increased, and both proteins co-accumulated nonspecifically into a vimentin-encaged aggresome. Furthermore in the presence or absence of APOBEC3G, Vif localization was significantly altered by proteasome inhibition, suggesting that aberrant localization may also contribute to the loss of Vif function. Finally mutations at Vif Ile(9) disrupted the ability of Vif or Vif(C114S) to coimmunoprecipitate and to co-localize with APOBEC3G, suggesting that the N terminus of Vif mediates interactions with APOBEC3G. Taken together, these results demonstrate that cytoplasmic Vif-APOBEC3G interactions are required but are not sufficient for Vif to modulate APOBEC3G and can be monitored by co-localization in vivo.  相似文献   

3.
The APOBEC3 cytidine deaminases are potent antiviral factors that restrict replication of human immunodeficiency virus type 1 (HIV-1). HIV-1 Vif binds APOBEC3G and APOBEC3F and targets these proteins for ubiquitination by forming an E3 ubiquitin ligase with cullin 5 and elongins B and C. The N-terminal region of Vif is required for APOBEC3G binding, but the binding site(s) is unknown. To identify the APOBEC3G binding site in Vif, we established a scalable binding assay in a format compatible with development of high-throughput screens. In vitro binding assays using recombinant proteins identified Vif peptides and monoclonal antibodies that inhibit Vif-APOBEC3G binding and suggested involvement of Vif residues 33 to 83 in APOBEC3G binding. Cell-based binding assays confirmed these results and demonstrated that residues 40 to 71 in the N terminus of Vif contain a nonlinear binding site for APOBEC3G. Mutation of the highly conserved residues His42/43 but not other charged residues in this region inhibited Vif-APOBEC3G binding, Vif-mediated degradation of APOBEC3G, and viral infectivity. In contrast, mutation of these residues had no significant effect on Vif binding and degradation of APOBEC3F, suggesting a differential requirement for His42/43 in Vif binding to APOBEC3G and APOBEC3F. These results identify a nonlinear APOBEC3 binding site in the N terminus of Vif and demonstrate that peptides or antibodies directed against this region can inhibit Vif-APOBEC3G binding, validating the Vif-APOBEC3 interface as a potential drug target.  相似文献   

4.
The APOBEC3 family of cytosine deaminases catalyzes the conversion of cytosines-to-uracils in single-stranded DNA. Traditionally, these enzymes are associated with antiviral immunity and restriction of DNA-based pathogens. However, a role for these enzymes in tumor evolution and metastatic disease has also become evident. The primary APOBEC3 candidate in cancer mutagenesis is APOBEC3B (A3B) for three reasons: (1) A3B mRNA is upregulated in several different cancers, (2) A3B expression and mutational loads correlate with poor clinical outcomes, and (3) A3B is the only family member known to be constitutively nuclear. Previous studies have mapped non-canonical A3B nuclear localization determinants to a single surface-exposed patch within the N-terminal domain (NTD). Here, we show that A3B has an additional, distinct, surface-exposed NTD region that contributes to nuclear localization. Disruption of residues within the first 30 amino acids of A3B (import surface 1) or loop 5/α-helix 3 (import surface 2) completely abolish nuclear localization. These import determinants also graft into NTDs of related family members and mediate re-localization from cell-wide-to-nucleus or cytoplasm-to-nucleus. These findings demonstrate that both sets of residues are required for non-canonical A3B nuclear localization and describe unique surfaces that may serve as novel therapeutic targets.  相似文献   

5.
随着对APOBEC3抗病毒功能的深入研究以及其在癌症中的表现,APOBEC3已成为当前的热点.小鼠只有一个APOBEC3基因,而人类有七个APOBEC3基因,人类APOBEC3G是其中研究最明确的抗病毒蛋白.利用生物信息学方法对两个蛋白进行序列比对、亲疏水性分析、亚细胞定位预测、二级结构及高级结构分析以及相互作用分析....  相似文献   

