首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparisons of known primary structures of polygalacturonases show that extent and localization of potential N-glycosylation sites differ. Some sites are similar in position and adjacent to strictly conserved residues at the potential active site. The presence of N-acetylglucosamine and mannose in the molecules of two homogeneous, major Aspergillus sp. polygalacturonase forms was confirmed by IR spectroscopy. The purification method, based on interaction of the carbohydrate part with concanavalin A immobilized on chlorotriazine bead cellulose, was optimized. Deglycosylation with N-glycosidase F under denaturating and nondenaturating conditions led to molecular mass decreases followed by complete inactivation of the polygalacturonase enzyme activity. These results show the importance of glycosylation in these protein forms, while the comparative patterns establish both variability and some similarities in overall glycosylation architectures.  相似文献   

2.
The primary sequence of the esterase 6 (EST6) enzyme ofDrosophila melanogaster contains four potential N-linked glycosylation sites, at residues 21, 399, 435, and 485. Here we determine the extent to which EST6 is glycosylated and how the glycosylation affects the biochemistry and physiology of the enzyme. We have abolished each of the four potential glycosylation sites by replacing the required Asn residues with Gln byin vitro mutagenesis. Five mutant genes were made, four containing mutations of each site individually and the fifth site containing all four mutations. Germline transformation was used to introduce the mutant genes into a strain ofD. melanogaster null for EST6. Electrophoretic and Western blot comparisons of the mutant strains and wild-type controls showed that each of the four potential N-linked glycosylation sites in the wild-type protein is glycosylated. However, the fourth site is not utilized on all EST6 molecules, resulting in two molecular forms of the enzyme. Digestion with specific endoglycosidases showed that the glycan attached at the second site is of the high-mannose type, while the other three sites carry more complex oligosaccharides. The thermostability of the enzyme is not affected by abolition of the first, third, or fourth glycosylation sites but is reduced by abolition of the second site. Anomalously, abolition of all four sites together does not reduce thermostability. Quantitative comparisons of EST6 activities showed that abolition of glycosylation does not affect the secretion of the enzyme into the male sperm ejaculatory duct, its transfer to the female vagina during mating, or its subsequent translocation into her hemolymph. However, the activity of the mutant enzymes does not persist in the female's hemolymph for as long as wild-type esterase 6. The latter effect may compromise the role of the transferred enzyme in stimulating egg-laying and delaying receptivity to remating.  相似文献   

3.
A polygalacturonase inhibitor glycoprotein with an apparent molecular mass of 43 kD was purified from pear (Pyrus communis L. cv Bartlett) fruit. Chemical deglycosylation of this protein decreased the molecular mass to 34 kD. Gas chromatographic analysis suggests that N-linked glycosylation accounts for the majority of sugar moieties. Partial amino acid sequence analysis of the purified polygalacturonase inhibitor protein provided information used to amplify a corresponding cDNA by polymerase chain reactions. Multiple cloned products of these reactions were sequenced and the same open reading frame was identified in all of the products. It encodes a 36.5-kD polypeptide containing the amino acid sequences determined by protein sequencing and predicts a putative signal sequence of 24 amino acids and seven potential N-glycosylation sites. The expression of polygalacturonase inhibitor is regulated in a tissue-specific manner. Activity and mRNA level were much higher in fruit than in flowers or leaves.  相似文献   

4.
Nine forms ofAspergillus sp. polygalacturonase were purified from a commercial preparation of pectinase Rohament P using chromatographies and chromatofocusing. Individual forms differ in isoelectric point, and at least five differ in structure; whereas molecular masses and enzymatic properties are largely identical. Four forms with freea-amino groups have identical start positions but internal amino acid replacements. Therefore, the multiplicity is derived from true heterogeneities and not from N-terminal truncations. Peptide analysis of the major polygalacturonase reveals large variations toward the enzyme from otherAspergillus species (72–75% residue differences, depending on species) but additional similarities with the enzyme from bacterial and plant sources (only 66–71% residue differences toward theErwinia, tomato, and peach enzymes). Combined with previous data, these facts show polygalacturonase to exhibit extensive multiplicity and much variability, but also unexpected similarities between distantly related forms with conserved functional properties  相似文献   

