首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interstitial fluid lipoproteins   总被引:10,自引:0,他引:10  
While a wide variety of techniques has been used to collect samples of interstitial fluid, most of our detailed knowledge about the composition of interstitial fluid lipoproteins has come from lymph collection studies. The considerable variability of lymph data probably reflects the effect of variable metabolic modification and different capillary permeabilities on the lipoprotein composition of interstitial fluid. All density classes of plasma lipoproteins are present in lymph. In peripheral lymph, the lymph/plasma concentration ratios of lipoproteins vary from 0.03 for VLDL-sized particles to 0.2 for HDL. Lymph from more permeable vascular beds, such as lung and myocardium, contains proportionately more lipoproteins. Their lymph/plasma concentration ratios vary from 0.1 to 0.6. In general, lymph lipoproteins are more heterogeneous in size than their plasma counterparts. Lymph HDL and LDL contain larger and smaller particles than their plasma equivalents. Lymph lipoproteins have unusual shapes (square packing and discoidal), chemical compositions, and molecular charge, which suggest de novo formation and/or extensive peripheral modification. Lymph HDL and LDL are enriched in free cholesterol. Lymph HDL also has increased cholesterol/protein and phospholipid/protein (especially sphingomyelin) ratios (Sloop, C.H., L. Dory, and P.S. Roheim, unpublished observations). Lymph HDL apoprotein composition differs from that of plasma, with an increase in apoE and apoA-IV content relative to apoA-I. These discoidal HDL particles may be products of an initial stage of reverse cholesterol transport. We believe further study of their metabolic fate would give important information concerning the later stages of reverse cholesterol transport.  相似文献   

2.
Small particles of high density lipoproteins (HDL) were isolated from fresh, fasting human plasma and from the ultracentrifugally isolated high density lipoprotein fraction by means of ultrafiltration through membranes of molecular weight cutoff of 70,000. These particles were found to contain cholesterol, phospholipids, and apolipoproteins A-I and A-II; moreover, they floated at a density of 1.21 kg/l. They contained 67.5% of their mass as protein and the rest as lipid. Two populations of small HDL particles were identified: one containing apolipoprotein A-I alone [(A-I)HDL] and the other containing both apolipoproteins A-I and A-II [A-I + A-II)HDL]. The molar ratio of apoA-I to apoA-II in the latter subclass isolated from plasma or HDL was 1:1. The molecular weights of these subpopulations were determined by nondenaturing gradient polyacrylamide gel electrophoresis and found to be 70,000; 1.5% of the plasma apoA-I was recovered in the plasma ultrafiltrate.  相似文献   

3.
In euthyroid dogs fed a diet rich in cholesterol and saturated fat, the cholesterol concentration in both plasma and peripheral lymph increased progressively with the appearance of HDLc (d 1.006-1.063). This HDLc fraction was heterogeneous and could be separated into 'slow' and 'fast' migrating fractions by Pevikon block electrophoresis. On SDS-polyacrylamide gel electrophoresis, plasma 'slow' HDLc was appreciably enriched in apolipoprotein (apo) E, while plasma and lymph 'fast' HDLc were apo E-poor. In contrast, no apo E was visible in lymph 'slow' HDLc in either plasma or lymph HDL2 fractions (d 1.087-1.21). The interstitial HDL fractions containing apo A-IV ('fast' HDLc and HDL2) were also rich in free cholesterol, implying that apo A-IV-containing particles are involved in reverse cholesterol transport. Plasma and peripheral lymph HDL2 and 'fast' HDLc cholesterol/protein ratios were not different, whereas lymph 'slow' HDLc was 24% that of plasma, indicating that interstitial 'slow' HDLc was poor in cholesterol compared to plasma. This marked reduction in lymph 'slow' HDLc cholesterol suggests that this particle was either selectively retarded from egress by the endothelial barrier, or that interstitial 'slow' HDLc represents a depleted particle involved in the delivery of cholesterol to peripheral tissues. These findings taken together support the hypothesis that interstitial 'slow' HDLc may represent a particle involved in cholesterol ester delivery, in contrast with HDL2 and 'fast' HDLc, which could serve as an efflux acceptor of tissue free cholesterol. This study demonstrates significant heterogeneity of interstitial peripheral lymph lipoproteins compared to plasma lipoproteins, and indicates selective distribution of these particles in the extravascular space.  相似文献   

