首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liquid chromatography coupled with mass spectrometry and tandem mass spectrometry has been applied to investigate the in vivo metabolism of ginsenoside Rb(1) in rat. Both positive electrospray ionization mass spectrometry and negative electrospray ionization mass spectrometry were used to identify the Rb(1) and its metabolites in rat plasma, urine, and feces samples. Oxygenation and deglycosylation were found to be the major metabolic pathways of Rb(1) in rat. A total of nine metabolites were detected in urine and feces samples collected after intravenous and oral administration. Deglycosylated metabolism of Rb(1) generated other ginsenosides as the major metabolites, such as Rd, Rg(3) or F(2), Rh(2), or C-K. This result indicates that the ginsenoside Rb(1) has many pharmacological activities and could be used as a prodrug.  相似文献   

2.
To support pharmacokinetic studies of ginsenosides, a novel method to quantitatively analyze ginsenoside Rg3 (Rg3), its prosapogenin ginsenoside Rh2 (Rh2) and aglycone 20(S)-protopanaxadiol (ppd) in rat plasma was developed and validated. The method was based on gradient separation of ginsenosides present in rat plasma using high performance liquid chromatography (HPLC), followed by detection with electrospray ionization(ESI) mass spectrometry (MS) in negative ion mode with the mobile phase additive, ammonium chloride (500 microM). Differentiation of ginsenosides was achieved through simultaneous detection of the [M(+)Cl(-)] adduct of ginsenoside Rg3 and [M(+)Cl(-)] adducts of its deglycosylated metabolites Rh2 and ppd, and other ions after solid phase extraction (SPE). The /specific ions monitored were m/z 819.50 for Rg3, m/z 657.35 for Rh2, m/z 495.40 for ppd and m/z 799.55 for the internal standard (digitoxin). The mean recoveries for Rg3, Rh2 and ppd were 77.85, 82.65 and 98.33%, respectively using 0.1 ml plasma for extraction. The lower limits of quantification were 10.0, 2.0 and 8.0 ng/ml (equivalent to 0.1, 0.02 and 0.08 ng in each 10 microl injection onto the HPLC column) for Rg3, Rh2 and ppd, respectively. The method has been demonstrated to be highly sensitive and accurate for the determination of Rg3 and its metabolites in rat plasma.  相似文献   

3.
为探究人与大鼠肠道菌群对三七水煎液中三醇型人参皂苷Rg1、Re及二醇型人参皂苷Rb1、Rd体外代谢的差异性及发现其代谢产物原人参二醇PPD与原人参三醇PPT,实验利用UPLC方法测定三七水煎液分别与人、大鼠肠道菌群在厌氧条件下共培养24h后的孵育液中4种皂苷的含量及代谢产物PPD与PPT的含量。结果表明三七中含有三醇型人参皂苷Rg19.4500mg/g、Re1.8872mg/g,二醇型人参皂苷Rb18.5816mg/g、Rd1.9456mg/g。与人源肠道菌共培养后,三七中含有的二醇型、三醇型人参皂苷含量显著降低,重要的是,在培养液中检测到代谢产物PPD和PPT的存在,含量分别为0.2136mg/g及0.0344mg/g,与大鼠肠道菌共培养后,三七中含有的二醇型皂苷含量有轻微降低,而三醇型皂苷含量未见明显变化,但有少量PPT(0.0184mg/g)的生成。由此可见:在体外条件下,三七水煎液中人参皂苷会被人肠道菌群降解生成代谢产物PPD和PPT,而大鼠肠道菌群的降解产物却仅有PPT生成,二者存在种属差异。  相似文献   

