首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Citrate transport into the vacuoles of acid lime juice cells was investigated using isolated tonoplast vesicles. ATP stimulated citrate uptake in the presence or in the absence of a ΔμH+. Energization of the vesicles only by an artificial K+ gradient (establishing an inside-positive Δψ) also resulted in citrate uptake as was the case of a ΔpH dominated ΔμH+. Addition of inhibitors to endomembrane ATPases showed no direct correlation between the inhibition to the tonoplast bound H+/ATPase and citrate uptake. The data indicated that, although some citrate uptake can be accounted for by Δψ and by a direct primary active transport mechanism involving ATP, under in vivo conditions of vacuolar pH of 2.0, citrate uptake is driven by ΔpH. Received: 27 April 1998/Revised: 8 September 1998  相似文献   

2.
To study vacuolar chloride (Cl) transport in the halophilic plant Mesembryanthemum crystallinum L., Cl uptake into isolated tonoplast vesicles was measured using the Cl-sensitive fluorescent dye lucigenin (N,N′-dimethyl-9,9′-bisacridinium dinitrate). Lucigenin was used at excitation and emission wavelengths of 433 nm and 506 nm, respectively, and showed a high sensitivity towards Cl, with a Stern-Volmer constant of 173 m −1 in standard assay buffer. While lucigenin fluorescence was strongly quenched by all halides, it was only weakly quenched, if at all, by other anions. However, the fluorescence intensity and Cl-sensitivity of lucigenin was shown to be strongly affected by alkaline pH and was dependent on the conjugate base used as the buffering ion. Chloride transport into tonoplast vesicles of M. crystallinum loaded with 10 mm lucigenin showed saturation-type kinetics with an apparent K m of 17.2 mm and a V max of 4.8 mm min−1. Vacuolar Cl transport was not affected by sulfate, malate, or nitrate. In the presence of 250 μm p-chloromercuribenzene sulfonate, a known anion-transport inhibitor, vacuolar Cl transport was actually significantly increased by 24%. To determine absolute fluxes of Cl using this method, the average surface to volume ratio of the tonoplast vesicles was measured by electron microscopy to be 1.13 × 107 m−1. After correcting for a 4.4-fold lower apparent Stern-Volmer constant for intravesicular lucigenin, a maximum rate of Cl transport of 31 nmol m−2 sec−1 was calculated, in good agreement with values obtained for the plant vacuolar membrane using other techniques. Received: 18 February 2000/Revised: 30 June 2000  相似文献   

3.
ATP-induced sucrose efflux from red-beet tonoplast vesicles   总被引:2,自引:0,他引:2  
Echeverría E  Gonzalez PC 《Planta》2000,211(1):77-84
 Sucrose efflux from the vacuole of mobilizing red-beet (Beta vulgaris L.) hypocotyl cells was investigated using purified tonoplast vesicles. Tonoplast vesicle purity was assured by the immunoreactivity to antibodies raised against the vacuolar ATPase and by the strong inhibition exhibited by the H+-ATPase to bafilomycin-A and NO3 . Inhibition of the H+-ATPase by vanadate and azide was negligible. Sucrose was loaded into tonoplast vesicles by using the pH-jump method of energization. Addition of ATP to sucrose-loaded vesicles in the presence of bafilomycin-A resulted in efflux of a significant amount of sucrose. During ATP-induced sucrose efflux, bafilomycin-insensitive ATPase activity increased significantly with no increase in H+-translocating activity. The additional bafilomycin-A insensitive ATPase activity observed in sucrose-loaded vesicles was completely inhibited by vanadate as was the efflux of sucrose. Similar to vanadate, thapsigargin was also inhibitory to sucrose efflux and to the bafilomycin-A insensitive ATPase activity. The data indicate that vacuolar sucrose can be actively mobilized by a specific ATP-dependent efflux mechanism. Received: 12 October 1999 / Accepted: 18 November 1999  相似文献   

