首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 402 毫秒
1.
Exposure to a period of microgravity or bed rest produces several physiological adaptations. These changes, which include an increased incidence of orthostatic intolerance, have an impact when people return to a 1G environment or resume an upright posture. Compared with males, females appear more susceptible to orthostatic intolerance after exposure to real or simulated microgravity. Decreased arterial baroreflex compensation may contribute to orthostatic intolerance. We hypothesized that female rats would exhibit a greater reduction in arterial baroreflex function after hindlimb unloading (HU) compared with male rats. Mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were recorded in conscious animals after 13-15 days of HU. Baseline HR was elevated in female rats, and HU increased HR in both genders. Consistent with previous results in males, baroreflex-mediated activation of RSNA was blunted by HU in both genders. Maximum RSNA in response to decreases in MAP was reduced by HU (male control 513 +/- 42%, n = 11; male HU 346 +/- 38%, n = 13; female control 359 +/- 44%, n = 10; female HU 260 +/- 43%, n = 10). Maximum baroreflex increase in RSNA was lower in females compared with males in both control and HU rats. Both female gender and HU attenuated baroreflex-mediated increases in sympathetic activity. The combined effects of HU and gender resulted in reduced baroreflex sympathetic reserve in females compared with males and could contribute to the greater incidence of orthostatic intolerance in females after exposure to spaceflight or bed rest.  相似文献   

2.
The antidepressant desipramine (DMI) is a selective inhibitor of norepinephrine (NE) transport that down-regulates the norepinephrine transporter (NET) protein in a concentration- and time-dependent manner in vitro. In this study, possible regulatory effects of DMI on NET mRNA and protein levels were investigated with the NET-expressing SK-N-BE(2)M17 cell line and rat brain tissue. Northern blot analysis showed that incubation of the cultured cells with DMI (5-500 nm) for 3 days reduced levels of NET mRNA in both its 5.8-kb (by up to 58%) and 3.6-kb forms (to 68%), whereas incubation for 14 days increased both levels (to 40% and 100%) in a concentration-dependent manner. In contrast, NET protein levels decreased after 3-14 days of exposure of the cells to DMI, as determined by western blotting. The in vitro findings were supported by in vivo treatment of rats with DMI. Thus, in situ hybridization demonstrated initially decreased, and later increased, NET mRNA levels in locus coeruleus (LC) tissue of rats treated with DMI; whereas NET protein levels in the LC were reduced after 14 days, but unchanged after three daily DMI treatments. Thus, DMI had similar effects on NET expression in vitro and in vivo, with opposite changes in NET mRNA and protein levels, suggesting that the regulatory mechanisms involved are complex and non-congruent.  相似文献   

3.
Selegiline is a centrally acting sympatholytic agent with neuroprotective properties. It also has been shown to promote sympathetic reinnervation after sympathectomy. These actions of selegiline may be beneficial in heart failure that is characterized by increased sympathetic nervous activity and functional sympathetic denervation. Twenty-seven rabbits with rapid cardiac pacing (360 beats/min, 8 wk) and twenty-three rabbits without pacing were randomly assigned to receive selegiline (1 mg/day, 8 wk) or placebo. Rapid pacing increased plasma norepinephrine (NE) and decreased left ventricular fractional shortening, baroreflex sensitivity, cardiac sympathetic nerve terminal profiles, cardiac NE uptake activity, and myocardial beta-adrenoceptor density. Selegiline administration to animals with rapid ventricular pacing attenuated the increase in plasma NE and decreases in fractional shortening, baroreflex sensitivity, sympathetic nerve profiles, NE uptake activity and beta-adrenoceptor density. Thus selegiline appears to exert a sympatholytic and cardiac neuroprotective effect in pacing-induced cardiomyopathy. The effects are potentially beneficial because selegiline not only improves cardiac function but also increases baroreflex sensitivity in heart failure.  相似文献   