4.
The sulphatase pathway is thought to be the major route of oestrogen synthesis in breast tumours in postmenopausal women. There is currently considerable interest in developing a potent steroid sulphatase inhibitor to block oestrogen synthesis by this route. One of the most potent inhibitors discovered so far is oestrone-3-O-sulphamate (EMATE) which is active in vivo. In this study we report the preparation of a formulation for the administration of EMATE by the oral route. A method, using high-performance liquid chromatography (HPLC), was also established to measure concentrations of EMATE in rat plasma after its oral or i.v. administration. Using the oral formulation and HPLC assay, EMATE was readily detected in rat plasma after oral administration. Plasma EMATE concentrations were related to the dose of drug administered orally over the 10–40 mg/kg range. To examine the pharmacokinetics of EMATE, the compound (40 mg/kg, single dose) was administered either orally (in the formulation) or i.v. (in propylene glycol) with plasma samples being collected for up to 6 h. After oral administration, EMATE was rapidly absorbed, with the peak plasma concentration being detected at 30 min, after which plasma concentrations rapidly decreased. After i.v. administration a plasma EMATE concentration was detected at 1 h similar to that after oral administration. The clearance of EMATE from plasma followed a bi-phasic curve, showing an initial half-life of 30 min, followed by a slower half-life of 4 h 30 min. Little evidence was obtained for any metabolism of EMATE to oestrone. Rat liver sulphatase activity was almost completely inhibited (>99%) within 30 min of oral or i.v. administration of EMATE.  相似文献   

5.
Compound Danshen tablets are composed of Panax notoginseng, Salvia miltiorrhiza and Borneol. The tablets are prescribed for treatment of cardiovascular diseases in China. The present study aimed at developing a specific and sensitive LC-MS/MS method to simultaneously determine three bioactive P. notoginseng saponins, i.e., notoginsenoside R1, ginsenoside Rg1 and Rb1, in dogs after a single oral administration of the compound tablets in order to obtain the clinically relevant saponin-related pharmacodynamics of the tablets in patients. The R1, Rg1 and Rb1 were extracted from dog plasma with acetone-methanol (80:20, v/v), separated by reversed phase liquid chromatography and determined by tandem mass spectrometry (LC-MS/MS) with positive electrospray ionization (ESI). The developed method reached lower limit of quantitation (LLOQ) at 0.10 ng/ml for the three saponins. The method was validated in terms of selectivity, matrix effects, linearity, precision and accuracy, and then was applied to a pharmacokinetic study of the three bioactive saponins simultaneously in dogs after a single oral administration of compound Danshen tablets at a clinical equivalent dose. The C(max) and AUC((0-∞)) for R1, Rg1 and Rb1 were 1.91, 3.34 and 28.6 ng/ml, and 7.5, 11.0, and 1712 (h ng/ml), respectively.  相似文献   

6.
To investigate the absorption and metabolism of 4-hydroxyderricin and xanthoangelol, we established an analytical method based on liquid chromatography-tandem mass spectrometry and measured these compounds in the plasma, urine, feces, liver, kidney, spleen, muscle and white adipose tissues of mice orally administered with Ashitaba extract (50-500mg/kg body weight). 4-Hydroxyderricin and xanthoangelol were quickly absorbed into the plasma, with time-to-maximum plasma concentrations of 2 and 0.5h for 4-hydroxyderricin and xanthoangelol, respectively. Although these compounds have similar structures, the total plasma concentration of 4-hydroxyderricin and its metabolites was approximately 4-fold greater than that of xanthoangelol and its metabolites at 24h. 4-Hydroxyderricin and xanthoangelol were mostly excreted in their aglycone forms and related metabolites (glucuronate and/or sulfate forms) in urine between 2 and 4h after oral administration of Ashitaba extract. On the other hand, these compounds were only excreted in their aglycone forms in feces. When tissue distribution of 4-hydroxyderricin and xanthoangelol was estimated 2h after administration of Ashitaba extract, both compounds were detected in all of the tissues assessed, mainly in their aglycone forms, except in the mesenteric adipose tissue. These results suggest that 4-hydroxyderricin and xanthoangelol are rapidly absorbed and distributed to various tissues.  相似文献   