4.
Progeny of certain baboon sires accumulate lipoproteins in high density lipoprotein-1 (HDL1) when challenged with a high cholesterol, high saturated fat diet. These studies were conducted to determine the apoprotein composition and metabolic fate of HDL1 in the plasma. HDL1 particles containing apoA-I with and without apoE were detected. The majority of particles, however, contained apoA-I without any detectable apoE. To determine the metabolic fate of HDL1 in plasma, HDL1 labeled with iodinated apoA-I from animals with high levels of HDL1 and iodinated apoA-I-labeled autologous HDL were coinjected into both high and low HDL1 animals. The data for the decay of radioactivity in HDL1 and HDL were analyzed by multicompartment modelling. The radioactivity from HDL1 was cleared from the plasma either via direct removal (9.1 +/- 4.7% in low and 21.7 +/- 8.3% in high HDL1 animals) or via its conversion to HDL. A large proportion of radioactivity from HDL1 was rapidly transferred to HDL directly or metabolized via an intermediate compartment. Most of the radioactivity from apoE-poor HDL1, however, was transferred to HDL. Both high and low HDL1 animals catabolized HDL1 and HDL similarly. Low HDL1 animals transferred HDL1 radioactivity to HDL much faster. No detectable radioactivity from HDL was transferred to HDL1. Thus, HDL1 that accumulates in high HDL1 animals is mainly a precursor for HDL. Our hypothesis is that this accumulation of HDL1 is due to the slower cholesteryl ester transfer from HDL to lower density lipoproteins, thus affecting reverse cholesterol transport in high HDL1 baboons.  相似文献   

5.
Serum amyloid A (SAA) is an acute phase protein of unknown function that is involved in systemic amyloidosis and may also be involved in atherogenesis. The precise role of SAA in these processes has not been established. SAA circulates in plasma bound to high density lipoprotein-3 (HDL3). The pathway for the production of SAA-containing HDL is not known. To test whether apolipoprotein (apo)A-I-HDL is required in the production of SAA-HDL, we analyzed the lipopolysaccharide (LPS)-induced changes in apoA-I+/+ and apoA-I-/- mice. In apoA-I+/+ mice, after injection of LPS, remodeling of HDL occurred: total cholesterol increased and apoA-I decreased slightly and shifted to lighter density. Dense (density of HDL3) but large (size of HDL2 ) SAA-containing particles were formed. Upon fast phase liquid chromatography fractionation of plasma, >90% of SAA eluted with HDL that was enriched in cholesterol and phospholipid and shifted "leftward" to larger particles. Non-denaturing immunoprecipitation with anti-mouse apoA-I precipitated all of the apoA-I but not all of the SAA, confirming the presence of SAA-HDL devoid of apoA-I. In the apoA-I-/- mice, which normally have very low plasma lipid levels, LPS injection resulted in significantly increased total and HDL cholesterol. Greater than 90% of the SAA was lipid associated and was found on dense but large, spherical HDL particles essentially devoid of other apolipoproteins.We conclude that serum amyloid A (SAA) is able to sequester lipid, forming dense but large HDL particles with or without apoA-I or other apolipoproteins. The capacity to isolate lipoprotein particles containing SAA as the predominant or only apolipoprotein provides an important system to further explore the biological function of SAA.  相似文献   

