首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Transformation of primary cultures of human breast cells with simian virus 40 and clonal selection has yielded single-cell-cloned, epithelial cell lines, as well as myoepithelial-related cell lines. When grown on floating collagen gels, the epithelial cell lines give rise to branching rays of cells, thick fingerlike protrusions, saclike structures, and degenerating areas. The myoepithelial-related cell lines give rise only to the branching rays. Epidermal growth factor stimulates the production of the thick protrusions, whereas cholera toxin stimulates the production of the degenerating areas. Immunocytochemical staining of these cultures using reagents directed against the cell surface-extracellular matrix or the cellular cytoskeleton confirms the epithelial and myoepithelial nature of the cells, and demonstrates that the degenerating areas are undergoing squamous metaplasia. The fingerlike protrusions consist of cords of cells composed of inner, epithelial and outer, myoepithelial-related cells sometimes surrounding a central lumen reminiscent of ducts. The saclike structures resemble alveoli. Ultrastructural analysis confirms the identification of the basic cell types and also identifies indeterminate cells possessing features of both epithelial and myoepithelial cells. It is suggested that the epithelial cell lines represent human mammary stem cells that can undergo processes of morphogenesis and differentiation in vitro to form many of the three-dimensional structures found within the breast. This work was supported by the North West Cancer Research Fund and the Cancer and Polio Research Fund.  相似文献   

2.
Summary One bovine mammary epithelial cell clone, designated PS-BME-C1, and two bovine mammary epithelial cell lines, designated PS-BME-L6 and PS-BME-L7, were derived from mammary tissue of a pregnant (270 day) Holstein cow. The cells exhibit the distinctive morphologic characteristics of mammary epithelial cells and express the milk fat globule membrane protein, PAS-III. They form domes when cultured on plastic substrata and acinilike aggregates when cultured on a collagen matrix. These cells are capable of synthesizing and secretingα-lactalbumin andα-s1-casein when cultured on a collagen matrix in the presence of insulin, cortisol, and prolactin. The cells have a near-normal diploid number and do not grow in suspension culture. When transplanted to the cleared mammary fat pads of female athymic nude mice, the cells readily proliferate forming noninvasive palpable spherical cellular masses within 8 wk after inoculation. The cells may become a useful tool to study the regulation of ruminant mammary epithelial cell growth and differentation. This work was supported by the Pennsylvania State University Experiment Station. The PS-BME cells are the property of The Pennsylvania Research Corporation. Scientists interested in obtaining the PS-BME clone or cell lines for their research may request them from the corresponding author.  相似文献   

3.
Cadherins comprise a family of cell-cell adhesion proteins critical to the architecture and function of tissues. Expression of family members E-, N-, and P-cadherin is regulated in a spatial and temporal fashion in the developing and adult organism. Using in vivo and in vitro experimental systems, perturbation of cadherin expression by genetic deletion, overexpression, mutant dominant-negative constructs, and, to a lesser degree, expression of an inappropriate cadherin have all been shown to alter embryogenesis, tissue architecture, and cell behavior. Here we studied how expression of an inappropriate cadherin affects the adult mouse mammary gland. Human P-cadherin was expressed in mammary epithelial cells under control of the mouse mammary tumor virus (MMTV) promoter, and the effect on mammary gland behavior was studied. Typically, E-cadherin is expressed by mammary epithelial cells, whereas P-cadherin is found in myoepithelial cells and cap cells of the ductal terminal end bud. However, breast cancers frequently express P-cadherin, even though they are thought to arise from epithelial cells, and it is a marker of poor prognosis. We developed two independent transgenic mouse lines that exhibited high levels of P-cadherin protein expression in the mammary epithelium. P-cadherin was detected in most, but not all, luminal epithelial cells, and was appropriately localized to cell-cell borders. It was detected in the mammary glands of virgin, pregnant, lactating, post-lactation, and aged parous female mice. Despite the robust and widespread expression of an inappropriate cadherin, no effect was observed on mammary gland morphogenesis, architecture, lactation, or involution in transgenic mice compared to wild-type mice. No mammary tumors formed spontaneously in either wild-type or transgenic mice. Moreover, mammary tumors induced by the neu oncogene, which was introduced by a breeding strategy, showed no differences between mice with or without hP-cadherin. Surprisingly, however, none of the tumors expressed hP-cadherin protein. Together, our studies show no apparent effect on adult mammary gland or tumor behavior by inappropriate expression of P-cadherin in normal mammary epithelial cells.  相似文献   