7.
人参皂苷Rg2抗MTD大鼠海马神经元凋亡的研究   总被引:1,自引:0,他引:1  
目的:观察多发梗塞性痴呆模型大鼠CPU凋亡相关蛋白的改变,研究其在学习记忆障碍中的作用机制,并探讨人参皂苷Rg2的干预作用。方法:将复合血栓诱导剂经大鼠左颈总-颈内动脉注射入其左侧大脑半球,诱导半球内血栓形成,造成多发梗塞,从而建立大鼠的学习和记忆功能障碍模型。分别给予不同剂量的人参皂苷Rg2治疗7天,并以尼莫地平进行对照。用Y型电迷宫检测正常对照及痴呆模型大鼠学习和记忆能力的改变;对大鼠的脑组织切片作尼氏染色行病理学检查;以免疫组化方法检测Glu、CalpainⅡ、Caspase-3、Bax的表达。结果:颈内动脉注射复合血栓诱导剂可造成大鼠在Y型电迷宫中的学习和记忆成绩明显降低,与假手术对照组比较有显著差异(P<0.05)。尼氏染色可在大鼠脑片的CPU区发现胶质瘢痕化的微梗塞灶。在免疫组化结果中,Glu、CalpainⅡ、Caspase-3、Bax表达均增高。结论:单侧大脑注射复合血栓诱导剂可造成大鼠的学习记忆能力降低,可部分模拟MID的行为和病理学改变。人参皂苷Rg2能明显改善MID模型大鼠的学习记忆成绩,其作用机制可能与它的钙通道阻滞作用使凋亡蛋白CalpainⅡ、Caspase-3、Bax表达降低有关...  相似文献   

8.
It has been recognized that ginsenoside Rg3 is not naturally produced in ginseng although this ginsenoside can accumulate in red ginseng as the result of a thermal process. In order to determine whether or not Rg3 is synthesized in ginseng, hairy roots were treated with methyl jasmonate (MJ). From HPLC analysis, no peak for Rg3 was observed in the controls. However, Rg3 did accumulate in hairy roots that were MJ-treated for 7?days. Rg3 content was 0.42?mg/g (dry weight). To gain more insight into the effects of MJ on UDP-glucosyltransferase (UGT) activity, we attempted to evaluate ginsenoside Rg3 biosynthesis by UGT. A new peak for putative Rg3 was observed, which was confirmed by LC-MS/MS analysis. Our findings indicate that the proteins extracted from our hairy root lines can catalyze Rg3 from Rh2. This suggests that our ginseng hairy root lines possess Rg3 biosynthesis capacity.  相似文献   

9.
Rosmarinic acid (RA) is contained in various Lamiaceae herbs used commonly as culinary herbs. Although RA has various potent physiological actions, little is known on its bioavailability. We therefore investigated the absorption and metabolism of orally administered RA in rats. After being deprived of food for 12 h, RA (50 mg/kg body weight) or deionized water was administered orally to rats. Blood samples were collected from a cannula inserted in the femoral artery before and at designated time intervals after administration of RA. Urine excreted within 0 to 8 h and 8 to 18 h post-administration was also collected. RA and its related metabolites in plasma and urine were measured by LC-MS after treatment with sulfatase and/or beta-glucuronidase. RA, mono-methylated RA (methyl-RA) and m-coumaric acid (COA) were detected in plasma, with peak concentrations being reached at 0.5, 1 and 8 h after RA administration, respectively. RA, methyl-RA, caffeic acid (CAA), ferulic acid (FA) and COA were detected in urine after RA administration. These components in plasma and urine were present predominantly as conjugated forms such as glucuronide or sulfate. The percentage of the original oral dose of RA excreted in the urine within 18 h of administration as free and conjugated forms was 0.44 +/- 0.21% for RA, 1.60 +/- 0.74% for methyl-RA, 1.06 +/- 0.35% for CAA, 1.70 +/- 0.45% for FA and 0.67 +/- 0.29% for COA. Approximately 83% of the total amount of these metabolites was excreted in the period 8 to 18 h after RA administration. These results suggest that RA was absorbed and metabolized as conjugated and/or methylated forms, and that the majority of RA absorbed was degraded into conjugated and/or methylated forms of CAA, FA and COA before being excreted gradually in the urine.  相似文献   

