首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The radio frequency (RF) electromagnetic field of magnetic resonance (MR) scanners can result in significant tissue heating due to the RF coupling with the conducting parts of medical implants. The objective of this article is to evaluate the advantages and shortcomings of a new four‐tier approach based on a combined numerical and experimental procedure, designed to demonstrate safety of implants during MR scans. To the authors' best knowledge, this is the first study analyzing this technique. The evaluation is performed for 1.5 T MR scanners using a generic model of a deep brain stimulator (DBS) with a straight lead and a helical lead. The results show that the approach is technically feasible and provides sound and conservative information about the potential heating of implants. We demonstrate that (1) applying optimized tools results in reasonable uncertainties for the overall evaluation; (2) each tier reduces the overestimation by several dB at the cost of more demanding evaluation steps; (3) the implant with the straight lead would cause local temperature increases larger than 18 °C at the RF exposure limit for the normal operating mode; (4) Tier 3 is not sufficient for the helical implant; and (5) Tier 4 might be too demanding to be performed for complex implants. We conclude with a suggestion for a procedure that follows the same concept but is between Tier 3 and 4. In addition, the evaluation of Tier 3 has shown consistency with current scan practice, namely, the resulting heat at the lead tip is less than 3.5 °C for the straight lead and 0.7 °C for the helix lead for scans at the current applied MR scan restrictions for deep brain stimulation at a head average SAR of 0.1 W/kg. Bioelectromagnetics 34:104–113, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
The possibility of tissue heating due to an auditory brainstem implant (ABI) or a modified cochlear implant (CI) during magnetic resonance imaging (MRI) of the head was tested on a full-sized human phantom using a realistic phantom head consisting of simulated skull, brain, and muscle. Dielectric properties of the brain, muscle, and bone materials were similar to those of human tissues at 64 MHz. The body consisted of homogeneous phantom muscle enclosed in a human-shaped fiberglass shell. Thermographic and fiber-optic temperature measurements were conducted to reveal any heating. Thermograms of sagittal, frontal, and horizontal planes of the head with the ABI and CI electrodes were taken immediately before and after a 26 min MRI scan. The MRI sequence was set at 94 excitations and 25 ms echo time to induce maximum radiofrequency heating, as suggested by the General Electric Company. The difference of these two thermograms gives the heating results. In two uncut phantom heads, Teflon tubes were placed along the implanted ABI and CI, and temperature data were recorded via fiber-optic probes before, during, and after the MRI. Results showed no observable heating associated with the ABI and the modified CI during worst-case MRI of the head. © 1995 Wiley-Liss, Inc.  相似文献   

3.
PurposeTo compare magnetic resonance (MR) thermometry based on the proton resonance frequency (PRF) method using a single shot echoplanar imaging (ss EPI) sequence to both of the standard sequences, gradient echo (GRE) and segmented echoplanar imaging (seg EPI) in the in vivo human brain, at 1.5T and 3T.Material and methodsRepetitive MR thermometry was performed on the brain of six volunteers using GRE, seg EPI, and ss EPI sequences on whole-body 1.5T and 3T clinical systems using comparable acquisition parameters. Phase stability and temperature data precision in the human head were determined over 12 min for the three sequences at both field strengths. An ex-vivo swine skeletal muscle model was used to evaluate temperature accuracy of the ss EPI sequence during heating by high intensity focused ultrasound (HIFU).ResultsIn-vivo examinations of brain revealed an average temperature precision of 0.37 °C/0.39 °C/0.16 °C at 3T for the GRE/seg EPI/ss EPI sequences. At 1.5T, a precision of 0.58 °C/0.63 °C/0.21 °C was achieved. In the ex-vivo swine model, a strong correlation of temperature data derived using ss EPI and GRE sequences was found with a temperature deviation <1 °C.ConclusionThe ss EPI sequence was the fastest and the most precise sequence for MR thermometry, with significantly higher accuracy compared to GRE.  相似文献   

4.