4.
Outwardly oriented H+ gradients greatly enhanced thiamine transport rate in brush border membrane vesicles from duodenal and jejunal mucosa of adult Wistar rats. At a gradient pHin5:pHout7.5, thiamine uptake showed an overshoot, which at 15 sec was three times as large as the uptake observed in the absence of the gradient. Under the same conditions, the binding component of uptake accounted for only 10–13% of intravesicular transport. At the same gradient, the K m and J max values of the saturable component of the thiamine uptake curve after a 6 sec incubation time were 6.2 ± 1.4 μm and 14.9 ± 3 pmol · mg−1 protein · 6 sec−1 respectively. These values were about 3 and 5 times higher, respectively, than those recorded in the absence of H+ gradient. The saturable component of the thiamine antiport had a stoichiometric thiamine: H+ ratio of 1:1 and was inhibited by thiamine analogues, guanidine, guanidine derivatives, inhibitors of the guanidine/H+ antiport, and imipramine. Conversely, the guanidine/H+ antiport was inhibited by unlabeled thiamine and thiamine analogues; omeprazole caused an approximately fourfold increase in thiamine transport rate. In the absence of H+ gradient, changes in transmembrane electrical potential did not affect thiamine uptake. At equilibrium, the percentage membrane-bound thiamine taken up was positively correlated with the pH of the incubation medium, and increased from about 10% at pH 5 to 99% at pH 9. Received: 17 July 1997/Revised: 16 September 1997  相似文献   

5.
In the giant-celled marine algae Valonia utricularis the turgor-sensing mechanism of the plasmalemma and the role of the tonoplast in turgor regulation is unknown because of the lack of solid data about the individual electrical properties of the plasmalemma and the vacuolar membrane. For this reason, a vacuolar perfusion technique was developed that allowed controlled manipulation of the vacuolar sap under turgescent conditions (up to about 0.3 MPa). Charge-pulse relaxation studies on vacuolarly perfused cells at different turgor pressure values showed that the area-specific resistance of the total membrane barrier (tonoplast and plasmalemma) exhibited a similar dependence on turgor pressure as reported in the literature for nonperfused cells: the resistance assumed a minimum value at the physiological turgor pressure of about 0.1 MPa. The agreement of the data suggested that the perfusion process did not alter the transport properties of the membrane barrier. Addition of 16 μm of the H+-carrier FCCP (carbonylcyanide p-trifluoromethoxyphenyhydrazone) to the perfusion solution resulted in a drop of the total membrane potential from +4 mV to −22 mV and in an increase of the area-specific membrane resistance from 6.8 × 10−2 to 40.6 × 10−2Ωm2. The time constants of the two exponentials of the charge pulse relaxation spectrum increased significantly. These results are inconsistent with the assumption of a high-conductance state of the tonoplast (R. Lainson and C.P. Field, J. Membrane Biol. 29:81–94, 1976). Depending on the site of addition, the pore-forming antibiotics nystatin and amphotericin B affected either the time constant of the fast or of the slow relaxation (provided that the composition of the perfusion solution and the artificial sea water were replaced by a cytoplasma-analogous medium). When 50 μm of the antibiotics were added externally, the fast relaxation process disappeared. Contrastingly, the slow relaxation process disappeared upon vacuolar addition. The antibiotics cannot penetrate biomembranes rapidly, and therefore, the findings suggested that the fast and slow relaxations originated exclusively from the electrical properties of the plasmalemma and the tonoplast respectively. This interpretation implies that the area-specific resistance of the tonoplast is significantly larger than that of the plasmalemma (consistent with the FCCP data) and that the area-specific capacitance of the tonoplast is unusually high (6.21 × 10−2 Fm−2 compared to 0.77 × 10−2 Fm−2 of the plasmalemma). Thus, we have to assume that the vacuolar membrane of V. utricularis is highly folded (by a factor of about 9 in relation to the geometric area) and/or contains a fairly high concentration of mobile charges of an unknown electrogenic ion carrier system. Received: 22 October 1996/Revised: 16 January 1997  相似文献   

