首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Daniel Sol  Louis Lefebvre 《Oikos》2000,90(3):599-605
A fundamental question in ecology is whether there are evolutionary characteristics of species that make some better than others at invading new communities. In birds, nesting habits, sexually selected traits, migration, clutch size and body mass have been suggested as important variables, but behavioural flexibility is another obvious trait that has received little attention. Behavioural flexibility allows animals to respond more rapidly to environmental changes and can therefore be advantageous when invading novel habitats. Behavioural flexibility is linked to relative brain size and, for foraging, has been operationalised as the number of innovations per taxon reported in the short note sections of ornithology journals. Here, we use data on avian species introduced to New Zealand and test the link between forebrain size, feeding innovation frequency and invasion success. Relative brain size was, as expected, a significant predictor of introduction success, after removing the effect of introduction effort. Species with relatively larger brains tended to be better invaders than species with smaller ones. Introduction effort, migratory strategy and mode of juvenile development were also significant in the models. Pair-wise comparisons of closely related species indicate that successful invaders also showed a higher frequency of foraging innovations in their region of origin. This study provides the first evidence in vertebrates of a general set of traits, behavioural flexibility, that can potentially favour invasion success.  相似文献   

2.
The relationship between sexual selection and extinction risk has rarely been investigated. This is unfortunate because extinction plays a key role in determining the patterns of species richness seen in extant clades, which form the basis of comparative studies into the role that sexual selection may play in promoting speciation. We investigate the extent to which the perceived risk of extinction relates to four different estimates of sexual selection in 1030 species of birds. We find no evidence that the number of threatened species is distributed unevenly according to a social mating system, and neither of our two measures of pre-mating sexual selection (sexual dimorphism and dichromatism) was related to extinction risk, after controlling for phylogenetic inertia. However, threatened species apparently experience more intense post-mating sexual selection, measured as testis size, than non-threatened species. These results persisted after including body size as a covariate in the analysis, and became even stronger after controlling for clutch size (two known correlates of extinction risk). Sexual selection may therefore be a double-edged process-promoting speciation on one hand but promoting extinction on the other. Furthermore, we suggest that it is post-mating sexual selection, in particular, that is responsible for the negative effect of sexual selection on clade size. Why this might be is unclear, but the mean population fitness of species with high intensities of post-mating sexual selection may be especially low if costs associated with multiple mating are high or if the selection load imposed by post-mating selection is higher relative to that of pre-mating sexual selection.  相似文献   

3.
In birds, large brains are associated with a series of population‐level phenomena, including invasion success, species richness, and resilience to population decline. Thus, they appear to open up adaptive opportunities through flexibility in foraging and anti‐predator behaviour. The evolutionary pathway leading to large brain size has received less attention than behavioural and ecological correlates. Using a comparative approach, we show that, independent of previously recognized associations with developmental constraints, relative brain size in birds is strongly related to biparental care, pair‐bonding, and stable social relationships. We also demonstrate correlated evolution between large relative brain size and altricial development, and that the evolution of both traits is contingent on biparental care. Thus, biparental care facilitates altricial development, which permits the evolution of large relative brain size. Finally, we show that large relative brain size is associated with pair‐bond strength, itself a likely consequence of cooperation and negotiation between partners under high levels of parental investment. These analyses provide an evolutionary model for the evolution of and prevalence of biparental care, altricial development, and pair‐bonding in birds. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 111–123.  相似文献   

4.
Aim  To consider the role of local colonization and extinction rates in explaining the generation and maintenance of species richness gradients at the regional scale.
Location  A Mediterranean biome (oak forests, deciduous forests, shrublands, pinewoods, firwoods, alpine heathlands, crops) in Catalonia, Spain.
Methods  We analysed the relative importance of direct and indirect effects of community size in explaining species richness gradients. Direct sampling effects of community size on species richness are predicted by Hubbell's neutral theory of biodiversity and biogeography. The greater the number of individuals in a locality, the greater the number of species expected by random direct sampling effects. Indirect effects are predicted by the abundance–extinction hypothesis, which states that in more productive sites increased population densities and reduced extinction rates may lead to high species richness. The study system was an altitudinal gradient of forest bird species richness.
Results  We found significant support for the existence of both direct and indirect effects of community size in species richness. Thus, both the neutral and the abundance–extinction hypotheses were supported for the altitudinal species richness gradient of forest birds in Catalonia. However, these mechanisms seem to drive variation in species richness only in low-productivity areas; in high-productivity areas, species richness was uncorrelated with community size and productivity measures.
Main conclusions  Our results support the existence of a geographical mosaic of community-based processes behind species richness gradients, with contrasting abundance–extinction dynamics and sampling effects in areas of low and high productivity.  相似文献   