Background

Deep brain stimulation (DBS) is an established treatment for patients with movement disorders. Patients receiving chronic DBS provide a unique opportunity to explore the underlying mechanisms of DBS using functional MRI. It has been shown that the main safety concern with MRI in these patients is heating at the electrode tips – which can be minimised with strict adherence to a supervised acquisition protocol using a head-transmit/receive coil at 1.5T. MRI using the body-transmit coil with a multi-channel receive head coil has a number of potential advantages including an improved signal-to-noise ratio.

Study outline

We compared the safety of cranial MRI in an in vitro model of bilateral DBS using both head-transmit and body-transmit coils. We performed fibre-optic thermometry at a Medtronic ActivaPC device and Medtronic 3389 electrodes during turbo-spin echo (TSE) MRI using both coil arrangements at 1.5T and 3T, in addition to gradient-echo echo-planar fMRI exposure at 1.5T. Finally, we investigated the effect of transmit-coil choice on DBS stimulus delivery during MRI.

Results

Temperature increases were consistently largest at the electrode tips. Changing from head- to body-transmit coil significantly increased the electrode temperature elevation during TSE scans with scanner-reported head SAR 0.2W/kg from 0.45°C to 0.79°C (p<0.001) at 1.5T, and from 1.25°C to 1.44°C (p<0.001) at 3T. The position of the phantom relative to the body coil significantly impacted on electrode heating at 1.5T; however, the greatest heating observed in any position tested remained <1°C at this field strength.

Conclusions

We conclude that (1) with our specific hardware and SAR-limited protocol, body-transmit cranial MRI at 1.5T does not produce heating exceeding international guidelines, even in cases of poorly positioned patients, (2) cranial MRI at 3T can readily produce heating exceeding international guidelines, (3) patients with ActivaPC Medtronic systems are safe to be recruited to future fMRI experiments performed under the specific conditions defined by our protocol, with no likelihood of confound by inappropriate stimulus delivery.  相似文献   

5.
This work demonstrates the feasibility of a hybrid radiofrequency (RF) applicator that supports magnetic resonance (MR) imaging and MR controlled targeted RF heating at ultrahigh magnetic fields (B0≥7.0T). For this purpose a virtual and an experimental configuration of an 8-channel transmit/receive (TX/RX) hybrid RF applicator was designed. For TX/RX bow tie antenna electric dipoles were employed. Electromagnetic field simulations (EMF) were performed to study RF heating versus RF wavelength (frequency range: 64 MHz (1.5T) to 600 MHz (14.0T)). The experimental version of the applicator was implemented at B0 = 7.0T. The applicators feasibility for targeted RF heating was evaluated in EMF simulations and in phantom studies. Temperature co-simulations were conducted in phantoms and in a human voxel model. Our results demonstrate that higher frequencies afford a reduction in the size of specific absorption rate (SAR) hotspots. At 7T (298 MHz) the hybrid applicator yielded a 50% iso-contour SAR (iso-SAR-50%) hotspot with a diameter of 43 mm. At 600 MHz an iso-SAR-50% hotspot of 26 mm in diameter was observed. RF power deposition per RF input power was found to increase with B0 which makes targeted RF heating more efficient at higher frequencies. The applicator was capable of generating deep-seated temperature hotspots in phantoms. The feasibility of 2D steering of a SAR/temperature hotspot to a target location was demonstrated by the induction of a focal temperature increase (ΔT = 8.1 K) in an off-center region of the phantom. Temperature simulations in the human brain performed at 298 MHz showed a maximum temperature increase to 48.6C for a deep-seated hotspot in the brain with a size of (19×23×32)mm3 iso-temperature-90%. The hybrid applicator provided imaging capabilities that facilitate high spatial resolution brain MRI. To conclude, this study outlines the technical underpinnings and demonstrates the basic feasibility of an 8-channel hybrid TX/RX applicator that supports MR imaging, MR thermometry and targeted RF heating in one device.  相似文献   