6.
Clusterin/human complement lysis inhibitor (CLI) is incorporated stoichiometrically into the soluble terminal complement complex and inhibits the cytolytic reaction of purified complement components C5b-9 in vitro. Using an anti-clusterin affinity column, we found that an additional protein component with a molecular mass of 28-kDa co-purifies with clusterin from human plasma. We show by immunoblotting and amino acid sequencing that this component is apolipoprotein A-I (apoA-I). By using physiological salt buffers containing 0.5% Triton X-100, apoA-I is completely dissociated from clusterin bound to the antibody column. Free clusterin immobilized on the antibody-Sepharose selectively retains apoA-I from total human plasma. Delipidated apoA-I and to a lesser extent ultracentrifugation-purified high density lipoproteins (HDL) adsorbed to nitrocellulose also have a binding affinity for purified clusterin devoid of apoA-I. The isolated apoA-I-clusterin complex contains approximately 22% (w/w) lipids which are composed of 54% (mole/mol) total cholesterol (molar ratio of unesterified/esterified cholesterol, 0.58), 42% phospholipids, and 4% triglycerides. In agreement with the low lipid content, apoA-I-clusterin complexes are detected only in trace amounts in HDL fractions prepared by density ultracentrifugation. In free flow isotachophoresis, the purified apoA-I-clusterin complex has the same mobility as the native clusterin complex in human plasma and is found in the slow-migrating HDL fraction of fasting plasma. Our data indicate that clusterin circulates in plasma as a HDL complex, which may serve not only as an inhibitor of the lytic terminal complement cascade, but also as a regulator of lipid transport and local lipid redistribution.  相似文献   

7.
Three fractionation procedures (immunoaffinity chromatography, two-dimensional nondenaturing electrophoresis, and heparin-agarose affinity chromatography) have been compared in determining the kinetics of free and ester cholesterol transfer in normolipemic native plasma. Similar results were obtained in each case. Cell-derived free cholesterol is initially enriched in high density lipoproteins (HDL) (mainly HDL without apoE); at longer time periods (greater than 10 min) greater proportions are observed in very low density lipoproteins (VLDL) and low density lipoproteins (LDL). The major part of cholesteryl ester (about 90%) was retained in HDL, while VLDL and LDL, which contained about 75% of total cholesteryl ester mass, received only about 10% of cell-derived cholesteryl ester. Within HDL, almost all cholesteryl ester was in the apoE-free fraction. These data provide evidence that lipoprotein free and esterified cholesterol are not at chemical equilibrium in normal plasma, and that cell-derived cholesterol is preferentially directed to HDL. The techniques used had a comparable effectiveness for the rapid fractionation of labile lipoprotein lipid radioactivity.  相似文献   

8.
Particles closely resembling rat high density lipoproteins (HDL) in terms of equilibrium density profile and particle size were prepared by sonication of apoA-I with a microemulsion made with egg lecithin and cholesterol oleate. These particles, like authentic HDL, allowed selective uptake of their cholesterol ester moieties by cultured cells without parallel uptake of the particle itself. That uptake was saturable and competed by HDL. In rats, the plasma decay kinetics and sites of uptake of a cholesteryl ether tracer were similar whether that tracer was incorporated into synthetic or authentic HDL. Synthetic particles containing other apoproteins were made by generally the same method, but using in place of apoA-I either a mixture of rat apoCs or apoE that was either competent or reductively methylated to prevent interaction with the B/E receptor. These particles, of lower density and larger Stokes radius than those made with apoA-I, also allowed selective uptake of cholesterol esters, albeit with a lower degree of selectivity than in the case of apoA-I. Thus a specific apoprotein component in the subject lipoprotein particle is not required for selective uptake. However, selective uptake was shown to be a function of particle density or size, and part of the difference in rates of selective uptake from the particles made with various apoproteins was explained by their differences in density or size.  相似文献   