10.
A sensitive and specific method for the analysis of anisodamine and its metabolites in rat urine by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-MS/MS) was developed. Various extraction techniques (free fraction, acid hydrolyses and enzyme hydrolyses) and their comparison were carried out for investigation of the metabolism of anisodamine. After extraction procedure the pretreated samples were injected on a reversed-phase C18 column with mobile phase (0.2 ml/min) of methanol/0.01% triethylamine solution (adjusted to pH 3.5 with formic acid) (60:40, v/v) and detected by MS/MS. Identification and structural elucidation of the metabolites were performed by comparing their changes in molecular masses (DeltaM), retention-times and full scan MS(n) spectra with those of the parent drug. At least 11 metabolites (N-demethyl-6beta-hydroxytropine, 6beta-hydroxytropine, tropic acid, N-demethylanisodamine, hydroxyanisodamine, anisodamine N-oxide, hydroxyanisodamine N-oxide, glucuronide conjugated N-demethylanisodamine, sulfate conjugated and glucuronide conjugated anisodamine, sulfate conjugated hydroxyanisodamine) and the parent drug were found in rat urine after the administration of a single oral dose 25mg/kg of anisodamine. Hydroxyanisodamine, anisodamine N-oxide and the parent drug were detected in rat urine for up 95 h after ingestion of anisodamine.  相似文献   

11.
Stevioside (250-mg capsules) was given thrice daily for 3 days to 10 healthy subjects. Blood samples were collected and blood pressure measured after nocturnal fasting, before and at different time points during the third day of the administration of stevioside. No significant differences were found between the control and the stevioside condition for blood pressure and blood biochemical parameters. The 24-hr urinary volume and urinary excretion of electrolytes were not significantly different. Likewise, no significant difference was found for mean blood glucose and insulin between control and stevioside conditions. Thus, oral stevioside is not directly effective as a hypotensive or hypoglycemic agent in healthy subjects at the dose administered in this study. Stevioside, free steviol, and steviol metabolites were analyzed in blood, feces, and urine after 3 days of stevioside administration. No uptake was found of stevioside by the gastrointestinal tract or the amounts taken up were very low and below the detection limit of the UV detector. Stomach juice did not degrade stevioside. All the stevioside reaching the colon was degraded by micro-organisms into steviol, the only metabolite found in feces. In blood plasma, no stevioside, no free steviol or other free steviol metabolites were found. However, steviol glucuronide (SV glu) was found in maximum concentrations of 33 micro g/ml (21.3 micro g steviol equivalents/ml). In urine, no stevioside or free steviol were present, but SV glu was found in amounts of up to 318 mg/24-hr urine (205 mg steviol equivalents/24 hrs). No other steviol derivatives were detected. In feces, besides free steviol, no other steviol metabolites or conjugates were detected. Steviol was excreted as SV glu in urine.  相似文献   

12.
A sensitive and rapid liquid chromatography-mass spectrometric method for the simultaneous determination of ginsenoside Rg1, Re, Rd, Rb1 and ophiopogonin D in rat plasma was developed and validated. Chromatographic separation was performed on a C18 column using a step gradient program with the mobile phase of 0.5mmol/L ammonium chloride solution and acetonitrile. The analytes and I.S. were detected using an electrospray negative ionization mass spectrometry in the selected ion monitoring (SIM) mode. The method was linear over the investigated concentration range with a good correlation coefficient higher than 0.997. The lower limits of detection (LLOD) of these analytes were all lower than 2.0ng/mL. The intra- and inter-day precisions were all no more than 7.5% and accuracies were within the range of 97.5-107.0%. The validated method was successfully applied to investigate the pharmacokinetics of ginsenoside Rg1, Re, Rd, Rb1 and ophiopogonin D in rat after intravenous administration of 'SHENMAI' injection.  相似文献   