6.
In tilapia (Oreochromis mossambicus) intestine, Mg2+ transport across the epithelium involves a transcellular, Na+- and Na+/K+-ATPase dependent pathway. In our search for the Mg2+ extrusion mechanism of the basolateral compartment of the enterocyte, we could exclude Na+/Mg2+ antiport or ATP-driven transport. Evidence is provided, however, that Mg2+ movement across the membrane is coupled to anion transport. In basolateral plasma membrane vesicles, an inwardly directed Cl gradient stimulated Mg2+ uptake (as followed with the radionuclide 27Mg) twofold. As Cl-stimulated uptake was inhibited by the detergent saponin and by the ionophore A23187, Mg2+ may be accumulated intravesicularly above chemical equilibrium. Valinomycin did not affect uptake, suggesting that electroneutral symport activity occurred. The involvement of anion coupled transport was further indicated by the inhibition of Mg2+ uptake by the stilbene derivative, 4,4′-diisothiocyanato-stilbene-2,2′-disulfonic acid. Kinetic analyses of the Cl-stimulated Mg2+ uptake yielded a K m (Mg2+) of 6.08 ± 1.29 mmol · l−1 and a K m (Cl) of 26.5 ± 6.5 mmol · l−1, compatible with transport activity at intracellular Mg2+- and Cl-levels. We propose that Mg2+ absorption in the tilapia intestine involves an electrically neutral anion symport mechanism. Received: 19 January 1996/Revised: 1 August 1996  相似文献   

7.
L-lactate transport mechanism across rat jejunal enterocyte was investigated using isolated membrane vesicles. In basolateral membrane vesicles l-lactate uptake is stimulated by an inwardly directed H+ gradient; the effect of the pH difference is drastically reduced by FCCP, pCMBS and phloretin, while furosemide is ineffective. The pH gradient effect is strongly temperature dependent. The initial rate of the proton gradient-induced lactate uptake is saturable with respect to external lactate with a K m of 39.2 ± 4.8 mm and a J max of 8.9 ± 0.7 nmoles mg protein−1 sec−1. A very small conductive pathway for l-lactate is present in basolateral membranes. In brush border membrane vesicles both Na+ and H+ gradients exert a small stimulatory effect on lactate uptake. We conclude that rat jejunal basolateral membrane contains a H+-lactate cotransporter, whereas in the apical membrane both H+-lactate and Na+-lactate cotransporters are present, even if they exhibit a low transport rate. Received: 22 October 1996/Revised: 11 March 1997  相似文献   

8.
Large-scale preparation of highly purified tonoplast from cucumber (Cucumis sativus L.) roots was obtained after centrifugation of microsome pellet (10,000 – 80,000 g) on discontinuous sucrose density gradient (20, 28, 32 and 42 %). Lack of PEP carboxylase (cytosol marker) and cytochrome c oxidase (mitochondrial marker) together with a slight activity of VO4-ATPase (plasma membrane marker) and NADH-cytochrome c reductase (ER marker) in tonoplast preparation confirmed its high purity. Using latency of nitrate-inhibited ATPase and H+ pumping as criteria it was established that the majority of tonoplast vesicles were sealed and oriented right(cytoplasmic)-side-out. Strong acidification of the interior of vesicles observed at the presence of both, ATP and PPi, confirmed that obtained tonoplast contains two classes of proton pumps: V-ATPase and H+PPiase. To examine and characterise of proton-transport systems in tonoplast, the effect of various inhibitors on H+ pumping and hydrolytic activities of ATPase and PPiase were measured. ATP-dependent activities (H+ flux and ATP hydrolysis) were specifically decreased by nitrate and bafilomycin A1, whereas the PPiase activities were reduced in the presence of fluoride and Na+ ions. Both enzymes showed a similar sensitivity to DCCD and DES. The results of experiments with KCl and NaCl suggested that the vacuolar ATPase was stimulated by Cl, whereas the vacuolar Ppiase requires K+ ions for its activity.  相似文献   

9.
Calcium is sequestered into vacuoles of oat (Avena sativa L.) root cells via a H+/Ca2+ antiporter, and vesicles derived from the vacuolar membrane (tonoplast) catalyze an uptake of calcium which is dependent on protons (pH gradient [ΔpH] dependent). The first step toward purification and identification of the H+/Ca2+ antiporter is to solubilize and reconstitute the transport activity in liposomes. The vacuolar H+/Ca2+ antiporter was solubilized with octylglucoside in the presence of soybean phospholipids and glycerol. After centrifugation, the soluble proteins were reconstituted into liposomes by detergent dilution. A ΔpH (acid inside) was generated in the proteoliposomes with an NH4Cl gradient (NH4+in » NH4+out) as determined by methylamine uptake. Fundamental properties of ΔpH dependent calcium uptake such as the Km for calcium (~15 micromolar) and the sensitivity to inhibitors such as N,N′-dicyclohexylcarbodiimide, ruthenium red, and lanthanum, were similar to those found in membrane vesicles, indicating that the H+/Ca2+ antiporter has been reconstituted in active form.  相似文献   

