首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
When females mate with multiple males, they set the stage for postcopulatory sexual selection via sperm competition and/or cryptic female choice. Surprisingly little is known about the rates of multiple mating by females in the wild, despite the importance of this information in understanding the potential for postcopulatory sexual selection to drive the evolution of reproductive behaviour, morphology and physiology. Dung beetles in the genus Onthophagus have become a laboratory model for studying pre‐ and postcopulatory sexual selection, yet we still lack information about the reproductive behaviour of female dung beetles in natural populations. Here, we develop microsatellite markers for Onthophagus taurus and use them to genotype the offspring of wild‐caught females and to estimate natural rates of multiple mating and patterns of sperm utilization. We found that O. taurus females are highly polyandrous: 88% of females produced clutches sired by at least two males, and 5% produced clutches with as many as five sires. Several females (23%) produced clutches with significant paternity skew, indicating the potential for strong postcopulatory sexual selection in natural populations. There were also strong positive correlations between the number of offspring produced and both number of fathers and paternity skew, which suggests that females benefit from mating polyandrously by inciting postcopulatory mechanisms that bias paternity towards males that can sire more viable offspring. This study evaluates the fitness consequences of polyandry for an insect in the wild and provides strong evidence that female dung beetles benefit from multiple mating under natural conditions.  相似文献   

2.
A challenge in evolutionary biology is to understand the operation of sexual selection on males in polyandrous groups, where sexual selection occurs before and after mating. Here, we combine fine‐grained behavioral information (>41,000 interactions) with molecular parentage data to study sexual selection in replicated, age‐structured groups of polyandrous red junglefowl, Gallus gallus. Male reproductive success was determined by the number of females mated (precopulatory sexual selection) and his paternity share, which was driven by the polyandry of his female partners (postcopulatory sexual selection). Pre‐ and postcopulatory components of male reproductive success covaried positively; males with high mating success also had high paternity share. Two male phenotypes affected male pre‐ and postcopulatory performance: average aggressiveness toward rival males and age. Aggressive males mated with more females and more often with individual females, resulting in higher sexual exclusivity. Similarly, younger males mated with more females and more often with individual females, suffering less intense sperm competition than older males. Older males had a lower paternity share even allowing for their limited sexual exclusivity, indicating they may produce less competitive ejaculates. These results show that—in these populations—postcopulatory sexual selection reinforces precopulatory sexual selection, consistently promoting younger and more aggressive males.  相似文献   

3.
When females mate multiply, postcopulatory sexual selection can occur via sperm competition and cryptic female choice. Although postcopulatory selection has the potential to be a major force in driving evolution, few studies have estimated its strength in natural populations. Likewise, although polyandry is widespread across taxa and is the focus of a growing body of research, estimates of natural female mating rates are still limited in number. Microsatellites can be used to estimate the number of mates represented in females' sperm stores and the number of sires contributing to their offspring, enabling comparisons both of polyandry and of two components of postcopulatory selection: the proportion of males that mate but fail to sire offspring, and the degree of paternity skew among the males that do sire offspring. Here, we estimate the number of mates and sires among wild females in the Hawaiian swordtail cricket Laupala cerasina. We compare these estimates to the actual mating rates and paternity shares we observed in a semi‐natural population. Our results show that postcopulatory sexual selection operates strongly in this species: wild females mated with an average minimum of 3.6 males but used the sperm from only 58% of them. Furthermore, among the males that did sire offspring, paternity was significantly skewed. These patterns were similar to those observed in the field enclosure, where females mated with an average of 5.7 males and used the sperm from 62% of their mates, with paternity significantly skewed among the sires.  相似文献   

4.
Polyandry is widespread and influences patterns of sexual selection, with implications for sexual conflict over mating. Assessing sperm precedence patterns is a first step towards understanding sperm competition within a female and elucidating the roles of male- and female-controlled factors. In this study behavioural field data and genetic data were combined to investigate polyandry in the chokka squid Loligo reynaudii. Microsatellite DNA-based paternity analysis revealed multiple paternity to be the norm, with 79% of broods sired by at least two males. Genetic data also determined that the male who was guarding the female at the moment of sampling was a sire in 81% of the families tested, highlighting mate guarding as a successful male tactic with postcopulatory benefits linked to sperm deposition site giving privileged access to extruded egg strings. As females lay multiple eggs in capsules (egg strings) wherein their position is not altered during maturation it is possible to describe the spatial / temporal sequence of fertilisation / sperm precedence There were four different patterns of fertilisation found among the tested egg strings: 1) unique sire; 2) dominant sire, with one or more rare sires; 3) randomly mixed paternity (two or more sires); and 4) a distinct switch in paternity occurring along the egg string. The latter pattern cannot be explained by a random use of stored sperm, and suggests postcopulatory female sperm choice. Collectively the data indicate multiple levels of male- and female-controlled influences on sperm precedence, and highlights squid as interesting models to study the interplay between sexual and natural selection.  相似文献   