6.
Deep Brain Stimulation (DBS) is increasingly used to treat a variety of brain diseases by sending electrical impulses to deep brain nuclei through long, electrically conductive leads. Magnetic resonance imaging (MRI) of patients pre- and post-implantation is desirable to target and position the implant, to evaluate possible side-effects and to examine DBS patients who have other health conditions. Although MRI is the preferred modality for pre-operative planning, MRI post-implantation is limited due to the risk of high local power deposition, and therefore tissue heating, at the tip of the lead. The localized power deposition arises from currents induced in the leads caused by coupling with the radiofrequency (RF) transmission field during imaging. In the present work, parallel RF transmission (pTx) is used to tailor the RF electric field to suppress coupling effects. Electromagnetic simulations were performed for three pTx coil configurations with 2, 4, and 8-elements, respectively. Optimal input voltages to minimize coupling, while maintaining RF magnetic field homogeneity, were determined for all configurations using a Nelder-Mead optimization algorithm. Resulting electric and magnetic fields were compared to that of a 16-rung birdcage coil. Experimental validation was performed with a custom-built 4-element pTx coil. In simulation, 95-99% reduction of the electric field at the tip of the lead was observed between the various pTx coil configurations and the birdcage coil. Maximal reduction in E-field was obtained with the 8-element pTx coil. Magnetic field homogeneity was comparable to the birdcage coil for the 4- and 8-element pTx configurations. In experiment, a temperature increase of 2±0.15°C was observed at the tip of the wire using the birdcage coil, whereas negligible increase (0.2±0.15°C) was observed with the optimized pTx system. Although further research is required, these initial results suggest that the concept of optimizing pTx to reduce DBS heating effects holds considerable promise.  相似文献   

7.
The present study aims at proposing a relationship between the coagulation volume and the target tip temperature in different tissues (viz., liver, lung, kidney, and breast) during temperature-controlled radiofrequency ablation (RFA). A 20-min RFA has been modelled using commercially available monopolar multi-tine electrode subjected to different target tip temperatures that varied from 70°C to 100°C with an increment of 10°C. A closed-loop feedback proportional-integral-derivative (PID) controller has been employed within the finite element model to perform temperature-controlled RFA. The coagulation necrosis has been attained by solving the coupled electric field distribution, the Pennes bioheat and the first-order Arrhenius rate equations within the three-dimensional finite element model of different tissues. The computational study considers temperature-dependent electrical and thermal conductivities along with the non-linear piecewise model of blood perfusion. The comparison between coagulation volume obtained from the numerical and in vitro experimental studies has been done to evaluate the aptness of the numerical models. In the present study, a total of 20 numerical simulations have been performed along with 12 experiments on tissue-mimicking phantom gel using RFA device. The study revealed a strong dependence of the coagulation volume on the pre-set target tip temperature and ablation time during RFA application. Further, the effect of target tip temperature on the applied input voltage has been studied in different tissues. Based on the results attained from the numerical study, statistical correlations between the coagulation volume and treatment time have been developed at different target tip temperatures for each tissue.  相似文献   