9.
Distribution of apolipoproteins A-I and B among intestinal lipoproteins   总被引:2,自引:0,他引:2  
Chylomicrons and very low density lipoproteins (VLDL) are produced by the intestine and these nascent particles are thought to be similar to their counterparts in intestinal lymph. To study the relationship between these lipoproteins within the cell and those secreted into the lamina propria and lymph, we have isolated enterocytes, lamina propria, and mesenteric lymph from rats while fasted and after corn oil feeding. Apolipoprotein A-I and B content were measured by radioimmunoassay in cell, lamina propria, and lymph fractions separated by Sepharose 6B and 10% agarose chromatography, and by KBr isopycnic density centrifugation. ApoA-I in the cell and the underlying lamina propria was found partly in those fractions in which chylomicron and very low density lipoproteins (chylo-VLDL) and high density lipoproteins (HDL) elute, but more abundantly where unassociated 125I-labeled apoA-I was eluted. In the lymph, however, 74% of apoA-I eluted in the HDL region and no peak of free apoA-I was found. ApoB and apoC-III within the enterocyte were found distributed in the position of particles eluting not only with chylomicrons and VLDL, but also in the regions corresponding to LDL and HDL. In the lamina propria and lymph, on the other hand, most of the apoB was found in the region of VLDL and chylomicrons. These results indicate that the patterns in lymph lipoproteins and the lamina propria do not exactly mirror the distribution of apoA-I and B among lipoproteins inside the cell. This may be because intracellular apoproteins may be unassociated with lipoproteins, or they could be associated with lipoproteins in various stages of assembly of protein with lipids. Furthermore, the apoprotein composition of intestinal lipoproteins is altered after secretion from the enterocyte. Finally, not all apoproteins seem to be secreted in association with identifiable lipoprotein particles from the enterocyte.  相似文献   

10.
Interactions of high density lipoproteins (HDL) with very low (VLDL) and low (LDL) density lipoproteins were investigated during in vitro lipolysis in the presence of limited free fatty acid acceptor. Previous studies had shown that lipid products accumulating on lipoproteins under these conditions promote the formation of physical complexes between apolipoprotein B-containing particles (Biochim. Biophys. Acta, 1987. 919: 97-110). The presence of increasing concentrations of HDL or delipidated HDL progressively diminished VLDL-LDL complex formation. At the same time, association of HDL-derived apolipoprotein (apo) A-I with both VLDL and LDL could be demonstrated by autoradiography of gradient gel electrophoretic blots, immunoblotting, and apolipoprotein analyses of reisolated lipoproteins. The LDL increased in buoyancy and particle diameter, and became enriched in glycerides relative to cholesterol. Both HDL2 and HDL3 increased in particle diameter, buoyancy, and relative glyceride content, and small amounts of apoA-I appeared in newly formed particles of less than 75 A diameter. Association of apoA-I with VLDL or LDL could be reproduced by addition of lipid extracts of lipolyzed VLDL or purified free fatty acids in the absence of lipolysis, and was progressively inhibited by the presence of increasing amounts of albumin. We conclude that lipolysis products promote multiple interactions at the surface of triglyceride-rich lipoproteins undergoing lipolysis, including physical complex formation with other lipoprotein particles and transfers of lipids and apolipoproteins. These processes may facilitate remodeling of lipoproteins in the course of their intravascular metabolism.  相似文献   