4.
Changes in bone remodeling induced by pharmacological and genetic manipulation of β-adrenergic receptor (βAR) signaling in osteoblasts support a role of sympathetic nerves in the regulation of bone remodeling. However, the contribution of endogenous sympathetic outflow and nerve-derived norepinephrine (NE) to bone remodeling under pathophysiological conditions remains unclear. We show here that differentiated osteoblasts, like neurons, express the norepinephrine transporter (NET), exhibit specific NE uptake activity via NET and can catabolize, but not generate, NE. Pharmacological blockade of NE transport by reboxetine induced bone loss in WT mice. Similarly, lack of NE reuptake in norepinephrine transporter (Net)-deficient mice led to reduced bone formation and increased bone resorption, resulting in suboptimal peak bone mass and mechanical properties associated with low sympathetic outflow and high plasma NE levels. Last, daily sympathetic activation induced by mild chronic stress was unable to induce bone loss, unless NET activity was blocked. These findings indicate that the control of endogenous NE release and reuptake by presynaptic neurons and osteoblasts is an important component of the complex homeostatic machinery by which the sympathetic nervous system controls bone remodeling. These findings also suggest that drugs antagonizing NET activity, used for the treatment of hyperactivity disorders, may have deleterious effects on bone accrual.  相似文献   

5.
The present study evaluated the possible changes in the autonomic control of heart rate in the hypertensive model induced by the inhibition of nitric oxide synthase. Rats were treated with N(G)-nitro-L-arginine methyl ester (L-NAME group) in the drinking water during 7 days, whereas control groups were treated with tap water (control group) or with the N(G)-nitro-D-arginine methyl ester (D-NAME group), an inactive isomer of the L-NAME molecule. The L-NAME group developed hypertension and tachycardia. The sequential blockade of the autonomic influences with propranolol and methylatropine indicated that the intrinsic heart rate did not differ among groups and revealed a sympathetic overactivity in the control of heart rate in the L-NAME group. The spectral density power of heart rate, calculated using fast-Fourier transformation, indicated a reduced variability in the low-frequency band (0.20-0.60 Hz) for the L-NAME group. The baroreflex sensitivity was also attenuated in these animals when compared with the normotensive control or D-NAME group. Overall, these data indicate cardiac sympathetic overactivity associated with a decreased baroreflex sensitivity in L-NAME hypertensive rats.  相似文献   

6.
Aging is associated with altered autonomic control of cardiovascular function, but baroreflex function in animal models of aging remains controversial. In this study, pressor and depressor agent-induced reflex bradycardia and tachycardia were attenuated in conscious old (24 mo) rats [57 and 59% of responses in young (10 wk) Wistar rats, respectively]. The intrinsic heart rate (HR, 339 +/- 5 vs. 410 +/- 10 beats/min) was reduced in aged animals, but no intergroup differences in resting mean arterial blood pressure (MAP, 112 +/- 3 vs. 113 +/- 5 mmHg) or HR (344 +/- 9 vs. 347 +/- 9 beats/min) existed between old and young rats, respectively. The aged group also exhibited a depressed (49%) parasympathetic contribution to the resting HR value (vagal effect) but preserved sympathetic function after intravenous methylatropine and propranolol. An implantable electrode revealed tonic renal sympathetic nerve activity (RSNA) was similar between groups. However, old rats showed impaired baroreflex control of HR and RSNA after intravenous nitroprusside (-0.63 +/- 0. 18 vs. -1.84 +/- 0.4 bars x cycle(-1) x mmHg(-1) x s(-1)). Therefore, aging in rats is associated with 1) preserved baseline MAP, HR, and RSNA, 2) impaired baroreflex control of HR and RSNA, and 3) altered autonomic control of resting HR.  相似文献   