8.
Exposure to radiofrequency (RF) power deposition during magnetic resonance imaging (MRI) induces elevated body‐tissue temperatures and may cause changes in heart and breathing rates, disturbing thermoregulation. Eleven temperature sensors were placed in muscle tissue and one sensor in the rectum (measured in 10 cm depth) of 20 free‐breathing anesthetized pigs to verify temperature curves during RF exposure. Tissue temperatures and heart and breathing rates were measured before, during, and after RF exposure. Pigs were placed into a 60‐cm diameter whole‐body resonator of a 3 T MRI system. Nineteen anesthetized pigs were divided into four RF exposure groups: sham (0 W/kg), low‐exposure (2.7 W/kg, mean exposure time 56 min), moderate‐exposure (4.8 W/kg, mean exposure time 31 min), and high‐exposure (4.4 W/kg, mean exposure time 61 min). One pig was exposed to a whole‐body specific absorption rate (wbSAR) of 11.4 W/kg (extreme‐exposure). Hotspot temperatures, measured by sensor 2, increased by mean 5.0 ± 0.9°C, min 3.9; max 6.3 (low), 7.0 ± 2.3°C, min 4.6; max 9.9 (moderate), and 9.2 ± 4.4°C, min 6.1, max 17.9 (high) compared with 0.3 ± 0.3°C in the sham‐exposure group (min 0.1, max 0.6). Four time‐temperature curves were identified: sinusoidal, parabolic, plateau, and linear. These curve shapes did not correlate with RF intensity, rectal temperature, breathing rate, or heart rate. In all pigs, rectal temperatures increased (2.1 ± 0.9°C) during and even after RF exposure, while hotspot temperatures decreased after exposure. When rectal temperature increased by 1°C, hotspot temperature increased up to 42.8°C within 37 min (low‐exposure) or up to 43.8°C within 24 min (high‐exposure). Global wbSAR did not correlate with maximum hotspot. Bioelectromagnetics. 2021;42:37–50. © 2020 The Authors. Bioelectromagnetics published by Wiley Periodicals LLC on behalf of Bioelectromagnetics Society  相似文献   

9.
Conclusion  In this study, we found that both heating temperature and heating time affect mean particle size, particle size distribution, and drug entrapment efficiency of albumin microspheres. The change in heating temperature may affect the particle size of the product, especially when heating is carried out at a lower temperature (90°C–120°C). Hence the temperature should be selected on the basis of desired size range. Given that it is desirable for a maximum amount of the drug used in the preparation to become entrapped in microspheres, heating temperature and heating time for denaturation of albumin should be selected cautiously, as both have a significant effect on drug entrapment efficiency. In the present case, the highest entrapment was found in batches prepared by heating at 90°C for 5 minutes. However, the extent of stabilization at the selected temperature and the time of heating should also be taken into consideration, as they may affect the release of drugs to target tissue.  相似文献   

10.
Hyperthermia has been shown to be a medically useful procedure applicable for different indications. For the connection between clinical effects and heat, it is important to understand the actual temperatures achieved in the tissue. There are limited temperature data available when using capacitive hyperthermia devices even though this is worldwide the most widespread method for loco-regional heating. Hence, this study examines temperature measurements using capacitive heating. Bioequivalent phantoms were used for the measurements, which, however, do not consider perfusion in live tissue. In general, the required temperature impact for an effective cancer therapy should need an increase of 0.2°C/min, which has been achieved. In the described tests on the non-perfused dummy, on average, the temperature increases by approximately 2°C in the first 12 min. The temperature difference relative to the starting temperature was 10–12°C within a therapy time of 60 min (rising from the initial room temperature between 20–24°C and 32–34°C). The average deviation with three individual measurements each on different days in a specified localization was 2°C. The minimum temperature difference was 4.2°C, and the maximum value was reached in the liver with 10.5°C. These values were achieved with a moderate energy input of 60–150 watts, with much higher performance outputs still available.

These results show that the tested capacitive device is capable of achieving quick temperature increase with a sufficient impact into the depth of a body.  相似文献   


11.
Floral initiation of 10 white clover varieties growing in three controlled day/night temperature regimes, 22“/10°C, 20°/10°C, 17°/10°C, was recorded. Effects of artificial soil heating on floral initiation of the same plants subsequently transferred to the field were also examined. In the controlled environments only a slight increase in day temperature (2–5°C) was necessary to significantly increase flowering. Defoliation at the three temperatures had contrasting effects on subsequent flower production. Results from the soil heating experiment suggested that increased temperature might compensate for short daylengths, by bringing forward reproductive bud initiation by 1 month. Soil heating increased the total number of inflorescences produced.  相似文献   