10.
Transport Pathways for Therapeutic Concentrations of Lithium in Rat Liver   总被引:1,自引:0,他引:1  
Although both amiloride- and phloretin-sensitive Na+/Li+ exchange activities have been reported in mammalian red blood cells, it is still unclear whether or not the two are mediated by the same pathway. Also, little is known about the relative contribution of these transport mechanisms to the entry of therapeutic concentrations of Li+ (0.2–2 mm) into cells other than erythrocytes. Here, we describe characteristics of these transport systems in rat isolated hepatocytes in suspension. Uptake of Li+ by hepatocytes, preloaded with Na+ and incubated in the presence of ouabain and bumetanide, comprised three components. (a) An amiloride-sensitive component, with apparent K m 1.2 mm Li+, V max 40 μmol · (kg dry wt · min)−1, showed increased activity at low intracellular pH. The relationship of this component to the concentration of intracellular H+ was curvilinear suggesting a modifier role of [H+] i . This system persisted in Na+-depleted cells, although with apparent K m 3.8 mm. (b) A phloretin-sensitive component, with K m 1.2 mm, V max 21 μmol · (kg · min)−1, was unaffected by pH but was inactive in Na+-depleted cells. Phloretin inhibited Li+ uptake and Na+ efflux in parallel. (c) A residual uptake increased linearly with the external Li+ concentration and represented an increasing proportion of the total uptake. The results strongly suggest that the amiloride-sensitive and the phloretin-sensitive Li+ uptake in rat liver are mediated by two separate pathways which can be distinguished by their sensitivity to inhibitors and intracellular [H+]. Received: 8 April 1999/Revised: 19 July 1999  相似文献   

11.
Crassulacean acid metabolism (CAM) was induced in Mesembryanthemum crystallinum L. by either NaCl- or high light (HL)- stress. This generated in mesophyll cells predominantly of NaCl-stressed plants two different types of vacuoles: the generic acidic vacuoles for malic acid accumulation and additionally less acidic (“neutral”) vacuoles for NaCl sequestration. To examine differences in the tonoplast properties of the two types of vacuoles, we separated microsomal membranes of HL- and NaCl-stressed M. crystallinum plants by centrifugation in sucrose density gradients. Positive immunoreactions of a set of antibodies directed against tonoplast specific proteins and tonoplast specific ATP- and PPi-hydrolytic activity were used as markers for vacuolar membranes. With these criteria tonoplast membranes were detected in both HL- and NaCl-stressed plants in association with the characteristic low sucrose density but also at an unusual high sucrose density. In HL-stressed plants most of the ATP- and PPi-hydrolytic activity and cross reactivity with antibodies including that directed against the Na+/H+-antiporter from Arabidopsis thaliana was detected with light sucrose density. This relationship was inverted in NaCl-stressed plants; they exhibited most pump activity and immunoreactivity in the heavy fraction. The relative abundance of the heavy membrane fraction reflects the relative occurrence of “neutral” vacuoles in either HL- or NaCl-stressed plants. This suggests that tonoplasts of the “neutral” vacuoles sediment at high sucrose densities. This is consistent with the view that this type of vacuoles serves for Na+ sequestration and is accordingly equipped with a high capacity of proton pumping and Na+ uptake via the Na+/H+-antiporter.  相似文献   

12.
Tonoplast K+ channels of Chara corallina are well characterized but only a few reports mention anion channels, which are likely to play an important role in the tonoplast action potential and osmoregulation of this plant. For experiments internodal cells were isolated. Cytoplasmic droplets were formed in an iso-osmotic bath solution according to a modified procedure. Ion channels with conductances of 48 pS and 170 pS were detected by the patch-clamp technique. In the absence of K+ in the bath solution the 170 pS channel was not observed at negative pipette potential values. When Cl on either the vacuolar side or the cytoplasmic side was partly replaced with F, the reversal potential of the 48 pS channel shifted conform to the Cl equilibrium potential with similar behavior in droplet-attached and excised patch mode. These results showed that the 48 pS channel was a Cl channel. In droplet-attached mode the channel rectified outward current flow, and the slope conductance was smaller. When Chara droplets were formed in a bath solution containing low (10−8 m) Ca2+, then no Cl channels could be detected either in droplet-attached or in inside-out patch mode. Channel activity was restored if Ca2+ was applied to the cytoplasmic side of inside-out patches. Rectification properties in the inside-out patch configuration could be controlled by the holding pipette potential. Holding potential values negative or positive to the calculated reversal potential for Cl ions induced opposite rectification properties. Our results show Ca2+-activated Cl channels in the tonoplast of Chara with holding potential dependent rectification. Received: 30 March 1999/Revised: 10 August 1999  相似文献   