7.
The modulation of cardiovascular sympathetic responses by neuropeptide Y (NPY) and peptide YY (PYY) was assessed in vivo, in pithed rats. Both peptides (0.02-2 nmol/kg) caused similar dose-dependent pressor responses, resistant to adrenergic blockade but antagonized by the calcium channel blocker, nifedipine. Only NPY, at the lowest dose, slightly accelerated heart rate (by 10 +/- 4 beats/min). At the pressor dose (0.6 nmol/kg) but not subpressor dose (0.2 nmol/kg), the increase in blood pressure induced by stimulation of the sympathetic outflow (ST: 0.3 Hz, 50 V, 1 min) was attenuated by PYY (by 40%), whereas ST-evoked tachycardia was reduced by NPY (by 35%). Neither NPY- nor PYY-pretreatment affected ST-induced increments in plasma norepinephrine (NE) and epinephrine concentrations. In addition, regional hemodynamic effects of NPY were studied in conscious rats instrumented with Doppler flow probes. The hypertension caused by NPY was attended by reflex bradycardia and marked rise in peripheral vascular resistance in renal (+ 233 +/- 59%), superior mesenteric (+ 183 +/- 65%) and hindquarter (+ 65 +/- 10%) circulation. The pattern of hemodynamic responses of NPY was similar to that of NE but, unlike the latter, persisted after adrenergic blockade.  相似文献   

8.
Data in humans indicate that individuals with orthostatic hypotension that are refractory to other traditional forms of therapy are responsive to selective serotonin reuptake inhibitor (SSRI) treatment. We tested the hypothesis that SSRI administration would help correct the attenuated baroreflex control of sympathetic nervous system activity in the hindlimb-unloaded (HU) rat model of cardiovascular deconditioning. An initial study was conducted to determine the time course of effects of fluoxetine (Flu) administration on baroreflex control of lumbar sympathetic nerve activity (LSNA) in conscious, chronically instrumented rats. Animals received either vehicle (Veh, sterile water) or 10 mg/kg Flu for 1, 4, or 16 days of treatment. Data indicate that while 1-day and 16-day Flu administration did not affect baroreflex function, baroreflex control of LSNA was enhanced after 4-day (short term) Flu administration. HU rats were then treated with Flu for 4 days and compared with HU rats receiving Veh and to casted control rats maintained in the normal posture that received either Veh or short-term Flu treatment. Similar to pilot data, short-term Flu treatment enhanced baroreflex control of LSNA in both HU rats and control rats. These data taken together indicate that baroreflex control of sympathetic nervous system activity is a possible mechanism responsible for the successful treatment of orthostatic intolerance with Flu.  相似文献   

9.
10.
The cardiovascular actions of centrally administered neuropeptide Y   总被引:1,自引:1,他引:0  
The cardiovascular actions of intracerebroventricular (i.c.v.) administration of neuropeptide Y (NPY) were examined in conscious, unrestrained rats. A prolonged decrease in heart rate (HR) and a fall in mean arterial pressure (MAP) were obtained following i.c.v. administration of NPY (1 and 10 micrograms). Passive immunization with an antiserum directed against NPY confirmed that the slowing of HR following i.c.v. administration of NPY was mediated via a central nervous mechanism and not from leakage of NPY out of the brain. Administration of NPY into different brain parenchymal regions identified a putative site of action in the rostral region of the solitary tract. The mechanism of the decrease in HR caused by centrally administered NPY was investigated by i.c.v. administration of NPY to animals that were pretreated with agents that altered autonomic tone. Administration of NPY to atropine-treated animals produced a reversal of the atropine-induced tachycardia, suggesting that the NPY-induced decrease in HR was not due to augmented vagal tone. However, administration of NPY to animals pretreated with propranolol did not significantly lower HR below that obtained with propranolol alone. These data suggest that i.c.v. administration of NPY may cause a decrease in cardiac sympathetic outflow. The effects of centrally administered NPY on baroreflex function were studied. The changes in HR caused by NPY did not significantly alter baroreflex set-point or gain. These studies provide evidence that NPY acted within a brainstem region to decrease sympathetic nervous outflow, resulting in a decrease in HR and MAP.  相似文献   