5.
Polyandry facilitates postcopulatory inbreeding avoidance in house mice   总被引:2,自引:0,他引:2  
The avoidance of genetic incompatibilities between parental genotypes has been proposed to account for the evolution of polyandry. An extension of this hypothesis suggests polyandry may provide an opportunity for females to avoid the cost of inbreeding by exploiting postcopulatory mechanisms that bias paternity toward unrelated male genotypes. Here we test the inbreeding avoidance hypothesis in house mice by experimentally manipulating genetic compatibility via matings between siblings and nonsiblings. We observed little difference in reproductive success between females mated to two siblings or females mated to two nonsiblings. Females mated to both a sibling and a nonsibling tended to have a lower litter survival, but only when the first male to mate was a sibling. Microsatellite data revealed that paternity was biased toward nonsiblings when a female mated with both a sibling and a nonsibling. Unlike previous studies of invertebrates, paternity bias toward the sibling male was independent of mating sequence. We provide one of the first empirical demonstrations that polyandry facilitates postcopulatory sexual selection in a vertebrate. We discuss this result in relation to the possibility of selective fertilization of ova based on major histocompatibility complex (MHC) haploid expression of sperm.  相似文献   

6.
Old‐male mating advantage has been convincingly demonstrated in Bicyclus anynana butterflies. This intriguing pattern may be explained by two alternative hypotheses: (i) an increased aggressiveness and persistence of older males during courtship, being caused by the older males' low residual reproductive value; and (ii) an active preference of females towards older males what reflects a good genes hypothesis. Against this background, we here investigate postcopulatory sexual selection by double‐mating Bicyclus anynana females to older and younger males, thus allowing for sperm competition and cryptic mate choice, and by genotyping the resulting offspring. Virgin females were mated with a younger virgin (2–3 days old) and afterwards an older virgin male (12–13 days old) or vice versa. Older males had a higher paternity success than younger ones, but only when being the second (=last) mating partner, while paternity success was equal among older and younger males when older males were the first mating partner. Older males produced larger spermatophores with much higher numbers of fertile sperm than younger males. Thus, we found no evidence for cryptic female mate choice. Rather, the findings reported here seem to result from a combination of last‐male precedence and the number of sperm transferred upon mating, both increasing paternity success.  相似文献   

7.
Blyth JE  Gilburn AS 《Heredity》2005,95(2):174-178
The seaweed fly, Coelopa frigida, exhibits LMSP. A large chromosomal inversion system affects many traits including egg-to-adult viability via heterosis. Consequently, there is also considerable potential for cryptic female mate choice to operate on the basis of sperm karyotype. Here, we investigated the effect of time interval and chromosomal inversion karyotype on postcopulatory sexual selection. Homokaryotypic females were mated with a male of the same and a male of the opposite homokaryotype. The order of the matings was varied so cryptic female mate choice could operate either in concert or antagonistically with LMSP. LMSP was found when there was a 24 h time interval between matings, irrespective of the order in which the males were mated. However, when the males were mated in quick succession the order of mating was important. When LMSP and cryptic female mate choice work in concert a high level of LMSP was found. However, when the male of opposite homokaryotype mated first, then first male sperm precedence was observed. This suggests that polyandrous females might be able to bias paternity but only when matings occur in quick succession. Consequently, population density is likely to affect the operation of postcopulatory sexual selection.  相似文献   

8.
Multiple mating is thought to provide an opportunity for females to avoid the costs of genetic incompatibility by postcopulatory selection of compatible sperm haplotypes. Few studies have tested the genetic incompatibility hypothesis directly. Here we experimentally manipulated the compatibility of females with their mates using the gryllid cricket Teleogryllus oceanicus. We recorded the hatching success of eggs laid by females mated with two nonsibling males, two siblings, or one nonsibling male and one sibling. In contrast with two previous studies on crickets that have adopted this approach, the hatching success of eggs did not differ between females mated with two full siblings and females mated with two unrelated males, indicating that embryo viability was not a cost of inbreeding in this species. We assigned paternity to offspring produced by females mated to both a sibling and a nonsibling male using microsatellite markers. As in previous studies of this species, we were unable to detect any difference in the proportion of offspring sired by the 1st and the 2nd male to mate with a female when females were unrelated to their mates. However, in our experimental matings the proportion of offspring sired by the nonsibling male depended on his sequence position. Paternity was biased toward the nonsibling male when he mated first. Our data show that molecular analyses of paternity are essential to detect subtle mechanisms of postcopulatory sexual selection.  相似文献   