13.
Previous squid-axon studies identified a novel K/HCO3 cotransporter that is insensitive to disulfonic stilbene derivatives. This cotransporter presumably responds to intracellular alkali loads by moving K+ and HCO 3 out of the cell, tending to lower intracellular pH (pHi). With an inwardly directed K/HCO3 gradient, the cotransporter mediates a net uptake of alkali (i.e., K+ and HCO 3 influx). Here we test the hypothesis that intracellular quaternary ammonium ions (QA+) inhibit the inwardly directed cotransporter by interacting at the intracellular K+ site. We computed the equivalent HCO 3 influx (J HCO3) mediated by the cotransporter from the rate of pHi increase, as measured with pH-sensitive microelectrodes. We dialyzed axons to pHi 8.0, using a dialysis fluid (DF) free of K+, Na+ and Cl. Our standard artificial seawater (ASW) also lacked Na+, K+ and Cl. After halting dialysis, we introduced an ASW containing 437 mm K+ and 0.5% CO2/12 mm HCO 3, which (i) caused membrane potential to become transiently very positive, and (ii) caused a rapid pHi decrease, due to CO2 influx, followed by a slower plateau-phase pHi increase, due to inward cotransport of K+ and HCO 3. With no QA+ in the DF, J HCO3 was ∼58 pmole cm−2 sec−1. With 400 mm tetraethylammonium (TEA+) in the DF, J HCO3 was virtually zero. The apparent K i for intracellular TEA+ was ∼78 mm, more than two orders of magnitude greater than that obtained by others for inhibition of K+ channels. Introducing 100 mm inhibitor into the DF reduced J HCO3 to ∼20 pmole cm−2 sec−1 for tetramethylammonium (TMA+), ∼24 for TEA+, ∼10 for tetrapropylammonium (TPA+), and virtually zero for tetrabutylammonium (TBA+). The apparent K i value for TBA+ is ∼0.86 mm. The most potent inhibitor was phenyl-propyltetraethylammonium (PPTEA+), with an apparent K i of ∼91 μm. Thus, trans-side quaternary ammonium ions inhibit K/HCO3 influx in the potency sequence PPTEA+ > TBA+ > TPA+ > TEA+≅ TMA+. The identification of inhibitors of the K/HCO3 cotransporter, for which no inhibitors previously existed, will facilitate the study of this transporter. Received: 21 November 2000/Revised: 14 May 2001  相似文献   

14.
The current-voltage (I/V) profiles of Ventricaria (formerly Valonia) membranes were measured at a range of external potassium concentrations, [K+] o , from 0.1 to 100 mm. The conductance-voltage (G/V) characteristics were computed to facilitate better resolution of the profile change with time after exposure to different [K+] o . The resistance-voltage (R/V) characteristics were computed to attempt resolution of plasmalemma and tonoplast. Four basic electrophysiological stages emerged: (1) Uniform low resistance between −60 and +60 mV after the cell impalement. (2) High resistance between +50 and +150 for [K+] o from 0.1 to 1.0 mm and hypotonic media. (3) High resistance between −150 and −20 mV for [K+] o of 10 mm (close to natural seawater) and hypertonic media. (4) High resistance between −150 and +170 mV at [K+] o of 100 mm. The changes between these states were slow, requiring minutes to hours and sometimes exhibiting spontaneous oscillations of the membrane p.d. (potential difference). Our analysis of the I/V data supports a previous hypothesis, that Ventricaria tonoplast is the more resistive membrane containing a pump, which transports K+ into the vacuole to regulate turgor. We associate state (1) with the plasmalemma conductance being dominant and the K+ pump at the tonoplast short-circuited probably by a K+ channel, state (2) with the K+ pump ``off' or short-circuited at p.d.s more negative than +50 mV, state (3) with the K+ pump ``on,' and state (4) with the pump dominant, but affected by high K+. A model for the Ventricaria membrane system is proposed. Received: 5 November 1998/Revised: 11 May 1999  相似文献   