11.
The effect of thyroid status on arterial baroreflex function and autonomic contributions to resting blood pressure and heart rate (HR) were evaluated in conscious rats. Rats were rendered hyperthyroid (Hyper) or hypothyroid (Hypo) with triiodothyronine and propylthiouracil treatments, respectively. Euthyroid (Eut), Hyper, and Hypo rats were chronically instrumented to measure mean arterial pressure (MAP), HR, and lumbar sympathetic nerve activity (LSNA). Baroreflex function was evaluated with the use of a logistic function that relates LSNA or HR to MAP during infusion of phenylephrine and sodium nitroprusside. Contributions of the autonomic nervous system to resting MAP and HR were assessed by blocking autonomic outflow with trimethaphan. In Hypo rats, the arterial baroreflex curve for both LSNA and HR was shifted downward. Hypo animals exhibited blunted sympathoexcitatory and tachycardic responses to decreases in MAP. Furthermore, the data suggest that in Hypo rats, the sympathetic influence on HR was predominant and the autonomic contribution to resting MAP was greater than in Eut rats. In Hyper rats, arterial baroreflex function generally was similar to that in Eut rats. The autonomic contribution to resting MAP was not different between Hyper and Eut rats, but predominant parasympathetic influence on HR was exhibited in Hyper rats. The results demonstrate baroreflex control of LSNA and HR is attenuated in Hypo but not Hyper rats. Thyroid status alters the balance of sympathetic to parasympathetic tone in the heart, and the Hypo state increases the autonomic contributions to resting blood pressure.  相似文献   

12.
Transgenic hypertensive TGR(mREN2)27 rats (TGR) exhibit an inverse circadian blood pressure profile from the age of 8 to 9 wk. To investigate the role of the sympathetic nervous system in this pathological blood pressure rhythm, we examined postnatal changes in catecholamine concentration, expression of tyrosine-hydroxylase (TH), and norepinephrine (NE) reuptake1-transporter (NET) in the heart, adrenal glands, and hypothalamus of non-hypertensive TGR at an age of 4 wk and of hypertensive TGR at an age of 10 wk and compared these to normotensive, age-matched Sprague-Dawley rats. Rats were kept under synchronized light:dark (LD) conditions of 12:12 h. Blood pressure and heart rate were monitored by radiotelemetry, catecholamines by high performance liquid chromatography, expression of TH and NET (mRNA) by RT-PCR, and TH protein by Western blots. In normotensive 4 wk-old Sprague-Dawley rats, cardiac NE concentrations were circadian phase-dependent with lower values at ZT12.5, with no differences observed, in 10-wk-old animals. At both ages however, sympathetic tone was higher during the dark phase, as shown by a higher turnover of NE. This observation confirms earlier data, which indicate that the endogenous amine concentration may not mirror its turnover rate. TGR at either age had lower cardiac NE as well as lower TH expression and did not display a circadian phase-dependency. The increased cardiac NE turnover rate in the dark phase in non-hypertensive TGR was lost in hypertensive rats. Both cardiac NE concentrations and TH expression decreased with age in both strains. In adrenal glands, NE and epinephrine (E) were not circadian phase-dependent in both strains but increased with age. NE concentrations in the hypothalamus were neither circadian phase-dependent nor different in both strains and at both ages. However, sympathetic tone of NE in the hypothalamus, as indicated by the turnover rate, was greater during the dark phase in both strains at an age of 10 wk. Expression of TH and NET were greatly reduced in adrenal glands when compared to Sprague-Dawley rats; whereas, expression of TH in the hypothalamus was significantly increased in hypertensive TGR. These data indicate that the transgene in TGR leads to an increased central stimulation of the sympathetic nervous system and to a consecutive down-regulation in the peripheral organs. It is of interest that rhythmicity in the studied parameters was lost in hypertensive TGR, except in the turnover of NE in the hypothalamus. We concluded that the data on key mechanisms of regulation of the sympathetic system in TGR cannot explain the inverse blood pressure rhythm observed in this transgenic rat strain.  相似文献   