12.
Transformation of the water cluster distribution in wet potato starch (with a water content of 27 to 45%) at temperatures that ranged from–50 to +80°C was studied by differential scanning calorimetry. A significant difference was observed between the transformations in the temperature ranges below and above 0°C. Both cooling and heating at T < 0°C enabled a reorganization of the initial size distribution of water clusters characteristic for room temperature. These changes could lead to an increase of the average cluster size during both crystallization and melting. The transformation intensity depended on the water content and scanning rate and differed between the native and amorphous states of starch. In this case, the cluster-size distribution remained unimodal. However, heating of wet native starch to temperatures close to the point of transition into the amorphous state (75–80°C) induced a bimodal distribution due to the emergence of large water clusters; thus, the heterogeneity of the water distribution within the native granules increased.  相似文献   

13.
Electric fields (E-fields) induced within a phantom head from exposure to three different advanced mobile phone system (AMPS) hand-held telephones were measured using an implantable E-field probe. Measurements were taken in the eye nearest the phone and along a lateral scan through the brain from its centre to the side nearest the phone. During measurement, the phones were positioned alongside the phantom head as in typical use and were configured to transmit at maximum power (600 mW nominal). The specific absorption rate (SAR) was calculated from the in situ E-field measurements, which varied significantly between phone models and antenna configuration. The SARs induced in the eye ranged from 0.007 to 0.21 W/kg. Metal-framed spectacles enhanced SAR levels in the eye by 9–29%. In the brain, maximum levels were recorded at the measurement point closest to the phone and ranged from 0.12 to 0.83 W/kg. These SARs are below peak spatial limits recommended in the U.S. and Australian national standards [IEEE Standards Coordinating Committee 28 (1991): C95.1-1991 and Standards Australia (1990): AS2772.1-1990] and the IRPA guidelines for safe exposure to radio frequency (RF) electromagnetic fields [IRPA (1988): Health Phys 54:115–123]. Furthermore, a detailed thermal analysis of the eye indicated only a 0.022°C maximum steady-state temperature rise in the eye from a uniform SAR loading of 0.21 W/kg. A more approximate thermal analysis in the brain also indicated only a small maximum temperature rise of 0.034°C for a local SAR loading of 0.83 W/kg. © 1995 Wiley-Liss, Inc.  相似文献   

14.
Microwave evoked body movements were studied in mice. A resonant cavity was used to provide head and neck exposure of the mouse to pulsed and gated continuous wave (CW) 1.25 GHz microwaves. No difference in response to pulsed and gated CW stimuli of equal average power was found. The incidence of the microwave evoked body movements increased proportionally with specific absorption (dose) when the whole-body average specific absorption rate was at a constant level (7300 W/kg). Under a constant average specific absorption rate, the response incidence reached a plateau at 0.9 kJ/kg. For doses higher than 0.9 kJ/kg, response incidence was proportional to the specific absorption rate and reached a plateau at 900 W/kg. Body movements could be evoked by a single microwave pulse. The lowest whole-body specific absorption (SA) tested was 0.18 kJ/kg, and the corresponding brain SA was 0.29 kJ/kg. Bulk heating potentials of these SAs were less than 0.1 °C. For doses higher than 0.9 kJ/kg, the response incidence was also proportional to subcutaneous temperature increment and subcutaneous heating rate. The extrapolated absolute thresholds (0% incidence) were 1.21 °C temperature increment and 0.24 °C/s heating rate. Due to high subcutaneous heating rates, these microwaves must be perceived by the mouse as an intense thermal sensation but not a pain sensation because the temperature increment was well below the threshold for thermal pain. Results of the present study should be considered in promulgation of personnel protection guideline against high peak power but low average power microwaves. © 1994 Wiley-Liss, Inc.  相似文献   

15.
  • 1.1.|Friend erythroleukemia cells (FELC, a differentiating cell line) were heated at various temperatures and heating sequences. Heat treatments which ranged from 41.0 to 45.0°C and did not cause differentiation in FELC and inhibited the differentiation response to DMSO in FELC.
  • 2.2.|Heating resulted in cell killing which increased with temperature and heating time. Protracted low temperature heating (40.0–42.0°C) or incubation at 37°C between two heat treatments at 45.0°C resulted in thermotolerance for both the endpoints of cell killing and differentiation.
  • 3.3.|High temperature heating (45.0°C) before heating at 41.0–42.0°C resulted in increased thermal sensitivity to the latter heat treatments. This was observed for both the survival and differentiation endpoints.
  • 4.4.|A comparison was made of the thermal sensitivity for the two endpoints of cell killing and differentiation.
  相似文献   

16.