5.
A polygalacturonase gene of Aspergillus awamori IFO 4033 was cloned by genomic Southern hybridization with a probe of a DNA fragment synthesized by PCR. This was done using primers constructed based on the N-terminal amino acid sequence of a polygalacturonase, protopectinase-AS, produced by the strain and the consensus internal amino acid sequence of fungal polygalacturonases. The cloned polygalacturonase gene, containing an ORF, encodes 362 amino acids, including a 52-bp intron. It contains the consensus nucleotide sequence of PacC binding sites, and its expression was appeared to be regulated by ambient pH. After the intron was excised, the cloned gene was inserted into an expression plasmid for yeast, pMA91, and introduced into Saccharomyces cerevisiae to be expressed. The expressed gene product was purified to a homogeneous preparation, and this confirmed that the polygalacturonase produced was the product of the cloned gene.  相似文献   

6.
Asparagine‐linked glycosylation is a common post‐translational modification of proteins catalyzed by oligosaccharyltransferase that is important in regulating many aspects of protein function. Analysis of protein glycosylation, including glycoproteomic measurement of the site‐specific extent of glycosylation, remains challenging. Here, we developed methods combining enzymatic deglycosylation and protease digestion with SWATH‐MS to enable automated measurement of site‐specific occupancy at many glycosylation sites. Deglycosylation with peptide‐endoglycosidase H, leaving a remnant N‐acetylglucosamine on asparagines previously carrying high‐mannose glycans, followed by trypsin digestion allowed robust automated measurement of occupancy at many sites. Combining deglycosylation with the more general peptide‐N‐glycosidase F enzyme with AspN protease digest allowed robust automated differentiation of nonglycosylated and deglycosylated forms of a given glycosylation site. Ratiometric analysis of deglycosylated peptides and the total intensities of all peptides from the corresponding proteins allowed relative quantification of site‐specific glycosylation occupancy between yeast strains with various isoforms of oligosaccharyltransferase. This approach also allowed robust measurement of glycosylation sites in human salivary glycoproteins. This method for automated relative quantification of site‐specific glycosylation occupancy will be a useful tool for research with model systems and clinical samples.  相似文献   

7.
The oligosaccharide structures of the structural subunit HtH1 of Haliotis tuberculata hemocyanin (HtH) were studied by mass spectral sequence analysis of the glycans. The proposed structures are based on MALDI-TOF-MS data before and after treatment with the specific exoglycosidases β1-3,4,6-galactosidase and α1-6(>2,3,4) fucosidase followed by sequence analysis via electrospray ionization MS/MS-spectra. In total, 15 glycans were identified as a highly heterogeneous group of structures. As in most molluscan hemocyanins, the glycans of HtH1 contain a terminal MeHex, but more interestingly, a novel structural motif was observed: MeHex[Fuc(α1-3)-]GlcNAc, including thus MeHex and (α1-3)-Fuc residues being linked to an internal GlcNAc residue. While the functional unit (FU) c (HtH1-c) is completely lacking any potential glycosylation site, FU-h possesses a second exposed sugar attachment site between beta-strands 8 and 9 within the beta sandwich domain compared to the other FUs. The glycosylation pattern/sites show a high degree of conservation. In FU-h two prominent potential glycosylation sites can be detected. The finding that HtH1 is not able to form multidecameric structures in vivo could be explained by the presence of the exposed glycan on the surface of FU-h.  相似文献   

8.
N‐glycosylation is critical for recombinant glycoprotein production as it influences the heterogeneity of products and affects their biological function. In most eukaryotes, the oligosaccharyltransferase is the central‐protein complex facilitating the N‐glycosylation of proteins in the lumen of the endoplasmic reticulum (ER). Not all potential N‐glycosylation sites are recognized in vivo and the site occupancy can vary in different expression systems, resulting in underglycosylation of recombinant glycoproteins. To overcome this limitation in plants, we expressed LmSTT3D, a single‐subunit oligosaccharyltransferase from the protozoan Leishmania major transiently in Nicotiana benthamiana, a well‐established production platform for recombinant proteins. A fluorescent protein‐tagged LmSTT3D variant was predominately found in the ER and co‐located with plant oligosaccharyltransferase subunits. Co‐expression of LmSTT3D with immunoglobulins and other recombinant human glycoproteins resulted in a substantially increased N‐glycosylation site occupancy on all N‐glycosylation sites except those that were already more than 90% occupied. Our results show that the heterologous expression of LmSTT3D is a versatile tool to increase N‐glycosylation efficiency in plants.  相似文献   