13.
The balance between norepinephrine (NE) synthesis, release, and reuptake is disrupted after acute myocardial infarction, resulting in elevated extracellular NE. Stimulation of sympathetic neurons in vitro increases NE synthesis and the synthetic enzyme tyrosine hydroxylase (TH) to a greater extent than it increases NE reuptake and the NE transporter (NET), which removes NE from the extracellular space. We used TGR(ASrAOGEN) transgenic rats, which lack postinfarct sympathetic hyperactivity, to test the hypothesis that increased cardiac sympathetic nerve activity accounts for the imbalance in TH and NET expression in these neurons after myocardial infarction. TH and NET mRNA levels were identical in the stellate ganglia of unoperated TGR(ASrAOGEN) rats compared with Sprague Dawley (SD) controls, but the threefold increase in TH and twofold increase in NET mRNA seen in the stellate ganglia of SD rats 1 wk after ischemia-reperfusion was absent in TGR(ASrAOGEN) rats. Similarly, the increase in TH and NET protein observed in the base of the SD ventricle was absent in the base of the TGR (ASrAOGEN) ventricle. Neuronal TH content was depleted in the left ventricle of both genotypes, whereas NET was unchanged. Basal heart rate and cardiac function were similar in both genotypes, but TGR(ASrAOGEN) hearts were more sensitive to the beta-agonist dobutamine. Tyramine-induced release of endogenous NE generated similar changes in ventricular pressure and contractility in both genotypes, but postinfarct relaxation was enhanced in TGR(ASrAOGEN) hearts. These data support the hypothesis that postinfarct sympathetic hyperactivity is the major stimulus increasing TH and NET expression in cardiac neurons.  相似文献   

14.
Evaluation of a local activity of the sympathetic system on the basis of norepinephrine (NE) level in the blood of myocardial vessels depends on at least three processes: NE release by sympathetic neurons, its reuptake and spillover of NE into the blood. The relations between these processes are different in various organs. Direct investigations of changes in the myocardial NE level under the effect of reuptake blockade by desmethylimipramine (DMI) were performed after appearance of the microdialysis technology. In this work the effects of local (through microdialysis membrane) and systemic administration of DMI on the NE release in a rat myocardium, were compared. Local DMI delivery increased myocardial NE level to 153 +/- 13% of the control level (0.17 +/- 0.026 ng/ml dialysate). NE concentration increased to 582 +/- 84% of control as a result of i.m. administration of 5 mg/kg DMI. No changes of the NE level in the venous blood were registered after systemic DMI. It is suggested that a relatively weak effect of local DMI is determined by saturation of DMI receptors adjacent to the probe and/or progressive diminution of the DMI effect with an increasing of the distance from the probe. Effect of systemic DMI administration depends on uniform blockade of all myocardial DMI receptors as well as the DMI influence on higher levels of the sympathetic system.  相似文献   

15.
Hypothermia produced by acute cooling prominently alters sympathetic nerve outflow. Skin sympathoexcitatory responses to skin cooling are attenuated in aged compared with young subjects, suggesting that advancing age influences sympathetic nerve responsiveness to hypothermia. However, regulation of skin sympathetic nerve discharge (SND) is only one component of the complex sympathetic nerve response profile to hypothermia. Whether aging alters the responsiveness of sympathetic nerves innervating other targets during acute cooling is not known. In the present study, using multifiber recordings of splenic, renal, and adrenal sympathetic nerve activity, we tested the hypothesis that hypothermia-induced changes in visceral SND would be attenuated in middle-aged and aged compared with young Fischer 344 (F344) rats. Colonic temperature (Tc) was progressively reduced from 38 degrees C to 31 degrees C in young (3 to 6 mo), middle-aged (12 mo), and aged (24 mo) baroreceptor-innervated and sinoaortic-denervated (SAD), urethane-chloralose anesthetized, F344 rats. The following observations were made. 1) Progressive hypothermia significantly (P < 0.05) reduced splenic, renal, and adrenal SND in young baroreceptor-innervated F344 rats. 2) Reductions in splenic, renal, and adrenal SND to progressive hypothermia were less consistently observed and, when observed, were generally attenuated in baroreceptor-innervated middle-aged and aged compared with young F344 rats. 3) Differences in splenic, renal, and adrenal SND responses to reduced Tc were observed in SAD young, middle-aged, and aged F344 rats, suggesting that age-associated attenuations in SND responses to acute cooling are not the result of age-dependent modifications in arterial baroreflex regulation of SND. These findings demonstrate that advancing chronological age alters the regulation of visceral SND responses to progressive hypothermia, modifications that may contribute to the inability of aged individuals to adequately respond to acute bouts of hypothermia.  相似文献   