4.
Previous studies have demonstrated that cell adhesion systems are downregulated in epithelial buds at the earliest stages of submandibular gland and hair follicle development, but are restored at subsequent stages. Here it is shown that epithelial cell adhesion systems are also remodeled during early mammary gland development. Immunofluorescence and electron microscopy of the mouse mammary bud demonstrated that cell-cell adhesion systems were hardly detectable, with significant downregulation of expression of desmosomal molecules, but not of E-cadherin and beta-catenin. Hemidesmosomal structures were also rarely found, although their component molecules were expressed. Differences in cell adhesivity between cells of the mammary bud and those of the overlying epidermis were shown by the finding that the mammary cells formed smaller aggregates than the epidermal cells and were not randomly mixed with the epidermal cells. At subsequent stages, the mammary epithelium restored cell-cell adhesion systems along with de novo expression of tight junction molecules. These data, together with previous findings, indicate that remodeling of epithelial cell adhesion systems is a general feature underlying the early development of several ectoderm-derived organs and support the idea that segregation and rearrangements of cells are involved in early epithelial morphogenesis.  相似文献   

5.
Calcium-dependent cell adhesion molecules (cadherins) are involved in maintaining the epithelial structure of a number of tissues including the mammary gland. In breast and other tumor types, loss of E-cadherin expression has been seen in high grade tumors and correlates with increased invasiveness. Here we show high levels of expression of N-cadherin in the most invasive breast cancer cell lines which was inversely correlated with their expression of E-cadherin. A stromal cell line also expressed N-cadherin in accordance with its fibroblastic morphology. N-cadherin localized to areas of cell-cell contact in all cells that expressed it. Calcium-dependent intercellular adhesion of N-cadherin-expressing breast cancer and stromal cells was specifically inhibited by an anti N-cadherin monoclonal antibody. In addition, N-cadherin promoted the interaction of invasive breast cancer cells with mammary stromal cells: in contrast, E-cadherin expressing cell lines did not co-aggregate with stromal cells. The combined results suggest a functional role for N-cadherin in cohesion of breast tumor cells which, in addition promotes their interaction with the surrounding stromal cells, thereby facilitating invasion and metastasis.  相似文献   

6.
Calcium-dependent cell adhesion molecules (cadherins) are involved in maintaining the epithelial structure of a number of tissues including the mammary gland. In breast and other tumor types, loss of E-cadherin expression has been seen in high grade tumors and correlates with increased invasiveness. Here we show high levels of expression of N-cadherin in the most invasive breast cancer cell lines which was inversely correlated with their expression of E-cadherin. A stromal cell line also expressed N-cadherin in accordance with its fibroblastic morphology. N-cadherin localized to areas of cell-cell contact in all cells that expressed it. Calcium-dependent intercellular adhesion of N-cadherin-expressing breast cancer and stromal cells was specifically inhibited by an anti N-cadherin monoclonal antibody. In addition, N-cadherin promoted the interaction of invasive breast cancer cells with mammary stromal cells: in contrast, E-cadherin expressing cell lines did not co-aggregate with stromal cells. The combined results suggest a functional role for N-cadherin in cohesion of breast tumor cells which, in addition promotes their interaction with the surrounding stromal cells, thereby facilitating invasion and metastasis.  相似文献   