15.
Changes of vacuolar pH in hair cells of young rice (Oryza sativa L.) and maize (Zea mays L.) roots were measured after ammonia application at various levels of external pH. After loading the pH-sensitive, fluorescent dye Oregon green 488 carboxylic acid 6-isomer into the vacuoles of root hairs, ratiometric pH data of high statistical significance were obtained from root hair populations comprising hundreds of cells. The pH of the vacuole at external pH 5.0 was 5.32 ± 0.08 (±SD, n= 15) and 5.41 ± 0.13 (±SD, n= 15) in rice and maize, respectively. A moderate external ammonia concentration of 2 mM led to vacuolar alkalisation at both, low (pH 5.0) and high (pH 7.0–9.0) external pH, presumably due to NH3 permeation into the vacuole. With increasing external pH, ammonia application did not cumulatively increase vacuolar pH. In rice, the increase in vacuolar pH ranged from 0.1–0.8 pH units; in maize a more constant increase of 0.5 pH units was observed. The vacuolar pH increase was efficiently depressed in rice (especially at high external pH), but not in maize. Inhibition of the tonoplast H+-ATPase by concanamycin A raised vacuolar pH and increased the ammonia-elicited vacuolar alkalisation in both species, proving that vacuolar H+-ATPase activity counters the ammonia-elicited alkalisation effect. However, even under conditions of vacuolar H+-ATPase inhibition, rice was still able to restore an ammonia-elicited pH increase. High vacuolar pH levels as found in maize under conditions of high NH3 influx may derive from inefficient cytosolic ammonia assimilation and tonoplast proton pumping. Thus, in maize, prolonged reduction of the proton gradient between the cytosol and the vacuole may play an important role in NH3 toxicity. Received: 12 September 1997 / Accepted: 19 January 1998  相似文献   

16.
Inorganic phosphate (Pi) uptake across the vacuolar membrane of intact vacuoles isolated from Catharanthus roseus suspension-cultured cells was measured. Under low Pi status, Pi uptake into the vacuole was strongly activated compared to high Pi status. Since Pi uptake across the vacuolar membrane is correlated with H+ pumping, we examined the dependency of H+ pumping on plant Pi status. Both H+ pumping and the activities of the vacuolar H+-pumps, the V-type H+-ATPase and the H+-PPase were enhanced under low Pi status. Despite this increase in H+ pumping, Western blot analysis showed no distinct increase in the amount of proton pump proteins. Possible mechanisms for the activation of Pi uptake into the vacuole under low Pi status are discussed. Miwa Ohnishi and Tetsuro Mimura contributed equally to this work.  相似文献   

17.
The kinetics of NH4 + and NO3 uptake in young Douglas fir trees (Pseudotsuga menziesii [Mirb.] Franco) were studied in solutions, containing either one or both N species. Using solutions containing a single N species, the Vmax of NH4 + uptake was higher than that of NO3 uptake. The Km of NH4 + uptake and Km of NO3 uptake differed not significantly. When both NH4 + and NO3 were present, the Vmax for NH4 + uptake became slightly higher, and the Km for NH4 + uptake remained in the same order. Under these conditions the NO3 uptake was almost totally inhibited over the whole range of concentrations used (10–1000 μM total N). This inhibition by NH4 + occurred during the first two hours after addition. ei]{gnA C}{fnBorstlap}  相似文献   