16.
Substance P (SP) is a peptide neurotransmitter identified in many central and peripheral neural pathways. Its precise role in human physiology has been difficult to elucidate. We used the selective neurokinin 1 (NK1) antagonist aprepitant as a pharmacological probe to determine the role of endogenous SP in human cardiovascular regulation. We performed a randomized, double-blind, placebo-controlled, crossover trial in healthy subjects. Blockade of endogenous NK1 receptors reduced resting muscle sympathetic activity 38% (P=0.002), reduced systemic vascular resistance by 25% (P=0.021), and increased cardiac index by 47% (P=0.006). This constellation of changes did not, however, alter either blood pressure or heart rate in the supine position. NK1 antagonism also raised orthostatic heart rate change by 38% (P=0.023), although during the incremental postural adjustment on the tilt table neither heart rate nor blood pressure was altered significantly. Despite a mildly attenuated vagal baroreflex with SP blockade, the depressor and pressor responses to nitroprusside and phenylephrine did not differ compared with placebo, suggesting other compensatory mechanisms. NK1 blockade manifests as a decrease in muscle sympathetic nerve activity and systemic vascular resistance. Our study suggests SP exerts a tonic enhancement of sympathetic outflow to some cardiovascular structures via its modulation of the NK1 receptor. Most likely, this ubiquitous neurotransmitter exerts effects at multiple sites that, in the aggregate, are relatively well compensated under many circumstances but may emerge with perturbations. This study is consistent with a role for SP afferents in supporting peripheral vascular resistance.  相似文献   

17.
To test the hypothesis that endurance training would attenuate the carotid sinus baroreflex in rats, studies were undertaken with 25 nontrained (NT) and 22 trained (T) male Sprague-Dawley rats that were exercised for 11-14 wk. Maximal O2 consumption was significantly increased 10% after training. The left carotid sinus region was functionally isolated in anesthetized animals. Subsequently, static carotid sinus pressure was raised in 20-Torr increments from 95 Torr until a maximal response in systemic arterial pressure and regional blood flows was recorded. Compared with the NT group, baroreflex control of blood pressure and calculated regional resistance of the T animals was less responsive to changes in carotid sinus pressure. Resting blood pressure, heart rate, and changes in peripheral blood flow velocity were similar for the two groups. Peripheral sensitivity to phenylephrine-HCl and hexamethonium bromide were also similar in the T and NT groups. It was concluded that the arterial baroreflex control of blood pressure was attenuated by exercise training. These findings support the concept that the trained individual is at disadvantage during hypotensive episodes and that endurance training will attenuate the sympathetic component of the arterial baroreflex.  相似文献   