6.
7.
8.
Human cytidine deaminases APOBEC3G (A3G) and APOBEC3F (A3F) inhibit replication of Vif-deficient human immunodeficiency virus type 1 (HIV-1). HIV-1 Vif overcomes these host restriction factors by binding to them and inducing their proteasomal degradation. The Vif-A3G and Vif-A3F interactions are attractive targets for antiviral drug development because inhibiting the interactions could allow the host defense mechanism to control HIV-1 replication. It was recently reported that the Vif amino acids D(14)RMR(17) are important for functional interaction and degradation of the previously identified Vif-resistant mutant of A3G (D128K-A3G). However, the Vif determinants important for functional interaction with A3G and A3F have not been fully characterized. To identify these determinants, we performed an extensive mutational analysis of HIV-1 Vif. Our analysis revealed two distinct Vif determinants, amino acids Y(40)RHHY(44) and D(14)RMR(17), which are essential for binding to A3G and A3F, respectively. Interestingly, mutation of the A3G-binding region increased Vif's ability to suppress A3F. Vif binding to D128K-A3G was also dependent on the Y(40)RHHY(44) region but not the D(14)RMR(17) region. Consistent with previous observations, subsequent neutralization of the D128K-A3G antiviral activity required substitution of Vif determinant D(14)RMR(17) with SEMQ, similar to the SERQ amino acids in simian immunodeficiency virus SIV(AGM) Vif, which is capable of neutralizing D128K-A3G. These studies are the first to clearly identify two distinct regions of Vif that are critical for independent interactions with A3G and A3F. Pharmacological interference with the Vif-A3G or Vif-A3F interactions could result in potent inhibition of HIV-1 replication by the APOBEC3 proteins.  相似文献   

9.
Li MM  Emerman M 《Journal of virology》2011,85(16):8197-8207
The APOBEC3 family of cytidine deaminases is part of the innate host defense targeted toward retroviruses and retroelements. APOBEC3H is the most distantly related member of the family and carries functional polymorphisms in current human populations. Haplotype II of APOBEC3H, which is more commonly found in individuals of African descent, encodes a protein with the highest antiviral activity in cells, whereas the other haplotypes encode proteins with weak or no antiviral activity. Here, we show that the different human APOBEC3H haplotypes exhibit differential subcellular localizations, as the haplotype I protein is mostly found in the nucleus and the haplotype II protein is mostly localized to the cytoplasm. The determinant responsible for this phenotype maps to a single amino acid that is also important for APOBEC3H protein stability. Furthermore, we show that the cytoplasmic localization is dominant over nuclear localization, by using fusion proteins of APOBEC3H. Our data support a model in which the APOBEC3H protein encoded by haplotype II is actively retained in the cytoplasm by interacting with specific host factors, whereas the less active protein encoded by haplotype I is allowed to enter the nucleus by a passive mechanism. Together, cytoplasmic localization and its link with protein stability correlate with the ability of APOBEC3H to inhibit HIV replication, providing a mechanistic basis for the differential antiviral activities of different APOBEC3H haplotypes.  相似文献   

10.
G2E3 was originally described as a G2/M-specific gene with DNA damage responsive expression. The presence of a conserved HECT domain within the carboxy-terminus of the protein indicated that it likely functions as a ubiquitin ligase or E3. Although HECT domains are known to function in this capacity for many proteins, we demonstrate that a portion of the HECT domain from G2E3 plays an important role in the dynamic subcellular localization of the protein. We have shown that G2E3 is a nucleo-cytoplasmic shuttling protein with nuclear export mediated by a novel nuclear export domain that functions independently of CRM1. In full-length G2E3, a separate region of the HECT domain suppresses the function of the NES. Additionally, G2E3 contains a nucleolar localization signal (NoLS) in its amino terminus. Localization of G2E3 to the nucleolus is a dynamic process, and the protein delocalizes from the nucleolus rapidly after DNA damage. Cell cycle phase-specific expression and highly regulated subcellular localization of G2E3 suggest a possible role in cell cycle regulation and the cellular response to DNA damage.  相似文献   

11.
The most common transposable genetic element in humans, long interspersed element 1 (L1), constitutes about 20% of the genome. The activity of L1 and related transposons such as Alu elements causes disease and contributes to speciation. Little is known about the cellular mechanisms that control their spread. We show that expression of human APOBEC3B or APOBEC3F decreased the rate of L1 retrotransposition by 5-10-fold. Expression of two related proteins, APOBEC3D or APOBEC3G, had little effect. The mechanism of L1 inhibition did not correlate with an obvious subcellular protein distribution as APOBEC3B appeared predominantly nuclear and APOBEC3F was mostly cytosolic. Two lines of evidence indicated that these APOBEC3 proteins use a deamination-independent mechanism to inhibit L1. First, a catalytically inactive APOBEC3B mutant maintained L1 inhibition activity. Second, cDNA strand-specific C --> T hypermutations were not detected among L1 elements that had replicated in the presence of APOBEC3B or APOBEC3F. In addition, lower levels of retrotransposed L1 DNA accumulated in the presence of APOBEC3B and APOBEC3F. Together, these data combined to suggest a model in which APOBEC3B or APOBEC3F provide a preintegration barrier to L1 retrotransposition. A particularly high level of APOBEC3F protein in human testes and an inverse correlation between L1 activity and APOBEC3 gene number suggest the relevance of this mechanism to mammals.  相似文献   