9.
We describe the patterns of paternity success from laboratory mating experiments conducted in Antechinus agilis, a small size dimorphic carnivorous marsupial (males are larger than females). A previous study found last‐male sperm precedence in this species, but they were unable to sample complete litters, and did not take male size and relatedness into account. We tested whether last‐male sperm precedence regardless of male size still holds for complete litters. We explored the relationship between male mating order, male size, timing of mating and relatedness on paternity success. Females were mated with two males of different size with either the large or the small male first, with 1 day rest between the matings. Matings continued for 6 h. In these controlled conditions male size did not have a strong effect on paternity success, but mating order did. Males mating second sired 69.5% of the offspring. Within first mated males, males that mated closer to ovulation sired more offspring. To a lesser degree, variation appeared also to be caused by differences in genetic compatibility of the female and the male, where high levels of allele‐sharing resulted in lower paternity success.  相似文献   

10.
Success in sperm competition is of fundamental importance to males, yet little is known about what factors determine paternity. Theory predicts that males producing high sperm numbers have an advantage in sperm competition. Large spermatophore size (the sperm containing package) also correlates with paternity in some species, but the relative importance of spermatophore size and sperm numbers has remained unexplored. Males of the small white butterfly, Pieris rapae (Lepidoptera: Pieridae), produce large nutritious spermatophores on their first mating. On their second mating, spermatophores are only about half the size of the first, but with almost twice the sperm number. We manipulated male mating history to examine the effect of spermatophore size and sperm numbers on male fertilization success. Overall, paternity shows either first male or, more frequently, second male sperm precedence. Previously mated males have significantly higher fertilization success in competition with males mating for the first time, strongly suggesting that high sperm number is advantageous in sperm competition. Male size also affects paternity with relatively larger males having higher fertilization success. This may indicate that spermatophore size influences paternity, because in virgin males spermatophore size correlates with male size. The paternity of an individual male is also inversely correlated with the mass of his spermatophore remains dissected out of the female. This suggests that females may influence paternity by affecting the rate of spermatophore drainage. Although the possibility of female postcopulatory choice remains to be explored, these results clearly show that males maximize their fertilization success by increasing the number of sperm in their second mating.  相似文献   

11.
Female mating rate is an important variable for understanding the role of females in the evolution of mating systems. Polyandry influences patterns of sexual selection and has implications for sexual conflict over mating, as well as for wider issues such as patterns of gene flow and levels of genetic diversity. Despite this, remarkably few studies of insects have provided detailed estimates of polyandry in the wild. Here we combine behavioural and molecular genetic data to assess female mating frequency in wild populations of the two-spot ladybird, Adalia bipunctata (Coleoptera: Coccinellidae). We also explore patterns of sperm use in a controlled laboratory environment to examine how sperm from multiple males is used over time by females, to link mating with fertilization. We confirm that females are highly polyandrous in the wild, both in terms of population mating rates (approximately 20% of the population found in copula at any given time) and the number of males siring offspring in a single clutch (three to four males, on average). These patterns are consistent across two study populations. Patterns of sperm use in the laboratory show that the number of mates does not exceed the number of fathers, suggesting that females have little postcopulatory influence on paternity. Instead, longer copulations result in higher paternity for males, probably due to the transfer of larger numbers of sperm in multiple spermatophores. Our results emphasize the importance of combining field and laboratory data to explore mating rates in the wild.  相似文献   

12.
Understanding the evolution of polyandry (mating with multiple males) is a major issue in the study of animal breeding systems. We examined the adaptive significance of polyandry in Drosophila melanogaster, a species with well-documented costs of mating in which males generally cannot force copulations. We found no direct fitness advantages of polyandry. Females that mated with multiple males had no greater mean fitness and no different variance in fitness than females that mated repeatedly with the same male. Subcomponents of reproductive success, including fecundity, egg hatch rate, larval viability, and larval development time, also did not differ between polyandrous and monogamous females. Polyandry had no affect on progeny sex ratios, suggesting that polyandry does not function against costly sex-ratio distorters. We also found no evidence that polyandry functions to favor the paternity of males successful in precopulatory sexual selection. Experimentally controlled opportunities for precopulatory sexual selection had no effect on postcopulatory sperm precedence. Although these results were generally negative, they are supported with substantial statistical power and they help narrow the list of evolutionary explanations for polyandry in an important model species.  相似文献   