7.
Summary We have established and partially characterized a spontaneously immortalized bovine mammary epithelial cell line, designated HH2a. The cells express the gene encoding for mammary derived growth inhibitor (MDGI) when grown on released collagen gels in the presence of lactogenic hormones. This is the first report of a cell line that expresses MDGI. Immunohistochemical studies showed that HH2a cells contain keratin intermediate filaments and desmosomes. When plated on confluent monolayer of live fibroblasts, HH2a cells extensively contacted with fibroblasts. When embedded in the collagen gels, they rearranged themselves to produce three-dimensional duct-like outgrowths extending into the matrix. The HH2a cell line should be useful in investigations of the roles of cell-cell and cell-extracellular interactions in regulation of breast epithelial cell proliferation, and of the hormonal regulation of MDGI gene expression.  相似文献   

8.
传统的核酸检测技术如放射性核素、荧光、化学修饰的探针以及核酸扩增等技术无法检测活细胞中核酸的表达量。而活细胞RNA纳米检测技术和传统的检测技术相比,利用纳米金颗粒为探针能对活细胞进行检测,实验步骤更为简单,可以在自然的、无扩增的条件下观察RNA,这可真实地反应基因表达与表型之间的关系。miRNA是一类非编码RNA,其长度为20~24个碱基,在生命活动中起重要的作用。本文应用活细胞RNA检测纳米技术结合荧光定量PCR分别检测正常的乳腺上皮细胞系及乳腺上皮癌细胞系中内源性miR-142-3p的表达,发现乳腺癌细胞系内源性miR-142-3p的表达显著高于正常乳腺上皮细胞系中miR-142-3p的表达,结果提示miR-142-3p可能在乳腺癌细胞发生发展中起到调控作用。  相似文献   

9.
We have established three independent ovine mammary epithelial cell lines which arose from primary cultures of ovine mammary epithelial cells by spontaneous immortalization. One of them, OMEC II, was characterised in greater detail. The cells grow rapidly on plastic dishes in medium containing 10% FCS without any requirement for additional growth factors or hormones. Immunofluorescence staining of this cell line showed expression of cytokeratin (46 kDa) and ZO-1, a tight-junction associated protein, but negative immunostaining for an anti-vimentin antibody. In confluent cell monolayers ‘domes’ became visible indicating the development of a polarised phenotype and the ability of directed secretion. When grown in collagen gels typical ducts with end-buds were observed. Treatment with lactogenic hormones increased the frequency of dome formation, but no expression of β-lactoglobulin was found. To our knowledge this is the first report on an ovine mammary epithelial cell line.  相似文献   

10.
11.
Summary A sensitive radioimmunoassay technique was developed to quantitatite the level of human breast celltype specific antigens on cells from normal breast and from various established cell lines of breast and nonbreast origins. Polyacrylamide gel electrophoresis revealed four major proteinaceous components (150,000; 75,000; 60,000; and 48,000) in human milk fat globule membranes that were used to immunize rabbits in order to elicit antimammary epithelial cell antibody. Antisera obtained were rendered specific by abosorptions and were able to recognize three specific mammary epithelial components of the breast epithelial cell. Human mammary epithelial (HME) antigen expression was highest (1290 ng/106 cells) in normal breast epithelial cells from primary cultures of normal breasts. Lower levels (range: 955 to 330 ng/106 cells) were found in breast epithelial cells from cell lines established from cancerous breast tissue. Cells of nonbreast origins as well as fibroblasts from breast gave much lower values (less than 30 ng/106 cells). On treatment, with trypsin, of two breast epithelial cell lines (MDA-MB-157 and MCF-7) 80 to 85% of their HME antigen expression was lost, suggesting that a majority of these breast antigens reside on the cell surface. This work was Supported by Grant PTD-99 from the American Cancer Society, Grant CA19455 and CA20286 from the National Cancer Institute, and Biomedical Research Support Grant RR05467 from the National Institutes of Health. Most cells used in the present study were produced with support from National Cancer Institute Contract Y01-CP8-0500, Biological Carcinogenesis Branch, Division of Cancer Cause and Prevention, under the auspices of the Office of Naval Research and the Regents of the University of California.  相似文献   