12.
KRAS-induced actin-interacting protein (KRAP) was originally characterized as a filamentous-actin-interacting protein. We have recently found that KRAP is an associated molecule with inositol 1,4,5-trisphosphate receptor (IP3R) and is critical for the proper subcellular localization and function of IP3R. However, the molecular mechanisms underlying the regulation of IP3R by KRAP remain elusive. In this report, to determine the critical region of KRAP protein for the regulation of IP3R, we generate several mutants of KRAP and examine the association with IP3R using coimmunoprecipitation and confocal imaging assays. Coimmunoprecipitations using the deletion mutants reveal that amino-acid residues 1–218 but not 1–199 of KRAP interact with IP3R, indicating that the 19-length amino-acid residues (200–218) are essential for the association with IP3R. This critical region is highly conserved between human and mouse KRAP. Within the critical region, substitutions of two phenylalanine residues (Phe202/Phe203) in mouse KRAP to alanines result in failure of the association with IP3R, suggesting that the two consecutive phenylalanine residues are indispensable for the association. Moreover, the KRAP-knockdown stable HeLa cells exhibit the inappropriate subcellular localization of IP3R, in which exogenous expression of full-length of KRAP properly restores the subcellular localization of IP3R, but not the 1–218 or 1–236 mutant, indicating that the residual carboxyl-terminal region is also required for the proper subcellular localization of KRAP–IP3R complex. All these results provide insight into the understandings for the molecular mechanisms underlying the regulation of IP3R, and would reveal a potent strategy for the drug development targeting on IP3R.  相似文献   

13.
14.
Members of the APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) protein family catalyze DNA cytosine deamination and underpin a variety of immune defenses. For instance, several family members, including APOBEC3B (A3B), elicit strong retrotransposon and retrovirus restriction activities. However, unlike the other proteins, A3B is the only family member with steady-state nuclear localization. Here, we show that A3B nuclear import is an active process requiring at least one amino acid (Val54) within an N-terminal motif analogous to the nuclear localization determinant of the antibody gene diversification enzyme AID (activation-induced cytosine deaminase). Mechanistic conservation with AID is further suggested by A3B's capacity to interact with the same subset of importin proteins. Despite these mechanistic similarities, enforced A3B expression cannot substitute for AID-dependent antibody gene diversification by class switch recombination. Regulatory differences between A3B and AID are also visible during cell cycle progression. Our studies suggest that the present-day A3B enzyme retained the nuclear import mechanism of an ancestral AID protein during the expansion of the APOBEC3 locus in primates. Our studies also highlight the likelihood that, after nuclear import, specialized mechanisms exist to guide these enzymes to their respective physiological substrates and prevent gratuitous chromosomal DNA damage.  相似文献   

15.
Humans have seven APOBEC3 DNA cytosine deaminases. The activity of these enzymes allows them to restrict a variety of retroviruses and retrotransposons, but may also cause pro-mutagenic genomic uracil lesions. During interphase the APOBEC3 proteins have different subcellular localizations: cell-wide, cytoplasmic or nuclear. This implies that only a subset of APOBEC3s have contact with nuclear DNA. However, during mitosis, the nuclear envelope breaks down and cytoplasmic proteins may enter what was formerly a privileged zone. To address the hypothesis that all APOBEC3 proteins have access to genomic DNA, we analyzed the localization of the APOBEC3 proteins during mitosis. We show that APOBEC3A, APOBEC3C and APOBEC3H are excluded from condensed chromosomes, but become cell-wide during telophase. However, APOBEC3B, APOBEC3D, APOBEC3F and APOBEC3G are excluded from chromatin throughout mitosis. After mitosis, APOBEC3B becomes nuclear, and APOBEC3D, APOBEC3F and APOBEC3G become cytoplasmic. Both structural motifs as well as size may be factors in regulating chromatin exclusion. Deaminase activity was not dependent on cell cycle phase. We also analyzed APOBEC3-induced cell cycle perturbations as a measure of each enzyme’s capacity to inflict genomic DNA damage. AID, APOBEC3A and APOBEC3B altered the cell cycle profile, and, unexpectedly, APOBEC3D also caused changes. We conclude that several APOBEC3 family members have access to the nuclear compartment and can impede the cell cycle, most likely through DNA deamination and the ensuing DNA damage response. Such genomic damage may contribute to carcinogenesis, as demonstrated by AID in B cell cancers and, recently, APOBEC3B in breast cancers.  相似文献   