Objective

To assess the effect of small temperature increases in mesophilic sludge-based digesters in order to develop and evaluate strategies for improving the biogas production in full-scale digesters.

Results

Methane production was strongly affected by small temperature differences, and this result was consistent across samples from 15 full-scale digesters. The specific methane yield varied between 42 and 97.5 ml g VS?1 after 15 days of incubation at 35 °C, and improved when increasing the digester temperature to 39 °C. Only a limited quantity of additional gas was required to balance out the cost of heating and a positive energy balance was obtained. Further increases in temperature, in some cases, negatively affected the production when operated at 42 °C compared to 39 °C.

Conclusions

Small temperature increases should be applied to mesophilic sludge-based digesters to optimize the biogas production and is applicable to digesters operated in the lower mesophilic temperature range.
  相似文献   

17.
Heat is known to depress spermatogenesis in the boar, but there is little quantitative evidence on its effects on testicular steroidogenesis in this species. The studies reported here examine the effects of short-term and chronic testicular hyperthermia on levels of testosterone (T) and corticosteroids (C) in plasma of Large-White (LW) boars.In examining effects of acute heating, three mature LW boars were maintained at 23°, 35° and 23°C ambient during three consecutive 24-h periods. Blood samples were collected hourly and levels of T and C in plasma determined. Prior to heating, plasma T levels varied diurnally (P<0.05) about a 24-h mean value of 2.78 nM. During heating at 35°C, and recovery at 23°C, mean plasma T levels remained unchanged (P>0.05) but there was a loss of diurnal rhythm. Mean 24-h plasma C levels did not change during heating (20.8 nMat 23°C, 20.2 nMat 35°; P>0.05), but fell (P<0.05) to 8.3 nM during the recovery period at 23°C.Effects of chronic heating on testis function were investigated by determining T and C concentrations in peripheral plasma of unilateral cryptorchid boars in which the scrotal testis was removed shortly after birth. Blood samples were drawn hourly, for 24 h, from each animal at about 10 months of age. The boars were then treated, i.v., with 700 IU hCG and blood samples collected frequently for 12 h. Mean plasma T levels before and after hCG treatment were 1.94 and 3.71 nM respectively, the difference between these levels being significant (P<0.05). At the same time, comparison was made with four normal littermates, hemicastrated at 3 days of age and heated to maintain testis temperature near 38°C. Mean plasma T levels in these boars increased (P<0.05) from 5.90 nM before, to 26.5 nM after hCG treatment, both levels being higher (P<0.05) than corresponding values for the hemicastrate cryptorchid animals. Levels of C in plasma increased (P<0.05) in the heated-scrotal boars following hCG treatment but decreased (P<0.05) in the cryptorchid animals. Histological comparison of testicular tissue from the scrotal and cryptorchid animals in this experiment revealed hypertrophy of Leydig cells in the abdominal testes.It is concluded that acute testicular hyperthermia (to c. 38°C) does not result in significant depression in mean plasma T levels of boars. However, chronic heating of testes at 38°C is associated with lower basal levels of T in peripheral plasma and an impaired response of plasma T concentrations following gonadotrophic stimulation.  相似文献   