9.
Pectin methylesterase (PME) is one of a number of enzymes released by the fungus Aspergillus niger that are involved in the degradation of specific plant cell-wall structures. PME is a glycoprotein with three potential sites for N-linked glycosylation. The glycosylation may affect the hydrolytic activity or the substrate specificity of PME. In this work, we investigate first the structures and the attachment sites of the glycans present on recombinant wild-type PME. Further, a series of PME mutants was created in which the three potential N-linked glycosylation sites were eliminated in all possible combinations. The glycosylation of the mutants and their activities were then studied. Mass spectrometric techniques tailored for carbohydrate analysis were applied to both characterize the glycan structures and to determine the specific sites of attachment. High mannose structures with variable numbers of mannose were found on the wild-type, as well as the mutant forms. Studies using the mutants suggest that glycosylation does not strongly influence the activity. Whether it may affect the substrate specify of the enzyme is unknown, and that aspect will be explored in future work.  相似文献   

10.
The a subunit of the V0 membrane‐integrated sector of human V‐ATPase has four isoforms, a1a4, with diverse and crucial functions in health and disease. They are encoded by four conserved paralogous genes, and their vertebrate orthologs have positionally conserved N‐glycosylation sequons within the second extracellular loop, EL2, of the a subunit membrane domain. Previously, we have shown directly that the predicted sequon for the a4 isoform is indeed N‐glycosylated. Here we extend our investigation to the other isoforms by transiently transfecting HEK 293 cells to express cDNA constructs of epitope‐tagged human a1a3 subunits, with or without mutations that convert Asn to Gln at putative N‐glycosylation sites. Expression and N‐glycosylation were characterized by immunoblotting and mobility shifts after enzymatic deglycosylation, and intracellular localization was determined using immunofluorescence microscopy. All unglycosylated mutants, where predicted N‐glycosylation sites had been eliminated by sequon mutagenesis, showed increased relative mobility on immunoblots, identical to what was seen for wild‐type a subunits after enzymatic deglycosylation. Cycloheximide‐chase experiments showed that unglycosylated subunits were turned over at a higher rate than N‐glycosylated forms by degradation in the proteasomal pathway. Immunofluorescence colocalization analysis showed that unglycosylated a subunits were retained in the ER, and co‐immunoprecipitation studies showed that they were unable to associate with the V‐ATPase assembly chaperone, VMA21. Taken together with our previous a4 subunit studies, these observations show that N‐glycosylation is crucial in all four human V‐ATPase a subunit isoforms for protein stability and ultimately for functional incorporation into V‐ATPase complexes.  相似文献   

11.
The composition of pectin hydrolase complexes produced by variousAspergillus alliaceus strains was studied under the conditions of induction, catabolite repression, or constitutive synthesis. The strains were found similar in terms of the polygalacturonase spectrum and different with regard to the levels of endo- and exoenzyme activities. The analysis of the zymograms of inducible polygalacturonases revealed that all tested cultures contained at least 24 molecular forms of polygalacturonase. Taking into account only the three molecular forms typical of all analyzed strains ofA. alliaceus with pI values of 5.7, 5.9, and 6.3, one can use the spectrum of constitutive, catabolite repression-resistant polygalacturonases as an additional taxonomic species criterion.  相似文献   

12.
Although mycoplasmas have a paucity of glycosyltransferases and nucleotidyltransferases recognizable by bioinformatics, these bacteria are known to produce polysaccharides and glycolipids. We show here that mycoplasmas also produce glycoproteins and hence have glycomes more complex than previously realized. Proteins from several species of Mycoplasma reacted with a glycoprotein stain, and the murine pathogen Mycoplasma arthritidis was chosen for further study. The presence of M. arthritidis glycoproteins was confirmed by high‐resolution mass spectrometry. O‐linked glycosylation was clearly identified at both serine and threonine residues. No consensus amino acid sequence was evident for the glycosylation sites of the glycoproteins. A single hexose was identified as the O‐linked modification, and glucose was inferred by 13C‐labelling to be the hexose at several of the glycosylation sites. This is the first study to conclusively identify sites of protein glycosylation in any of the mollicutes.  相似文献   

13.
Conformational dynamics of human T-helper cell receptor protein CD4 has been studied with the help of monoclonal antibody (mAb) T6. The mAb T6 discriminates between s- and m-forms of CD4 and recognizes a specific conformation of the soluble (s) form of CD4 including the first nine amino acids of CD4 transmembrane sequence. However, change of tryptophan for serine in position 2 in this sequence destabilizes the T6-type conformation. By enzymatic deglycosylation and deletions of glycosylation sites, we show that T6-type conformation depends on glycosylation in both sites (Asn271 and Asn300). We show also that the sugars are not involved in direct binding to the antibody but stabilize the D3/D4 local conformation. Deglycosylated forms of sCD4 in vivo acquire a specific conformation similar to the wild type sCD4, which however cannot be restored after denaturation/renaturation under conditions of non-reducing Western blot. This observation indicates that the correct protein folding needs chaperone assistance and cannot be achieved in vitro. Completely non-glycosylated sCD4 is synthesized and secreted into the growth medium. In the medium, this mutant appears to be unstable and aggregates during time. In a contrast to soluble CD4, mutations in glycosylation sites abrogate expression of membrane CD4, thus demonstrating a different secretion pathways for soluble and membrane proteins. Published in Russian in Biokhimiya, 2009, Vol. 74, No. 2, pp. 238–246.  相似文献   