13.
Berberine (BBR) has been confirmed to have multiple bioactivities in clinic, such as cholesterol-lowering, anti-diabetes, cardiovascular protection and anti- inflammation. However, BBR’s plasma level is very low; it cannot explain its pharmacological effects in patients. We consider that the in vivo distribution of BBR as well as of its bioactive metabolites might provide part of the explanation for this question. In this study, liquid chromatography coupled to ion trap time-of-flight mass spectrometry (LC/MSn-IT-TOF) as well as liquid chromatography that coupled with tandem mass spectrometry (LC-MS/MS) was used for the study of tissue distribution and pharmacokinetics of BBR in rats after oral administration (200 mg/kg). The results indicated that BBR was quickly distributed in the liver, kidneys, muscle, lungs, brain, heart, pancreas and fat in a descending order of its amount. The pharmacokinetic profile indicated that BBR’s level in most of studied tissues was higher (or much higher) than that in plasma 4 h after administration. BBR remained relatively stable in the tissues like liver, heart, brain, muscle, pancreas etc. Organ distribution of BBR’s metabolites was also investigated paralleled with that of BBR. Thalifendine (M1), berberrubine (M2) and jatrorrhizine (M4), which the metabolites with moderate bioactivity, were easily detected in organs like the liver and kidney. For instance, M1, M2 and M4 were the major metabolites in the liver, among which the percentage of M2 was up to 65.1%; the level of AUC (0-t) (area under the concentration-time curve) for BBR or the metabolites in the liver was 10-fold or 30-fold higher than that in plasma, respectively. In summary, the organ concentration of BBR (as well as its bioactive metabolites) was higher than its concentration in the blood after oral administration. It might explain BBR’s pharmacological effects on human diseases in clinic.  相似文献   

14.
Q Chang  GN Wang  Y Li  L Zhang  C You  Y Zheng 《Phytomedicine》2012,19(11):1024-1028
Icaritin (ICT) is a main aglycone and also active intestinal metabolite of prenylflavonoids from the Chinese medicine Herba Epimedii. In the present study, the oral absorption and excretion of this compound was investigated using rats for exploring its fate in the body, so as to better understanding its in vivo pharmacological activities. The free (parent) and total (parent plus conjugated metabolites) ICT concentrations in rat plasma, urine and bile, after intravenous (i.v.) and oral administration both at 5mg/kg, were determined before and after enzymatic hydrolysis with β-glucuronidase/sulphatase, respectively, by a HPLC-UV method. The results showed that free ICT plasma concentration after i.v. dose was rapidly decreased with average t(1/2, λ) of 0.43h, while the total ICT concentration was decreased slowly with t(1/2, λ) of 6.86h. The area under the curve of ICT conjugated metabolites was about 11-fold higher than that of free ICT. The majority of ICT in the body was excreted from the bile with 68.05% of dose over 8h after i.v. dosing, in which only 0.15% was in parent form. While very little amount of ICT was excreted from the urine with 3.01% of dose over 24h, in which the parent form was 0.62%. After oral administration, very little amount of parent ICT was detected only in 0.5, 1 or 2h plasma samples with the concentration less than LOQ, however, its total plasma concentration after enzymatic hydrolysis treatment was at relative high level with average maximum concentration of 0.49μg/ml achieved at 1h post dose. The oral bioavailability of ICT was 35% of dose, estimated by its total plasma drug concentrations. It is concluded that ICT can be easily absorbed into the body, and then rapidly conversed to its conjugated metabolites, and finally removed from the body mainly by biliary excretion.  相似文献   