13.
Sperm competition has been studied in many gonochoric animals but little is known about its occurrence in simultaneous hermaphrodites, especially in land snails. The reproductive behaviour of the land snail Helix aspersa involves several features, like multiple mating, long-term sperm storage and dart-shooting behaviour, which may promote sperm competition. Cryptic female choice may also occur through a spermatheca subdivided into tubules, which potentially allows compartmentalized sperm storage of successive mates. In order to determine the outcome of postcopulatory sexual selection in this species, we designed a cross-breeding experiment where a recipient ('female') mated with two sperm donors ('males'). Mates came from either the same population as the recipient or from a distinct one. To test for the influence a recipient can have on the paternity of its offspring, we excluded the effects of dart shooting by using only virgin snails as sperm donors because they do not shoot any dart before their first copulation. We measured the effects of size of mates as well as time to first and second mating on second mate sperm precedence (P2; established using microsatellite markers). Multiple paternity was detected in 62.5% of clutches and overall there was first-mate sperm precedence with a mean P2 of 0.24. Generalized linear modelling revealed that the best predictors of paternity were the time between matings and the time before first mating. Overall, both first and second mates that copulated quickly got greater parentage, which may suggest that postcopulatory events influence patterns of sperm precedence in the garden snail.  相似文献   

14.
In structured populations, competition for reproductive opportunities should be relaxed among related males. The few tests of this prediction often neglect the fact that sexual selection acts through multiple mechanisms, both before and after mating. We performed experiments to study the role of within‐group male relatedness across pre‐ and postcopulatory mechanisms of sexual selection in social groups of red junglefowl, Gallus gallus, in which two related males and one unrelated male competed over females unrelated to all the males. We confirm theoretical expectations that, after controlling for male social status, competition over mating was reduced among related males. However, this effect was contrasted by other sexual selection mechanisms. First, females biased male mating in favor of the unrelated male, and might also favor his inseminations after mating. Second, males invested more—rather than fewer—sperm in postcopulatory competition with relatives. A number of factors may contribute to explain this counterintuitive pattern of sperm allocation, including trade‐offs between male investment in pre‐ versus postcopulatory competition, differences in the relative relatedness of pre‐ versus postcopulatory competitors, and female bias in sperm utilization in response to male relatedness. Collectively, these results reveal that within‐group male relatedness may have contrasting effects in different mechanisms of sexual selection.  相似文献   

15.
We conducted three experiments to test the effects of mating history of both sexes and of male body size on mating behaviours in the water strider, Gerris buenoi. Our manipulations influenced the interests of both sexes and, thus, the degree of conflict over mating behaviours. Mating history was a dichotomous variable (deprived/mated), depending on holding conditions in the laboratory. Experiment 1 considered and found independent effects of male and female mating history on latency to copulation and copulation duration. In experiment 2, we manipulated only female mating history, using unsuccessful struggle rates as evidence for female reluctance and conflict over mating. Finally, we investigated the relation between male body size and mating history on copulation duration. We predicted that intersexual conflict over mating would be lowest when females were deprived, because female interests under these conditions should more closely match those of males. Deprived females began mating in half the time of mated females and were twice as likely to mate because of reduced reluctance. Furthermore, copulation duration for deprived males was about one and a half times longer than that for mated males. Although previous studies examining nonrandom mating patterns by size predicted longer copulations for small males, we found that small males prolonged copulation when deprived more than large males. We conclude that females primarily influence copulation frequency, but males primarily influence copulation duration. Our results favour the hypothesis that reduced mating opportunity for small males accounts for their extended copulation duration. Finally, our findings provide evidence for strong effects of male body size on selection mechanisms in water striders, and support the hypothesis of conflicting pre- and postcopulatory selection mechanisms in this group. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.  相似文献   

16.
P2, the proportion of offspring sired by the second male to mate, is an indicator of the outcome of postcopulatory sexual selection, which occurs through sperm competition and/or cryptic female choice. We determined the appropriate dose of gamma radiation for sterilization of adult males and, using the sterile male technique, measured P2 in the adzuki bean beetle, Callosobruchus chinensis. Adult males of C. chinensis were almost completely sterilized when irradiated at 80 Gy. Thus, we obtained sterile males through irradiation at this dose. Neither the probability of female first mating nor the probability of female remating was affected by whether females were paired with normal or sterile males. The P2 calculated from the hatching success of eggs laid by females that mated both with normal and sterile males did not differ between reciprocal mating sequences, indicating that the sterilization has no effect on sperm fertilizing ability. The P2 was estimated at 0.25. This study shows that female remating in C. chinensis means the coexistence of sperm from two males and thus the occurrence of postcopulatory sexual selection within the female reproductive tract, resulting in first-male sperm precedence.  相似文献   