14.
All mammalian α-1,3-fucosyltransferases (Fuc-Ts) so far characterized have potential N-glycosylation sites, but the role of these sites in enzymatic activity or localization has not been investigated. When one member of this family, rFuc-TIV, is expressed in bacteria, the unglycosylated form of rFuc-TIV has no detectable enzymatic activity. The two potential N-glycosylation sites of rFuc-TIV were mutated to determine site occupancy and the effect of site occupancy on enzyme activity and targeting of this enzyme. Results obtained with singly mutated forms of rFuc-TIV indicate that both sites are occupied in mammalian cells. Lack of glycosylation at sites 117–119, 218–220, or both of these sites, decreased enzyme activity to approximately 64%, 5% or 1%, respectively, of that seen in the unmutated enzyme. These results show that N-glycosylation is necessary for optimal enzyme activity, with glycosylation at site 218–220 playing the major role. However, N-glycosylation does not appear to affect the major intracellular location of the enzyme, as immunocytochemistry reveals the same perinuclear pattern of staining for the unglycosylated mutants as is seen for the wild-type rFuc-TIV in transfected cells.  相似文献   

15.
The role of N-linked glycosylation in protein maturation and transport has been studied by using the simian virus 5 hemagglutinin-neuraminidase (HN) protein, a model class II integral membrane glycoprotein. The sites of N-linked glycosylation on HN were identified by eliminating each of the potential sites for N-linked glycosylation by oligonucleotide-directed mutagenesis on a cDNA clone. Expression of the mutant HN proteins in eucaryotic cells indicated that four sites are used in the HN glycoprotein for the addition of N-linked oligosaccharide chains. These functional glycosylation sites were systematically eliminated in various combinations from HN to form a panel of mutants in which the roles of individual carbohydrate chains and groups of carbohydrate chains could be analyzed. Alterations in the normal glycosylation pattern resulted in the impairment of HN protein folding and assembly which, in turn, affected the intracellular transport of HN. The severity of the consequences on HN maturation depended on both the number of deleted carbohydrate sites and their position in the HN molecule. Analysis of the reactivity pattern of HN conformation-specific monoclonal antibodies with the mutant HN proteins indicated that one specific carbohydrate chain plays a major role in promoting the correct folding of HN. Another carbohydrate chain, which is not essential for the initial folding of HN was found to play a role in preventing the aggregation of HN oligomers. The HN molecules which were misfolded, owing to their altered glycosylation pattern, were retained in the endoplasmic reticulum. Double-label immunofluorescence experiments indicate that misfolded HN and folded HN are segregated in the same cell. Misfolded HN forms disulfide-linked aggregates and is stably associated with the resident endoplasmic reticulum protein, GRP78-BiP, whereas wild-type HN forms a specific and transient complex with GRP78-BiP during its folding process.  相似文献   

16.
Reversible glycosylated polypeptides (RGPs) are highly conserved plant-specific proteins, which can perform self-glycosylation. These proteins have been shown essential in plants yet its precise function remains unknown. In order to understand the function of this self-glycosylating polypeptide, it is important to establish what factors are involved in the regulation of the RGP activity. Here we show that incubation at high ionic strength produced a high self-glycosylation level and a high glycosylation reversibility of RGP from Solanum tuberosum L. In contrast, incubation at low ionic strength led to a low level of glycosylation and a low glycosylation reversibility of RGP. The incubation at low ionic strength favored the formation of high molecular weight RGP-containing forms, whereas incubation at high ionic strength produced active RGP with a molecular weight similar to the one expected for the monomer. Our data also showed that glycosylation of RGP, in its monomeric form, was highly reversible, whereas, a low reversibility of the protein glycosylation was observed when RGP was part of high molecular weight structures. In addition, glycosylation of RGP increased the occurrence of non-monomeric RGP-containing forms, suggesting that glycosylation may favor multimer formation. Finally, our results indicated that RGP from Arabidopsis thaliana and Pisum sativum are associated to golgi membranes, as part of protein complexes. A model for the regulation of the RGP activity and its binding to golgi membranes based on the glycosylation of the protein is proposed where the sugars linked to oligomeric form of RGP in the golgi may be transferred to acceptors involved in polysaccharide biosynthesis.  相似文献   