15.
Ginsenoside Rg1 has been demonstrated to have cardiovascular protective effects. However, whether the cardioprotective effects of ginsenoside Rg1 are mediated by endoplasmic reticulum (ER) stress‐induced apoptosis remain unclear. In this study, among 80 male Wistar rats, 15 rats were randomly selected as controls; the remaining 65 rats received a diet rich in fat and sugar content for 4 weeks, followed by intraperitoneal injection of streptozotocin (STZ, 40 mg/kg) to establish a diabetes model. Seven days after STZ injection, 10 rats were randomly selected as diabetic model (DM) controls, 45 eligible diabetic rats were randomized to three treatment groups and administered ginsenoside Rg1 in a dosage of 10, 15 or 20 mg/kg/day, respectively. After 12 weeks of treatment, rats were killed and serum samples obtained to determine cardiac troponin (cTn)‐I. Myocardial tissues were harvested for morphological analysis to detect myocardial cell apoptosis, and to analyse protein expression of glucose‐regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), and Caspase‐12. Treatment with ginsenoside Rg1 (10–20 mg/kg) significantly reduced serum cTnI levels compared with DM control group (all P < 0.01). Ginsenoside Rg1 (15 and 20 mg/kg) significantly reduced the percentage of apoptotic myocardial cells and improved the parameters of cardiac function. Haematoxylin and eosin and Masson staining indicated that ginsenoside Rg1 could attenuate myocardial lesions and myocardial collagen volume fraction. Additionally, ginsenoside Rg1 significantly reduced GRP78, CHOP, and cleaved Caspase‐12 protein expression in a dose‐dependent manner. These findings suggest that ginsenoside Rg1 appeared to ameliorate diabetic cardiomyopathy by inhibiting ER stress‐induced apoptosis in diabetic rats.  相似文献   

16.
目的探讨人参皂苷Rg1对脑缺血再灌注大鼠脑组织半胱氨酸天冬氨酸酶3(Caspase-3)表达的影响。方法将大鼠随机分为假手术组、模型组、人参皂苷Rg110、20、40mg/kg组、尼莫地平组,每组10只。采用线栓法栓塞大脑中动脉2h制作大鼠脑缺血再灌注模型;观察再灌注22h后神经功能缺损评分;应用免疫组化、免疫印迹法检测大脑皮层缺血半暗带Caspase-3的表达。结果(1)假手术组、模型组、人参皂苷Rg110、20、40mg/kg组和尼莫地平组神经功能缺损评分分别为0、2.8±0.9、2.1±0.9、1.5±0.7、1.3±1.1、1.5±0.7,差异有统计学意义(P0.05)。人参皂苷Rg120、40mg/kg组与模型组比较,差异有统计学意义(P0.05);人参皂苷Rg110mg/kg组与尼莫地平组比较,差异有统计学意义(P0.05);人参皂苷Rg120、40mg/kg组与尼莫地平组比较,差异均无统计学意义(P0.05)。(2)免疫组化和免疫印迹结果显示各组大鼠皮层缺血半暗带均有Caspase-3的表达,其中假手术组仅有少量表达,模型组表达最多。与模型组比较,人参皂苷Rg1各剂量组及尼莫地平组Caspase-3表达量减少,差异有统计学意义(P0.05);与尼莫地平组比较,人参皂苷Rg110mg/kg组的Caspase-3表达量显著增高,40mg/kg组显著降低(P0.05),而20mg/kg组则差异无统计学意义(P0.05)。结论人参皂苷Rg1防治脑缺血再灌注的机制与抑制脑组织Caspase-3表达有关,且以高剂量效果较好。  相似文献   

17.
Ginsenosides Re and Rg1 were transformed by recombinant β-glucosidase (Bgp1) to ginsenosides Rg2 and Rh1, respectively. The bgp1 gene consists of 2,496?bp encoding 831 amino acids which have homology to the glycosyl hydrolase families 3 protein domain. Using 0.1?mg enzyme ml(-1) in 20?mM sodium phosphate buffer at 37°C and pH 7.0, the glucose moiety attached to the C-20 position of ginsenosides Re and Rg1, was removed: 1?mg ginsenoside Re ml(-1) was transformed into 0.83?mg Rg2?ml(-1) (100% molar conversion) after 2.5?h and 1?mg ginsenoside Rg1?ml(-1) was transformed into 0.6?mg ginsenoside Rh1?ml(-1) (78% molar conversion) in 15?min. Using Bgp1 enzyme, almost all initial ginsenosides Re and Rg1 were converted completely to ginsenosides Rg2 and Rh1. This is the first report of the conversion of ginsenoside Re to ginsenoside Rg2 and ginsenoside Rg1 to ginsenoside Rh1 using the recombinant β-glucosidase.  相似文献   