16.
APOBEC3A and APOBEC3G are DNA cytosine deaminases with biological functions in foreign DNA and retrovirus restriction, respectively. APOBEC3A has an intrinsic preference for cytosine preceded by thymine (5′-TC) in single-stranded DNA substrates, whereas APOBEC3G prefers the target cytosine to be preceded by another cytosine (5′-CC). To determine the amino acids responsible for these strong dinucleotide preferences, we analyzed a series of chimeras in which putative DNA binding loop regions of APOBEC3G were replaced with the corresponding regions from APOBEC3A. Loop 3 replacement enhanced APOBEC3G catalytic activity but did not alter its intrinsic 5′-CC dinucleotide substrate preference. Loop 7 replacement caused APOBEC3G to become APOBEC3A-like and strongly prefer 5′-TC substrates. Simultaneous loop 3/7 replacement resulted in a hyperactive APOBEC3G variant that also preferred 5′-TC dinucleotides. Single amino acid exchanges revealed D317 as a critical determinant of dinucleotide substrate specificity. Multi-copy explicitly solvated all-atom molecular dynamics simulations suggested a model in which D317 acts as a helix-capping residue by constraining the mobility of loop 7, forming a novel binding pocket that favorably accommodates cytosine. All catalytically active APOBEC3G variants, regardless of dinucleotide preference, retained human immunodeficiency virus type 1 restriction activity. These data support a model in which the loop 7 region governs the selection of local dinucleotide substrates for deamination but is unlikely to be part of the higher level targeting mechanisms that direct these enzymes to biological substrates such as human immunodeficiency virus type 1 cDNA.  相似文献   

17.
Human APOBEC3B (A3B) has been described as a potent inhibitor of retroviral infection and retrotransposition. However, we found that the predominantly nuclear A3B only weakly restricted infection by HIV-1, HIV-1Δvif, and human T-cell leukemia virus type 1 (HTLV-1), while significantly inhibiting LINE-1 retrotransposition. The chimeric construct A3G/B, in which the first 60 amino acids of A3B were replaced with those of A3G, restricted HIV-1, HIV-1Δvif, and HTLV-1 infection, as well as LINE-1 retrotransposition. In contrast to the exclusively cytoplasmic A3G, which is inactive against LINE-1 retrotransposition, the A3G/B protein, while localized mainly to the cytoplasm, was also present in the nucleus. Further mutational analysis revealed that residues 18, 19, 22, and 24 in A3B were the major determinants for nuclear versus cytoplasmic localization and antiretroviral activity. HIV-1Δvif packages A3G, A3B, and A3G/B into particles with close-to-equal efficiencies. Mutation E68Q or E255Q in the active centers of A3G/B resulted in loss of the inhibitory activity against HIV-1Δvif, while not affecting activity against LINE-1 retrotransposition. The low inhibition of HIV-1Δvif by A3B correlated with a low rate of G-to-A hypermutation. In contrast, viruses that had been exposed to A3G/B showed a high number of G-to-A transitions. The mutation pattern was similar to that previously reported for A3B, with a preference for the GA context. In summary, these observations suggest that changing 4 residues in the amino terminus of A3B not only retargets the protein from the nucleus to the cytoplasm but also enhances its ability to restrict HIV while retaining inhibition of retrotransposition.  相似文献   