11.
While low apolipoprotein A-I (apoA-I) levels are primarily associated with increased high density lipoprotein (HDL) fractional catabolic rate (FCR), the factors that regulate the clearance of HDL from the plasma are unclear. In this study, the effect of lipid composition of reconstituted HDL particles (LpA-I) on their rate of clearance from rabbit plasma has been investigated. Sonicated LpA-I containing 1 to 2 molecules of purified human apoA-I and 5 to 120 molecules of palmitoyl-oleoyl phosphatidylcholine (POPC) exhibit similar charge and plasma FCR to that for lipid free apoA-I, 2.8 pools/day. Inclusion of 1 molecule of apoA-II to an LpA-I complex increases the FCR to 3.5 pools/day, a value similar to that observed for exchanged-labeled HDL3. In contrast, addition of 40 molecules of triglyceride, diglyceride, or cholesteryl ester to a sonicated LpA-I containing 120 moles of POPC and 2 molecules of apoA-I increases the negative charge of the particle and reduces the FCR to 1.8 pools/day. Discoidal LpA-I are the most positively charged lipoprotein particles and also have the fastest clearance rates, 4.5 pools/day. Immunochemical characterization of the different LpA-I particles shows that the exposure of an epitope at residues 98 to 121 of the apoA-I molecule is associated with an increased negative particle charge and a slower clearance from the plasma.We conclude that the charge and conformation of apoA-I are sensitive to the lipid composition of LpA-I and play a central role in regulating the clearance of these lipoproteins from plasma. conformation regulate the clearance of reconstituted high density lipoprotein in vivo.  相似文献   

12.
The high density lipoproteins (HDL) in human plasma are classified on the basis of apolipoprotein composition into those containing apolipoprotein (apo) A-I but not apoA-II, (A-I)HDL, and those containing both apoA-I and apoA-II, (A-I/A-II)HDL. Cholesteryl ester transfer protein (CETP) transfers core lipids between HDL and other lipoproteins. It also remodels (A-I)HDL into large and small particles in a process that generates lipid-poor, pre-beta-migrating apoA-I. Lipid-poor apoA-I is the initial acceptor of cellular cholesterol and phospholipids in reverse cholesterol transport. The aim of this study is to determine whether lipid-poor apoA-I is also formed when (A-I/A-II)rHDL are remodeled by CETP. Spherical reconstituted HDL that were identical in size had comparable lipid/apolipoprotein ratios and either contained apoA-I only, (A-I)rHDL, or (A-I/A-II)rHDL were incubated for 0-24 h with CETP and Intralipid(R). At 6 h, the apoA-I content of the (A-I)rHDL had decreased by 25% and there was a concomitant formation of lipid-poor apoA-I. By 24 h, all of the (A-I)rHDL were remodeled into large and small particles. CETP remodeled approximately 32% (A-I/A-II)rHDL into small but not large particles. Lipid-poor apoA-I did not dissociate from the (A-I/A-II)rHDL. The reasons for these differences were investigated. The binding of monoclonal antibodies to three epitopes in the C-terminal domain of apoA-I was decreased in (A-I/A-II)rHDL compared with (A-I)rHDL. When the (A-I/A-II)rHDL were incubated with Gdn-HCl at pH 8.0, the apoA-I unfolded by 15% compared with 100% for the apoA-I in (A-I)rHDL. When these incubations were repeated at pH 4.0 and 2.0, the apoA-I in the (A-I)rHDL and the (A-I/A-II)rHDL unfolded completely. These results are consistent with salt bridges between apoA-II and the C-terminal domain of apoA-I, enhancing the stability of apoA-I in (A-I/A-II)rHDL and possibly contributing to the reduced remodeling and absence of lipid poor apoA-I in the (A-I/A-II)rHDL incubations.  相似文献   

13.
Abstract: Although the critical role of apolipoprotein E (apoE) allelic variation in Alzheimer's disease and in the outcome of CNS injury is now recognized, the functions of apoE in the CNS remain obscure, particularly with regard to lipid metabolism. We used density gradient ultracentrifugation to identify apoE-containing lipoproteins in human CSF. CSF apoE lipoproteins, previously identified only in the 1.063–1.21 g/ml density range, were also demonstrated in the 1.006–1.060 g/ml density range. Plasma lipoproteins in this density range include low-density lipoprotein and high-density lipoprotein (HDL) subfraction 1 (HDL1). The novel CSF apoE lipoproteins are designated HDL1. No immunoreactive apolipoprotein A-I (apo A-I) or B could be identified in the CSF HDL1 fractions. Large lipoproteins 18.3 ± 6.6 nm in diameter (mean ± SD) in the HDL1 density range were demonstrated by electron microscopy. Following fast protein liquid chromatography of CSF at physiologic ionic strength, apoE was demonstrated in particles of average size greater than particles containing apoA-I. The largest lipoproteins separated by this technique contained apoE without apoA-I. Thus, the presence of large apoE-containing lipoproteins was confirmed without ultracentrifugation. Interconversion between the more abundant smaller apoE-HDL subfractions 2 and 3 and the novel larger apoE-HDL1 is postulated to mediate a role in cholesterol redistribution in brain.  相似文献   