12.
13.
Bone is the most common site of breast cancer metastasis and once established, it is frequently incurable. Critical to our ability to prevent and treat bone metastasis is the identification of the key factors mediating its establishment and understanding their biological function. To address this issue we previously carried out an in vivo selection process to isolate murine mammary tumor sublines possessing an enhanced ability to colonize the bone. A comparison of gene expression between parental cells and sublines by genome-wide cDNA microarray analysis revealed several potential mediators of bone metastasis, including the pyrophosphate-generating ectoenzyme Enpp1. By qRT-PCR and Western analysis we found that expression of Enpp1 was elevated in human breast cancer cell lines known to produce bone metastasis in animal models compared to non-metastatic and normal mammary epithelial cell lines. Further, in clinical specimens, levels of Enpp1 were significantly elevated in human primary breast tumors relative to normal mammary epithelium, with highest levels observed in breast-bone metastasis as determined by qRT-PCR and immunohistochemical analysis. To examine the potential role of Enpp1 in the development of bone metastasis, Enpp1 expression was stably increased in the breast cancer cell line MDA-MB-231 and the ability to colonize the bone following intracardiac and direct intratibial injection of athymic nude mice was determined. By both routes of administration, increased expression of Enpp1 enhanced the ability of MDA-MB-231 cells to form tumors in the bone relative to cells expressing vector alone, as determined by digital radiography and histological analysis. Taken together, these data suggest a potential role for Enpp1 in the development of breast cancer bone metastasis.  相似文献   

14.
Epithelial-to-mesenchymal transition (EMT) is an essential embryogenic and developmental process, characterized by altered cellular morphology, loss of cell adhesion, and gain of migratory ability. Dysregulation of this process has been implicated in tumorigenesis, mediating the acquisition of migratory and invasive phenotypes by tumor cells. Mammary epithelial cells provide an excellent model in which to study the process, being derived from mammary gland tissue that utilizes EMT to facilitate branching morphogenesis through which the developing gland migrates into and invades the fat pad. Inappropriate EMT has been heavily implicated in the progression of ductal hyperplasia and mammary tumor metastasis. We examined the morphological and molecular changes of three murine mammary epithelial cell lines following EMT induction. EMT was induced in the EpH-4 and NMuMG cell lines by transforming growth factor (TGF)-beta1 but not by ethanol, while the KIM-2 cell line was partially resistant to TGF-beta1 but responded fully to ethanol. The response to EMT-inducing reagent was shown to be critically dependent on the time of treatment, with confluent cells failing to respond. Timelapse photography identified increased motility during wound healing in cells pre-treated with EMT-inducing reagent compared with untreated controls. Furthermore, EMT conferred resistance to UV-induced apoptosis. Our data indicate that evaluation of characteristics other than loss and gain of phenotypic markers may be of benefit when assessing EMT, and contribute to the evidence suggesting that inappropriate EMT facilitates the acquisition of resistance to apoptosis, a key characteristic required for tumor survival.  相似文献   

15.
c-erbB receptors are usually located in cell membranes and are activated by extracellular binding of EGF-like growth factors. Unexpectedly, using immunofluorescence we found high levels of c-erbB-3 within the nuclei of MTSV1-7 immortalized nonmalignant human mammary epithelial cells. Nuclear localization was mediated by the COOH terminus of c-erbB-3, and a nuclear localization signal was identified by site-directed mutagenesis and by transfer of the signal to chicken pyruvate kinase. A nuclear export inhibitor caused accumulation of c-erbB-3 in the nuclei of other mammary epithelial cell lines as demonstrated by immunofluorescence and biochemical cell fractionation, suggesting that c-erbB-3 shuttles between nuclear and nonnuclear compartments in these cells. Growth of MTSV1-7 on permeable filters induced epithelial polarity and concentration of c-erbB-3 within the nucleoli. However, the c-erbB-3 ligand heregulin beta1 shifted c-erbB-3 from the nucleolus into the nucleoplasm and then into the cytoplasm. The subcellular localization of c-erbB-3 obviously depends on exogenous stimuli and on the stage of epithelial polarity and challenges the specific function of c-erbB-3 as a transmembrane receptor protein arguing for additional, as yet unidentified, roles of c-erbB-3 within the nucle(ol)us of mammary epithelial cells.  相似文献   