17.
Summary The production of multiple forms of extracellular polygalacturonase by Aspergillus niger is directly dependent on the pH of maintenance media. The pH of cultivation medium as well as the carbon-source are only secondary factors with limited influence on this production.  相似文献   

18.
The presence of potential N-linked glycosylation sites (Asn-X-Ser/Thr) in two forms of UDP glucuronosyltransferase, designated UDPGTr-2 and UDPGTr-4, has been deduced from cDNA sequence data. These forms were glycosylated when synthesized from expression vectors transfected into COS cells and were converted to faster migrating species on SDS polyacrylamide gels when treated with endoglycosidase H. The role of glycosylation was investigated by determining the substrate specificities and stabilities of the glycosylated enzymes and their unglycosylated variants which were synthesized in the presence of tunicamycin. Analysis of the activities towards 13 different aglycones showed that the glycosyl moiety was not essential for catalytic activity and had no effect on the substrate preference of each form. The stabilities of the proteins were not adversely affected by the absence of this posttranslational modification. A possible effect of N-linked oligosaccharides on the catalytic properties of these two forms of UDP glucuronosyltransferase is discussed.  相似文献   

19.
Distyly is a plant breeding system in which two self-incompatible, but cross-compatible, floral morphs occur within populations. The morphs differ in having a reciprocal arrangement of styles and anthers. Little or nothing is known of the proteins involved in self-incompatibility for any distylous species. Here we show that a 35 kDa putative polygalacturonase is specific to the transmitting tissue of short-styled plants of five species in series Turnera. The polygalacturonase was not detected in styles of long-styled plants, or in styles of five homostylous self-compatible species in this series of the genus. It is also absent from two X-ray generated mutants and a spontaneous somatic homostylous mutant that arose on a short-styled plant and whose style does possess this polygalacturonase. Three more distantly related species in the Turneraceae were investigated. Turnera weddelliana (series Salicifoliae) does possess the polygalacturonase; however, T. diffusa (series Microphyllae), and Piriqueta caroliniana, showed no evidence of possessing this polygalacturonase using immunocytochemistry. Polygalacturonase assays revealed activity in styles of long- and short-styled plants, but showed no activity of the 35 kDa style polygalacturonase. The distribution of pectins in styles and pollen tubes revealed no difference between the long- and short-styled morphs. Methyl-esterified pectins occur throughout the style tissues, except in the transmitting tissue. The transmitting tissue possesses unesterified pectins that could provide a substrate for polygalacturonase activity. We propose that the style polygalacturonase might act in a complementary manner, allowing pollen of long-styled plants to grow through short styles or, alternatively, oligogalacturonide products of polygalacturonase activity might play a role in signalling compatible responses.  相似文献   

20.
Tie JK  Zheng MY  Pope RM  Straight DL  Stafford DW 《Biochemistry》2006,45(49):14755-14763
The vitamin K-dependent carboxylase is an integral membrane protein which is required for the post-translational modification of a variety of vitamin K-dependent proteins. Previous studies have suggested carboxylase is a glycoprotein with N-linked glycosylation sites. In this study, we identify the N-glycosylation sites of carboxylase by mass spectrometric peptide mapping analyses combined with site-directed mutagenesis. Our mass spectrometric results show that the N-linked glycosylation in carboxylase occurs at positions N459, N550, N605, and N627. Eliminating these glycosylation sites by changing asparagine to glutamine caused the mutant carboxylase to migrate faster on SDS-PAGE gels, adding further evidence that these sites are glycosylated. In addition, the mutation studies identified N525, a site that cannot be recovered by mass spectroscopy analysis, as a glycosylation site. Furthermore, the potential glycosylation site at N570 is glycosylated only if all five natural glycosylation sites are simultaneously mutated. Removal of the oligosaccharides by glycosidase from wild-type carboxylase or by elimination of the functional glycosylation sites by site-directed mutagenesis did not affect either the carboxylation or epoxidation activity when the small FLEEL pentapeptide was used as a substrate, suggesting that N-linked glycosylation is not required for the enzymatic function of carboxylase. In contrast, when site N570 and the five natural glycosylation sites were mutated simultaneously, the resulting carboxylase protein was degraded. Our results suggest that N-linked glycosylation is not essential for carboxylase enzymatic activity but is important for protein folding and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号