14.
Selective breeding of baboons has produced families with increased plasma levels of large high density lipoproteins (HDL1) and very low (VLDL) and low (LDL) density lipoproteins when the animals consume a diet enriched in cholesterol and saturated fat. High HDL1 baboons have a slower cholesteryl ester transfer, which may account for the accumulation of HDL1, but not of VLDL and LDL. To investigate the mechanism of accumulation of VLDL + LDL in plasma of the high HDL1 phenotype, we selected eight half-sib pairs of baboons, one member of each pair with high HDL1, the other member with little or no HDL1 on the same high cholesterol, saturated fat diet. Baboons were fed a chow diet and four experimental diets consisting of high and low cholesterol with corn oil, and high and low cholesterol with lard, each for 6 weeks, in a crossover design. Plasma lipids and lipoproteins and hepatic mRNA levels were measured on each diet. HDL1 phenotype, type of dietary fat, and dietary cholesterol affected plasma cholesterol and apolipoprotein (apo) B concentrations, whereas dietary fat alone affected plasma triglyceride and apoA-I concentrations. HDL1 phenotype and dietary cholesterol alone did not influence hepatic mRNA levels, whereas dietary lard, compared to corn oil, significantly increased hepatic apoE mRNA levels and decreased hepatic LDL receptor and HMG-CoA synthase mRNA levels. Hepatic apoA-I message was associated with cholesterol concentration in HDL fractions as well as with apoA-I concentrations in the plasma or HDL. However, hepatic apoB message level was not associated with plasma or LDL apoB levels. Total plasma cholesterol, including HDL, was negatively associated with hepatic LDL receptor and HMG-CoA synthase mRNA levels. However, compared with low HDL1 baboons, high HDL1 baboons had higher concentrations of LDL and HDL cholesterol at the same hepatic mRNA levels. These studies suggest that neither overproduction of apoB from the liver nor decreased hepatic LDL receptor levels cause the accumulation of VLDL and LDL in the plasma of high HDL1 baboons. These studies also show that, in spite of high levels of VLDL + LDL and HDL1, the high HDL1 baboons had higher levels of mRNA for LDL receptor and HMG-CoA synthase. This paradoxical relationship needs further study to understand the pathophysiology of VLDL and LDL accumulation in the plasma of animals with the high HDL1 phenotype.  相似文献   