18.
Amiloride-sensitive, Na+-dependent, DIDS-insensitive cytoplasmic alkalinization is observed after hypertonic challenge in Ehrlich ascites tumor cells. This was assessed using the fluorescent pH-sensitive probe 2′,7′-bis-(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF). A parallel increase in the amiloride-sensitive unidirectional Na+ influx is also observed. This indicates that hypertonic challenge activates a Na+/H+ exchanger. Activation occurs after several types of hypertonic challenge, is a graded function of the osmotic challenge, and is temperature-dependent. Observations on single cells reveal a considerable variation in the shrinkage-induced changes in cellular pH i , but the overall picture confirms the results from cell suspensions. Shrinkage-induced alkalinization and recovery of cellular pH after an acid load, is strongly reduced in ATP-depleted cells. Furthermore, it is inhibited by chelerythrine and H-7, inhibitors of protein kinase C (PKC). In contrast, Calyculin A, an inhibitor of protein phosphatases PP1 and PP2A, stimulates shrinkage-induced alkalinization. Osmotic activation of the exchanger is unaffected by removal of calcium from the experimental medium, and by buffering of intracellular free calcium with BAPTA. At 25 mm HCO 3, but not in nominally HCO 3-free medium, Na+/H+ exchange contributes significantly to regulatory volume increase in Ehrlich cells. Under isotonic conditions, the Na+/H+ exchanger is activated by ionomycin, an effect which may be secondary to ionomycin-induced cell shrinkage. Received: 2 March 1995/Revised: 29 September 1995  相似文献   

19.
The presence of an electrogenic H+-ATPase has been described in the late distal tubule, a segment which contains intercalated cells. The present paper studies the electrogenicity of this transport mechanism, which has been demonstrated in turtle bladder and in cortical collecting duct. Transepithelial PD (V t ) was measured by means of Ling-Gerard microelectrodes in late distal tubule of rat renal cortex during in vivo microperfusion. The tubules were perfused with electrolyte solutions to which 2 × 10−7 m bafilomycin or 4.6 × 10−8 m concanamycin were added. No significant increase in lumen-negative V t upon perfusion with these inhibitors as compared to control, was observed as well as when 10−3 m amiloride, 10−5 m benzamil or 3 mm Ba2+ were perfused alone or in combination. The effect of an inhibition of electrogenic H+ secretion, i.e., increase in lumen-negative V t by 2–4 mV, was observed only when Cl channels were blocked by 10−5 m 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB). This blocker also reduced the rate of bicarbonate reabsorption in this segment from 1.21 ± 0.14 (n= 8) to 0.62 ± 0.03 (8) nmol.cm−2.sec−1 as determined by stationary microperfusion and pH measurement by ion-exchange resin microelectrodes. These results indicate that: (i) the participation of the vacuolar H+ ATPase in the establishment of cortical late distal tubule V t is minor in physiological conditions, but can be demonstrated after blocking Cl channels, thus suggesting a shunting effect of this anion; and, (ii) the rate of H+ secretion in this segment is reduced by a Cl channel blocker, supporting coupling of H+-ATPase with Cl transport. Received: 6 July 1996/Revised: 27 December 1996  相似文献   

20.
The Na+/HCO3 cotransporter is the main system that mediates bicarbonate removal out of the proximal tubule cell into the blood. We have previously partially purified this protein and showed that chemical modification of the α-amino groups by fluorescein isothiocyanate (FITC) inhibited the activity of the Na+/HCO3 cotransporter. The inhibition was prevented by the presence of Na and bicarbonate suggesting that this compound binds at or near the substrate transport sites of the cotransporter. We examined the effect of agents that modify the sulfhydryl group (dithiothreitol), carboxyl groups (n-n′dicyclohexyl carbodiimide) and tyrosine residues (p-nitrobenzene sulfonyl fluoride, n-acetyl imidazole and tetranitromethane) on the activity of the cotransporter to gain insight into the chemical residues which may be important for transport function. The sulfhydryl residues modifier, carboxyl group modifier, and tyrosine modifier significantly inhibited bicarbonate dependent 22Na uptake in basolateral membranes by 50–70% without altering the 22Na uptake in the presence of gluconate indicating that these agents directly affected the cotransporter without affecting diffusive sodium uptake. The effect of the tyrosine modifier n-acetylimidazole was not prevented by the presence of Na and bicarbonate suggesting that the tyrosine residues are not at the substrate binding sites. To determine the presence and role of glycosylation on the Na+/HCO3 cotransporter protein, we examined the effects of different glycosidases (endoglycosidase F and H, N-glycosidase F, O-glycanase) on the cotransporter activity. All glycosidases caused a significant 50–80% inhibition of cotransporter activity. These data demonstrate that N-glycosylation as well as O-glycosylation are important for the function of the Na+/HCO3 cotransporter protein. Taken together, these results suggest that chemical modifiers of tyrosine, carboxyl and sulfhydryl groups as well as glycosylation are important for expression of full functional activity of the cotransporter. Received: 8 October 1996/Revised: 23 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号