16.
Urokinase-type plasminogen activator (uPA) and one of its inhibitors, the PAI-1, are involved in the proteolytic cascade of matrix degradation during in vivo morphogenesis or metastasis. In the present study, we have characterized the in vitro morphological behavior of human normal and malignant mammary epithelial cells and determined the levels of uPA activity and PAI-1 during these events. Two-dimensional cultures in the presence of inductive fibroblast-conditioned medium (CM) allowed migration of HBL-100 cells and MDA-MB-231 cells. Normal human mammary epithelial cells (HMEC) and MCF-7 cells failed to migrate under these conditions. The epithelial cell migration correlated with an increase in the uPA activity whereas their immobility correlated with both increases in uPA activity and PAI-1 level. In three-dimensional cultures in collagen gel, fibroblasts or fibroblast CM induced branching tubular morphogenesis to HMEC, cord-like extensions to HBL-100 cells and a greater invasiveness ability to MDA-MB-231 cells. These events correlated with an increased uPA activity. In contrast, no morphological rearrangement was observed in MCF-7 cells and this correlated with both increases in uPA activity and PAI-1 level. Altogether, these results show that the in vitro mammary epithelial behavior is under the influence of mesenchymal inductive signals and is in agreement with modifications of uPA activity and PAI-1 levels. Our culture system gives a suitable model to study the mechanisms of mammary development and metastasis and to highlight the involvement of proteases and their inhibitors in cell-cell positioning and cell-matrix reorganization.  相似文献   

17.
ABSTRACT

The circadian clock controls most of the physiological processes in the body throughout days and nights’ alternation. Its dysregulation has a negative impact on many aspects of human health, such as obesity, lipid disorders, diabetes, skin regeneration, hematopoiesis and cancer. To date, poor is known on the molecular mechanisms that links mammary gland homeostasis to the circadian clock but recent reports highlight the importance of loss of circadian genes for mammary gland development and during tumour progression in breast cancer. Gene expression studies are then required to clarify how the circadian clock can modulates the human mammary gland development during ontology and its behaviour in physiological and oncogenic context. For this, in addition to genome-wide studies, real-time quantitative RT-PCR (qPCR) is a powerful and pertinent technique to quantify the expression of a reduced set of genes of interest in many different samples. Relative quantification of qPCR data requires the use of reference genes for normalisation. For circadian studies, reference genes expression must not oscillate in mirror of the circadian clock and must not be affected by the synchronisation protocols required in vitro to reset the circadian clock. Inappropriate selection of reference genes can consequently affect the amplitude of gene expression oscillation and bias data interpretation. Currently, no standard reference genes have been validated regarding these criteria for human mammary epithelial cells and the purpose of this study was to fill this gap. For this, we used the RefFinder tool, which combines four different algorithms, on 9 candidate reference genes. We compared reference genes stability using three different synchronisation protocols applied on four different mammary epithelial cell lines. This allowed us to define a set of reference genes in human mammary epithelial cells whose expression remains stable despite synchronisation protocols. We observed that the synchronisation of cells by serum shock was the most suitable procedure for maintaining the amplitude of oscillation of clock genes over time and we identified RPL4, RPLP0, HSPCB and TBP as an optimal combination of reference genes for the normalisation of the oscillatory expression of clock genes in human mammary epithelial cells.  相似文献   