15.
The heterogeneity of serum lipoproteins (excluding very low density (VLDL) and intermediate density (IDL) lipoproteins) and that of lipoproteins secreted by HepG2 cells has been studied by immunoblot analysis of the apolipoprotein composition of the particles separated by polyacrylamide gradient gel electrophoresis (GGE) under nondenaturing conditions. The reactions of antibodies to apoA-I, apoA-II, apoE, apoB, apoD, and apoA-IV have revealed discrete bands of particles which differ widely in size and apolipoprotein composition. GGE of native serum lipoproteins demonstrated that apoA-II is present in lipoproteins of limited size heterogeneity (apparent molecular mass 345,000 to 305,000) and that apoB is present in low density lipoproteins (LDL) and absent from all smaller or denser lipoproteins. In contrast, serum apoA-I, E, D, and A-IV are present in very heterogeneous particles. Serum apoA-I is present mainly in particles of 305 to 130 kDa where it is associated with apoA-II, and in decreasing order of immunoreactivity in particles of 130-90 kDa, 56 kDa, 815-345 kDa, and finally within the size range of LDL, all regions where there is little detectable apoA-II. Serum apoE is present in three defined fractions, one within the size range of LDL, one containing heterogeneous particles between 640 and 345 kDa, and one defined fraction at 96 kDa. Serum apoD is also present in three defined fractions, one comigrating with LDL, one containing heterogeneous particles between 390 and 150 kDa, and one band on the migration front. Most of serum apoA-IV is contained in a band comigrating with albumin. GGE of centrifugally prepared LDL shows the presence of apoB, apoE, and apoD, but not that of apoA-I. However, the particles containing apoA-I, which, in serum, migrated within the LDL size range and as bands of 815 to 345 kDa, were recovered upon centrifugation in the d greater than 1.21 g/ml fraction. GGE of high density lipoproteins (HDL) indicated that most of apoA-I, A-II, and A-IV were present in lipoproteins of the same apparent molecular mass (390-152 kDa). ApoD tended to be associated with large HDL, and this was also significant for HDL apoE, which is present in lipoproteins ranging from 640 to 275 kDa. GGE of very high density lipoproteins (VHDL) presented some striking features, one of which was the occurrence of apolipoproteins in very discrete bands of different molecular mass. ApoA-II was bimodally distributed at 250-175 kDa and 175-136 kDa, the latter fraction also containing apoA-I.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Previous studies have provided detailed information on the formation of spherical high density lipoproteins (HDL) containing apolipoprotein (apo) A-I but no apoA-II (A-I HDL) by an lecithin:cholesterol acyltransferase (LCAT)-mediated process. In this study we have investigated the formation of spherical HDL containing both apoA-I and apoA-II (A-I/A-II HDL). Incubations were carried out containing discoidal A-I reconstituted HDL (rHDL), discoidal A-II rHDL, and low density lipoproteins in the absence or presence of LCAT. After the incubation, the rHDL were reisolated and subjected to immunoaffinity chromatography to determine whether A-I/A-II rHDL were formed. In the absence of LCAT, the majority of the rHDL remained as either A-I rHDL or A-II rHDL, with only a small amount of A-I/A-II rHDL present. By contrast, when LCAT was present, a substantial proportion of the reisolated rHDL were A-I/A-II rHDL. The identity of the particles was confirmed using apoA-I rocket electrophoresis. The formation of the A-I/A-II rHDL was influenced by the relative concentrations of the precursor discoidal A-I and A-II rHDL. The A-I/A-II rHDL included several populations of HDL-sized particles; the predominant population having a Stokes' diameter of 9.9 nm. The particles were spherical in shape and had an electrophoretic mobility slightly slower than that of the alpha-migrating HDL in human plasma. The apoA-I:apoA-II molar ratio of the A-I/A-II rHDL was 0.7:1. Their major lipid constituents were phospholipids, unesterified cholesterol, and cholesteryl esters. The results presented are consistent with LCAT promoting fusion of the A-I rHDL and A-II rHDL to form spherical A-I/A-II rHDL. We suggest that this process may be an important source of A-I/A-II HDL in human plasma.  相似文献   