17.
As evidence mounts that male genitalia can affect relative fertilisation success, the role that sexual selection has played in the rapid and divergent evolution of genitalia is becoming increasingly recognized. Unfortunately, the limited functional understanding of these complex structures and their interactions with the female reproductive tract often limit interpretation regarding their evolution. Here, we address this issue using the earwig Euborellia brunneri, where both the male intromittent organ and the female spermatheca are highly exaggerated in length yet structurally simple. In a double mating design, we use the sterile male technique to study how sperm precedence patterns are affected by male genital length, male age, and the size of the male sperm storage organ, the seminal vesicle. Relative fertilisation success exhibited considerable variation around modest last-male paternity. Only an interaction between first and second male genital length affected paternity, where males gained reduced paternity when preceded by rivals with longer genitalia. Longer genitalia confer defensive benefits in sperm competition by apparently depositing ejaculate deeper in the tubular spermatheca, safe from removal by rivals. Paternity similarly depended on an interaction between the ages of both males, likely mediated by sperm traits as testes size decreased with age. Seminal vesicle size showed positive allometry but did not affect paternity; instead, greater seminal vesicle size in last males expedited oviposition. The exaggerated yet relatively simple genitalia of E. brunneri facilitate an unusually clear example of post-copulatory selection on phenotypic variation in multiple reproductive traits.  相似文献   

18.
Empirical tests of sexual selection theory generally utilize model systems under laboratory settings, and extend conclusions to evolutionary processes occurring in nature. The biological significance of laboratory findings will depend largely on the mating rates of females and patterns of paternity in natural populations, information on which is generally lacking. Here we use microsatellite markers to provide rare estimates of female mating rates and patterns of parentage in a species of tettigoniid, Requena verticalis, which has been used extensively to test theory on the evolution of male parental investment and its influence on the direction of sexual selection. We found that although the number of males having a genetic representation in the female's sperm stores was higher for females collected late in the breeding season than those collected early in the season, overall the female mating rate was lower than that expected from laboratory observations. Analysis of parentage of offspring produced by females at the end of the breeding season revealed that all males represented in the sperm stores fathered offspring, although paternity was biased away from that expected from random sperm utilization. The data show that the complete first male sperm precedence documented in laboratory studies of this species does not persist in natural populations. Our data provide a solid underpinning for conclusions drawn from laboratory studies of this species.  相似文献   

19.
Although recent studies have demonstrated that female crickets prefer novel males to previous mates, the relative contribution of pre- and postcopulatory behaviors to this advantage remain unknown, as do the reproductive consequences to males. I paired females either with previous or novel mates, and recorded the latency to mating and the time after mating at which the female removed the male's spermatophore, terminating sperm transfer. Females that mated with familiar males removed their spermatophores sooner than females that mated with novel males. Females paired with novel males also mated more quickly than females paired with familiar males, but this difference was not statistically significant. A molecular-based paternity analysis was used to determine whether the postcopulatory preference of females for novel males influences a male's fertilization success. Females were assigned to either mate three times with the same male and then once with a novel male, or four times with four different males. The paternity of the last male was higher when the female previously had mated repeatedly with the same male than when she had mated previously with different males. These results suggest that female spermatophore removal behavior influences male paternity such that novel males receive a fertility benefit.  相似文献   

20.
A changing climate is expected to have profound effects on many aspects of ectotherm biology. We report on a decade-long study of free-ranging sand lizards (Lacerta agilis), exposed to an increasing mean mating season temperature and with known operational sex ratios. We assessed year-to-year variation in sexual selection on body size and postcopulatory sperm competition and cryptic female choice. Higher temperature was not linked to strength of sexual selection on body mass, but operational sex ratio (more males) did increase the strength of sexual selection on body size. Elevated temperature increased mating rate and number of sires per clutch with positive effects on offspring fitness. In years when the "quality" of a female's partners was more variable (in standard errors of a male sexual ornament), clutches showed less multiple paternity. This agrees with prior laboratory trials in which females exercised stronger cryptic female choice when male quality varied more. An increased number of sires contributing to within-clutch paternity decreased the risk of having malformed offspring. Ultimately, such variation may contribute to highly dynamic and shifting selection mosaics in the wild, with potential implications for the evolutionary ecology of mating systems and population responses to rapidly changing environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号