18.
Summary Five spontaneous canine mammary tumors were cultured in vitro and cell lines were established. The tumors included three frozen carcinomas, fine-needle aspirate from one fresh carcinoma, and one fresh atypical benign mixed tumor. The cell lines have so far been cultured for about 2 yr and passaged between 45 and 200 times. The cell lines expressed different types of intermediate filaments, including a heterogenous pattern. In some cases no intermediate filaments were expressed. Ultrastructure studies showed epithelial cells and cells intermediate between epithelial and myoepithelial types. Retrovirus associated A-particles were found in two carcinomas. The mixed mammary tumor cell line formed ductlike structures in collagen substrate. The cell lines grew when inoculated s.c. into male nude mice. Two carcinomas caused lymph node metastases in two mice and another carcinoma single lung metastases in one tested mouse. DNA hypodiploidy, studied by flow cytometry, in one of the primary carcinoma was retained in vitro, and this cell line showed polyploidy during later passages. The other cell lines had a more unstable DNA profile, although a tendency for polyploidy was found. These findings were also illustrated in chromosome studies.  相似文献   

19.
CLCA2 is a p53-, p63-inducible transmembrane protein that is frequently downregulated in breast cancer. It is induced during differentiation of human mammary epithelial cells, and its knockdown causes epithelial-to-mesenchymal transition (EMT). To determine how CLCA2 promotes epithelial differentiation, we searched for interactors using membrane dihybrid screening. We discovered a strong interaction with the cell junctional protein EVA1 (Epithelial V-like Antigen 1) and confirmed it by co-immunoprecipitation. Like CLCA2, EVA1 is a type I transmembrane protein that is regulated by p53 and p63. It is thought to mediate homophilic cell-cell adhesion in diverse epithelial tissues. We found that EVA1 is frequently downregulated in breast tumors and breast cancer cell lines, especially those of mesenchymal phenotype. Moreover, knockdown of EVA1 in immortalized human mammary epithelial cells (HMEC) caused EMT, implying that EVA1 is essential for epithelial differentiation. Both EVA1 and CLCA2 co-localized with E-cadherin at cell-cell junctions. The interacting domains were delimited by deletion analysis, revealing the site of interaction to be the transmembrane segment (TMS). The primary sequence of the CLCA2 TMS was found to be conserved in CLCA2 orthologs throughout mammals, suggesting that its interaction with EVA1 co-evolved with the mammary gland. A screen for other junctional interactors revealed that CLCA2 was involved in two different complexes, one with EVA1 and ZO-1, the other with beta catenin. Overexpression of CLCA2 caused downregulation of beta catenin and beta catenin-activated genes. Thus, CLCA2 links a junctional adhesion molecule to cytosolic signaling proteins that modulate proliferation and differentiation. These results may explain how attenuation of CLCA2 causes EMT and why CLCA2 and EVA1 are frequently downregulated in metastatic breast cancer cell lines.  相似文献   

20.
In this study we examined the ability of interferon-gamma (IFN-gamma) to regulate mammary epithelial cell growth and gene expression, with particular emphasis on two genes: Maspin (a member of serine protease inhibitor superfamily), and the lysosomal aspartyl endopeptidase cathepsin D (CatD). The protein products of these genes are critically involved in regulation of multitude of biological functions in different stages of mammary tissue development and remodeling. In addition, the expression of Maspin is down-regulated in primary breast cancer and is lost in metastatic disease, while CatD is excessively produced and aberrantly secreted by breast cancer cells. We report that IFN-gamma receptors are expressed in mammary epithelial cells, and receptor engagement by IFN-gamma transduces the IFN-gamma signal via Stat-1 resulting in decreased vacuolar pH. This change in vacuolar pH alters CatD protein processing and secretion concurrent with increased Maspin secretion. In addition, IFN-gamma exerts a suppressive effect on cell growth and proliferation, and induces morphological changes in mammary epithelial cells. Our studies also reveal that breast cancer cells, which are devoid of Maspin, are refractory to IFN-gamma with respect to changes in vacuolar pH and CatD. However, Maspin transfection of breast cancer cells partially sensitizes the cells to IFN-gamma's effect, thus providing new therapeutic implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号