17.
Intracellular forms of chylomicrons, very low density lipoprotein (VLDL) and high density lipoprotein (HDL) have previously been isolated from the rat intestine. These intracellular particles are likely to be nascent precursors of secreted lipoproteins. To study the distribution of intracellular apolipoprotein among nascent lipoproteins, a method to isolate intracellular lipoproteins was developed and validated. The method consists of suspending isolated enterocytes in hypotonic buffer containing a lipase inhibitor, rupturing cell membranes by nitrogen cavitation, and isolating lipoproteins by sequential ultracentrifugation. ApoB and apoA-I mass are determined by radioimmunoassay and newly synthesized apolipoprotein characterized following [3H]leucine intraduodenal infusion. Intracellular chylomicron, VLDL, low density lipoprotein (LDL), and HDL fractions were isolated and found to contain apoB, and apoA-IV, and apoA-I. In the fasted animal, less than 10% of total intracellular apoB and apoA-I was bound to lipoproteins and 7% of apoB and 35% of apoA-I was contained in the d 1.21 g/ml infranatant. The remainder of intracellular apolipoprotein was in the pellets of centrifugation. Lipid feeding doubled the percentage of intracellular apoA-I bound to lipoproteins and increased the percentage of intracellular apoB bound to lipoproteins by 65%. Following lipid feeding, the most significant increase was in the chylomicron apoB and HDL apoA-I fractions. These data suggest that in the fasting state, 90% of intracellular apoB and apoA-I is not bound to lipoproteins. Lipid feeding shifts intracellular apolipoprotein onto lipoproteins, but most intracellular apolipoprotein remains non-lipoprotein bound. The constant presence of a large non-lipoprotein-bound pool suggests that apolipoprotein synthesis is not the rate limiting step in lipoprotein assembly or secretion.  相似文献   

18.
Recent developments in lipid metabolism have shown the importance of ATP binding cassette transporters (ABCs) in controlling cellular and total body lipid homeostasis. ABCA1 mediates the transport of cholesterol and phospholipids from cells to lipid-poor apolipoprotein A-I (apoA-I), whereas ABCG1 and ABCG4 mediate the transport of cholesterol from cells to lipidated lipoproteins. ABCA1, ABCG1, and ABCG4 are all expressed in cholesterol-loaded macrophages, and macrophages from ABCA1 and ABCG1 knockout mice accumulate cholesteryl esters. Here, we show that the lipidated particles generated by incubating cells overexpressing ABCA1 with apoA-I are efficient acceptors for cholesterol released from cells overexpressing either ABCG1 or ABCG4. The cholesterol released to the particles was derived from a cholesterol oxidase-accessible plasma membrane pool in both ABCG1 and ABCG4 cells, which is the same pool of cholesterol shown previously to be removed by high density lipoproteins. ABCA1 cells incubated with apoA-I generated two major populations of cholesterol- and phospholipid-rich lipoprotein particles that were converted by ABCG1 or ABCG4 cells to one major particle population that was highly enriched in cholesterol. These results suggest that ABCG1 and ABCG4 act in concert with ABCA1 to maximize the removal of excess cholesterol from cells and to generate cholesterol-rich lipoprotein particles.  相似文献   

19.
20.
HDL (high-density lipoproteins) remove cell cholesterol and protect from atherosclerosis. The major HDL protein is apoA-I (apolipoprotein A-I). Most plasma apoA-I circulates in lipoproteins, yet ~5% forms monomeric lipid-poor/free species. This metabolically active species is a primary cholesterol acceptor and is central to HDL biogenesis. Structural properties of lipid-poor apoA-I are unclear due to difficulties in isolating this transient species. We used thermal denaturation of human HDL to produce lipid-poor apoA-I. Analysis of the isolated lipid-poor fraction showed a protein/lipid weight ratio of 3:1, with apoA-I, PC (phosphatidylcholine) and CE (cholesterol ester) at approximate molar ratios of 1:8:1. Compared with lipid-free apoA-I, lipid-poor apoA-I showed slightly altered secondary structure and aromatic packing, reduced thermodynamic stability, lower self-associating propensity, increased adsorption to phospholipid surface and comparable ability to remodel phospholipids and form reconstituted HDL. Lipid-poor apoA-I can be formed by heating of either plasma or reconstituted HDL. We propose the first structural model of lipid-poor apoA-I which corroborates its distinct biophysical properties and postulates the lipid-induced ordering of the labile C-terminal region. In summary, HDL heating produces folded functional monomolecular lipid-poor apoA-I that is distinct from lipid-free apoA-I. Increased adsorption to phospholipid surface and reduced C-terminal disorder may help direct lipid-poor apoA-I towards HDL biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号