18.
APOBEC1 is the catalytic subunit of an enzyme complex that mediates apolipoprotein (apo) B mRNA editing. It dimerizes in vitro and requires complementation factor(s) for its editing activity. We have performed a systematic analysis of the structure-functional relationship of APOBEC1 by targeted mutagenesis of various sequence motifs within the protein. Using in vitro RNA editing assay, we found that basic amino acid clusters at the amino-terminal region R15R16R17 and R33K34, are essential for apoB mRNA editing. Mutation of R15R16R17 to K15K16K17 and mutation of R33K34 simultaneously to A33A34 almost completely abolished in vitro editing activity. The carboxy-terminal region of APOBEC1 contains a leucine-rich motif. Deletion analysis of this region indicates that residues 181 to 210 are important for in vitro apoB mRNA editing. Single amino acid substitutions demonstrate that L182, I185, and L189 are important residues required for normal editing function. Furthermore, the double mutant P190A/P191A also lost >90% of editing activity which suggests that a beta turn in this region of the molecule may be essential for proper functioning of APOBEC1. It was suggested that dimerization of APOBEC1 creates an active structure for deamination of apoB mRNA. When we examined the dimerization potential of truncated APOBEC1s using both amino and carboxy termini deletion mutants, we found that amino-terminal deletions up to residue A117 did not impair dimerization activity whereas carboxy-terminal deletions showed diminished dimerization. The systematic and extensive mutagenesis experiments in this study provide information on the role of various sequence motifs identified in APOBEC1 in enzyme catalysis and dimerization.  相似文献   

19.
The small GTPase Ha-Ras and Rap1A exhibit high mutual sequence homology and share various target proteins. However, they exert distinct biological functions and exhibit differential subcellular localizations; Rap1A is predominantly localized in the perinuclear region including the Golgi apparatus and endosomes, whereas Ha-Ras is predominantly localized in the plasma membrane. Here, we have identified a small region in Rap1A that is crucial for its perinuclear localization. Analysis of a series of Ha-Ras-Rap1A chimeras shows that Ha-Ras carrying a replacement of amino acids 46-101 with that of Rap1 exhibits the perinuclear localization. Subsequent mutational studies indicate that Rap1A-type substitutions within five amino acids at positions 85-89 of Ha-Ras, such as NNTKS85-89TAQST, NN85-86TA, and TKS87-89QST, are sufficient to induce the perinuclear localization of Ha-Ras. In contrast, substitutions of residues surrounding this region, such as FAI82-84YSI and FEDI90-93FNDL, have no effect on the plasma membrane localization of Ha-Ras. A chimeric construct consisting of amino acids 1-134 of Rap1A and 134-189 of Ha-Ras, which harbors both the palmitoylation and farnesylation sites of Ha-Ras, exhibits the perinuclear localization like Rap1A. Introduction of a Ha-Ras-type substitution into amino acids 85-89 (TAQST85-89NNTKS) of this chimeric construct causes alteration of its predominant subcellular localization site from the perinuclear region to the plasma membrane. These results indicate that a previously uncharacterized domain spanning amino acids 85-89 of Rap1A plays a pivotal role in its perinuclear localization. Moreover, this domain acts dominantly over COOH-terminal lipid modification of Ha-Ras, which has been considered to be essential and sufficient for the plasma membrane localization.  相似文献   

20.
The APOBEC3 proteins are unique to mammals. Many inhibit retrovirus infection through a cDNA cytosine deamination mechanism. HIV-1 neutralizes this host defense through Vif, which triggers APOBEC3 ubiquitination and degradation. Here, we report an APOBEC3F-like, double deaminase domain protein from three artiodactyls: cattle, pigs and sheep. Like their human counterparts, APOBEC3F and APOBEC3G, the artiodactyl APOBEC3F proteins are DNA cytosine deaminases that locate predominantly to the cytosol and can inhibit the replication of HIV-1 and MLV. Retrovirus restriction is attributable to deaminase-dependent and -independent mechanisms, as deaminase-defective mutants retain significant anti-retroviral activity. However, unlike human APOBEC3F and APOBEC3G, the artiodactyl APOBEC3F proteins have an active N-terminal DNA cytosine deaminase domain, which elicits a broader dinucleotide deamination preference, and they are resistant to HIV-1 Vif. These data indicate that DNA cytosine deamination; sub-cellular localization and retrovirus restriction activities are conserved in mammals, whereas active site location, local mutational preferences and Vif susceptibility are not. Together, these studies indicate that some properties of the mammal-specific, APOBEC3-dependent retroelement restriction system are necessary and conserved, but others are simultaneously modular and highly adaptable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号