18.
A new procedure is described for the estimation of ACh by pyrolysis-gas chromatography/ mass spectrometry. ACh iodide and the iodides of ACh-d16 or propionylcholine are slowly demethylated at 250°C by pyrolysis on the tip of a glass probe after insertion into the heated entrance of a glass tube leading to a packed capillary column. The volatile tertiary amines are then carried by helium to the column and trapped in its initial part which is kept at about 60°C. After 2–3 min the chromatography is started when the amines are released by heating this part to the ambient temperature in the oven (165°C). Peaks due to demethylated ACh and propionylcholine are well separated. The limit of detection is about 0.3pmol. After pyrolysis of mixtures of ACh and either ACh-d16 or propionylcholine the peak amplitudes are linearly related to the doses.  相似文献   

19.
Abstract: It is well established that ischemia-induced release of glutamate and the subsequent activation of postsynaptic glutamate receptors are important processes involved in the development of ischemic neuronal damage. Moderate intraischemic hypothermia attenuates glutamate release and confers protection from ischemic damage, whereas mild intraischemic hyperthermia increases glutamate release and augments ischemic pathology. As protein kinase C (PKC) is implicated in neurotransmitter release and glutamate receptor-mediated events, we evaluated the relationship between intraischemic brain temperature and PKC activity in brain regions known to be vulnerable or nonvulnerable to transient global ischemia. Twenty minutes of bilateral carotid artery occlusion plus hypotension were induced in rats in which intraischemic brain temperature was maintained at 30°C, 37°C, or 39°C. Prior to and following ischemia, brain temperature was 37°C in all groups. Cytosolic, membrane-bound, and total PKC activities were determined in hippocampal, striatal, cortical, and thalamic homogenates at the end of ischemia and at 0.25–24 h of recirculation. PKC activity of control rats varied by region and were affected by altered brain temperature. For both membrane-bound and cytosolic PKC, there was a significant temperature effect, and for membrane-bound PKC there was also a significant effect of region. Rats with normothermic ischemia (37°C) showed extensive depressions of all PKC fractions. Hippocampus and striatum were noteworthy for depressions in PKC activity extending from the earliest (15 min) to the latest (24 h) recirculation times studied, whereas cortex showed PKC depressions chiefly during the first hour of recirculation, and the thalamic pattern was inconsistent. In contrast, in rats with hypothermic ischemia (30°C), significant overall effects were noted only for total PKC in thalamus, which showed depressed levels at both 1 and 24 h of recirculation. Rats with hyperthermic (39°C) ischemia also showed significant overall effects for the time course of membrane-bound, cytosolic, and total PKC activities in the hippocampus, striatum, and cortex. However, no significant reductions in PKC indices were observed in the thalamus. For membrane-bound PKC, significant temperature effects were noted for hippocampus, striatum, and cortex, but not for thalamus. For cytosolic, as well as total PKC, activity, significant temperature effects were noted for all four brain regions. Our results indicate that ischemia, followed by reperfusion, induces a significant reduction in PKC activity and that this process is highly influenced by the brain temperature during ischemia. Furthermore, our data also establish that differences exist in the response of PKC to ischemia/recirculation in vulnerable versus non-vulnerable brain regions. These results suggest that PKC alterations may be an important factor involved in the modulatory effects of temperature on the outcome following transient global ischemia.  相似文献   

20.
Properties and substrate specificities of four esterases (Esterase-I, -II, -III, -IV) from Aspergillus niger were studied. Esterase-I and Esterase-II were found to be markedly stable to heat. When Esterase-I was assayed at 35°C using methylacetylsalicylate as a substrate, even after heating at 100°C for 15 min 60% of its activity remained. However, Esterase-I scarcely hydrolyzed the substrate at 70°C or over, because of a reversible change in conformation by heating as found by CD measurement. The maximum activity of Esterase-I was found at 55°C at 20 min of reaction time. Esterase-II was stable up to 80°C and had an optimum temperature for reaction at 80°C, but was irreversively inactivated by heating for 15 min at 90°C.

The four esterases hydrolyzed aliphatic esters of short chain fatty acids and acetyl esters of phenols, but neither methyl esters of aromatic carboxylic acids nor acetyl esters of aromatic alcohols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号