18.
The urinary recoveries of the hydroxycinnamates, ferulic acid (3-methoxy, 4-hydroxy cinnamic acid), and chlorogenic acid (the quinic acid ester of 3,4-dihydroxycinnamic acid), and three structurally related flavonoids were studied in the rat. For the latter, the aglycone quercetin was compared with its 3-glucoside (isoquercitrin) and 3-rhamnoglucoside (rutin). Doses of 50 mg/kg were administered via the oral and intravenous routes and urine collected over the subsequent 24-h period. Reverse phase HPLC with photo-diode array detection was used to analyze the unchanged compound and their metabolites excreted in the urine. Ferulic acid and isoquercitrin were orally absorbed (5.4 and 0.48% of administered dose, respectively) and are therefore bioavailable. In contrast, neither unchanged chlorogenic acid, rutin, quercetin, nor the conjugated metabolites in the form of glucuronide or sulphate were detected in the urine after oral dosing. All the flavonoids studied produced low total urinary recoveries after intravenous administration, 9.2% for quercetin-3-rhamnoglucoside, 6.7% for the 3-glucoside, and 2.4% for the aglycone, indicating that extensive metabolism to low molecular weight compounds or excretion via other routes may be occurring. Overall it can be stated that renal excretion is not a major pathway of elimination for intact flavonoids and hydroxycinnamates in the rat.  相似文献   

19.
Influence of footshock stress on pharmacokinetics of nicorandil in rats   总被引:1,自引:0,他引:1  
M Yamori  Y Gomita  R Oishi 《Life sciences》1991,48(21):2065-2073
The influence of footshock stress on the pharmacokinetics of nicorandil was examined in rats. In the group exposed to a 30-min period of footshock immediately after the oral administration of nicorandil (10 mg/kg), plasma nicorandil levels were markedly lower than those in the control group 30-120 min after administration. Plasma levels after the subcutaneous injection of nicorandil (5 mg/kg) were also slightly but significantly lower in stressed rats than in control rats. When footshock was applied from 60 min after oral administration or 30 min after subcutaneous injection (the time when the plasma nicorandil level was maximum), it also significantly decreased the plasma levels thereafter. Furthermore, footshock applied immediately after intravenous injection of nicorandil (3 mg/kg) significantly decreased the plasma levels 30-60 min after injection. Plasma levels of N-(2-hydroxyethyl) nicotinamide, one of the main metabolites of nicorandil, were slightly increased 30 min after the intravenous injection of nicorandil (10 mg/kg) by footshock. Nicorandil levels in the heart, kidney, and skin were significantly lower in the stressed rats similar to the change in the plasma level, but levels in the muscle, liver, and thymus showed no significant difference. The urinary excretion of nicorandil tended to be higher in the stressed rats. These results suggest that footshock stress affects not only the absorption of nicorandil but also its distribution, metabolism, and excretion.  相似文献   

20.
A method using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-MS/MS) analysis was established for the identification of metabolites in rat after oral administration of protocatechuic aldehyde, a major bioactive phenolic acid in the roots of Salvia miltiorrhiza. Eleven metabolites in rat plasma and urine were firstly identified as protocatechuic aldehyde, protocatechuic acid and their methylated, glucuronized or glycine conjugates on the basis of their MS fragmentation behaviors, while nine of these metabolites (except protocatechuic aldehyde and protocatechuic acid) were detected in rat bile. In addition, the possible metabolic pathway was proposed for the first time. In the phase I metabolism, protocatechuic aldehyde could be oxidized to protocatechuic acid. The conjugates would be formed in rat intestine, liver and kidney and excreted from rat urine and bile. Enthrohepatic circulation played an important role in the metabolism of protocatechuic aldehyde. The results proved that the established method was simple, reliable and sensitive, revealing that it could be used to rapid screen and identify the structures of active components responsible for pharmacological effects of protocatechuic aldehyde and to better understand its in vivo metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号