18.
Neuronal uptake is the most important mechanism by which norepinephrine (NE) is removed from the synaptic clefts at sympathetic nerve terminals. We examined the effects of neuronal NE uptake blockade on the dynamic sympathetic regulation of the arterial baroreflex because dynamic characteristics are important for understanding the system behavior in response to exogenous disturbance. We perturbed intracarotid sinus pressure (CSP) according to a binary white noise sequence in anesthetized rabbits, while recording cardiac sympathetic nerve activity (SNA), arterial pressure (AP), and heart rate (HR). Intravenous administration of desipramine (1 mg/kg) decreased the normalized gain of the neural arc transfer function from CSP to SNA relative to untreated control (1.03 +/- 0.09 vs. 0.60 +/- 0.08 AU/mmHg, mean +/- SE, P < 0.01) but did not affect that of the peripheral arc transfer function from SNA to AP (1.10 +/- 0.05 vs. 1.08 +/- 0.10 mmHg/AU). The normalized gain of the transfer function from SNA to HR was unaffected (1.01 +/- 0.04 vs. 1.09 +/- 0.12 beats.min(-1).AU(-1)). Desipramine decreased the natural frequency of the transfer function from SNA to AP by 28.7 +/- 7.0% (0.046 +/- 0.007 vs. 0.031 +/- 0.002 Hz, P < 0.05) and that of the transfer function from SNA to HR by 64.4 +/- 2.2% (0.071 +/- 0.003 vs. 0.025 +/- 0.002 Hz, P < 0.01). In conclusion, neuronal NE uptake blockade by intravenous desipramine administration reduced the total buffering capacity of the arterial baroreflex mainly through its action on the neural arc. The differential effects of neuronal NE uptake blockade on the dynamic AP and HR responses to SNA may provide clues for understanding the complex pathophysiology of cardiovascular diseases associated with neuronal NE uptake deficiency.  相似文献   

19.
The cardiac "sympathetic afferent" reflex (CSAR) has been reported to increase sympathetic outflow and depress baroreflex function via a central angiotensin II (ANG II) mechanism. In the present study, we examined the role of ANG II type 1 (AT(1)) receptors in the nucleus tractus solitarii (NTS) in mediating the interaction between the CSAR and the baroreflex in anesthetized rats. We examined the effects of bilateral microinjection of AT(1) receptor antagonist losartan (100 pmol) into the NTS on baroreflex control of renal sympathetic nerve activity (RSNA) before and after CSAR activation by epicardial application of capsaicin (0.4 microg). Using single-unit extracellular recording, we further examined the effects of CSAR activation on the barosensitivity of barosensitive NTS neurons and the effects of intravenous losartan (2 mg/kg) on CSAR-induced changes in activity of NTS barosensitive neurons. Bilateral NTS microinjection of losartan significantly attenuated the increases in arterial pressure, heart rate, and RSNA evoked by capsaicin but also markedly (P < 0.01) reversed the CSAR-induced blunted baroreflex control of RSNA (Gain(max) from 1.65 +/- 0.10 to 2.22 +/- 0.11%/mmHg). In 17 of 24 (70.8%) NTS barosensitive neurons, CSAR activation significantly (P < 0.01) inhibited the baseline neuronal activity and attenuated the neuronal barosensitivity. In 11 NTS barosensitive neurons, intravenous losartan effectively (P < 0.01) normalized the decreased neuronal barosensitivity induced by CSAR activation. In conclusion, blockade of NTS AT(1) receptors improved the blunted baroreflex during CSAR activation, suggesting that the NTS plays an important role in processing the interaction between the baroreflex and the CSAR via an AT(1) receptor-dependent mechanism.  相似文献   

20.
Interaction of xylamine with peripheral sympathetic neurons   总被引:1,自引:0,他引:1  
R W Ransom  L A Waggaman  A K Cho 《Life sciences》1985,37(13):1177-1182
Xylamine (XYL) administered to intact rats caused a 70-80% reduction in norepinephrine (NE) uptake by the vas deferens but had little or no effect on NE content in that tissue. The vas deferens accumulates 3H-XYL in vitro by a desmethylimipramine (DMI)-sensitive mechanism. Vasa deferentia from 6-hydroxydopamine (6OHDA) pretreated animals exhibited a 80% reduction in both NE content and XYL uptake activity. These results indicate that XYL is taken up by sympathetic nerve terminals and can reduce NE uptake activity without depleting terminals of neurotransmitter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号