5.
Evolutionary diversification of clades of squamate reptiles   总被引:2,自引:0,他引:2  
We analysed the diversification of squamate reptiles (7488 species) based on a new molecular phylogeny, and compared the results to similar estimates for passerine birds (5712 species). The number of species in each of 36 squamate lineages showed no evidence of phylogenetic conservatism. Compared with a random speciation-extinction process with parameters estimated from the size distribution of clades, the alethinophidian snakes (2600 species) were larger than expected and 13 clades, each having fewer than 20 species, were smaller than expected, indicating rate heterogeneity. From a lineage-through-time plot, we estimated that a provisional rate of lineage extinction (0.66 per Myr) was 94% of the rate of lineage splitting (0.70 per Myr). Diversification in squamate lineages was independent of their stem age, but strongly related to the area of the region within which they occur. Tropical vs. temperate latitude exerted a marginally significant influence on species richness. In comparison with passerine birds, squamates share several clade features, including: (1) independence of species richness and age; (2) lack of phylogenetic signal with respect to clade size; (3) general absence of exceptionally large clades; (4) over-representation of small clades; (5) influence of region size on clade size; and (6) similar rates of speciation and extinction. The evidence for both groups suggests that clade size has achieved long-term equilibrium, suggesting negative feedback of species richness on the rate of diversification.  相似文献   

6.
In a given area, human activities usually cause the extinction of native species and the establishment of non‐native species. A key conservation issue is whether non‐native establishment tends to outpace native species extinction to produce a net gain in species richness. To determine this, empirical data must be accumulated at various scales. I show that, within the United States, the number of established non‐native plant species per state does tend to outpace the number of extinct and threatened species per state. The net gain in plant species is strongly and positively correlated with human population density. Continuation of this trend predicts substantial gains in net plant species richness for all states in the United States as human population grows. This contrasts with freshwater fishes, where most states show a net loss of species diversity as extinct and threatened species exceed established non‐native species. Changes in fish diversity do not correlate strongly with human population or non‐native species but are largely driven by the decline of native fish species.  相似文献   

7.
Cross-taxonomic surrogates can be feasible alternatives to direct measurements of biodiversity in conservation if validated with robust data and used with explicit goals. However, few studies of cross-taxonomic surrogates have examined how temporal changes in composition or richness in one taxon can drive variation in concordant patterns of diversity in another taxon, particularly in a dynamic and heavily modified landscape. We examined this problem by assessing changes in cross-taxonomic associations over time between the surrogate (birds) and target vertebrate taxa (mammals, reptiles) that demand high sampling effort, in a heterogeneous mosaic landscape comprising pine monoculture, eucalypt woodland remnants and agricultural land. Focussing on four study years (1999, 2001, 2011, 2013) from a dataset spanning 15 years, we: (1) investigated temporal changes in cross-taxonomic congruency among three animal taxa, (2) explored how temporal variation in composition and species richness of each taxon might account for variation in cross-taxonomic congruency, and (3) identified habitat structural variables that are strongly correlated with species composition of each taxon. We found the strength of cross-taxonomic congruency varied between taxa in response to both landscape context and over time. Among the three taxa, overall correlations were weak but were consistently positive and strongest between birds and mammals, while correlations involving reptiles were usually weak and negative. We also found that stronger species richness and composition correlations between birds and mammals were not only more prevalent in woodland remnants in the agricultural matrix, but they also increased in strength over time. Temporal shifts in species composition differed in rate and extent among the taxa even though these changes were significant over time, while important habitat structural correlates were seldom shared across taxa. Our study highlights the role of the landscape matrix and time in shaping animal communities and the resulting cross-taxonomic associations in the woodland remnants, especially after a major perturbation event (i.e. plantation establishment). In such dynamic landscapes, differing and taxon-specific shifts in diversity over time can influence the strength, direction and consistency of cross-taxonomic correlations, therefore posing a ‘temporal’ problem for the use of surrogates like birds in monitoring and assessments of biodiversity, and conservation management practices.  相似文献   

8.
9.
Aim To test relationships between the richness and composition of vascular plants and birds and attributes of habitat fragments using a model land‐bridge island system, and to investigate whether the effects of fragmentation differ depending on species natural history traits. Location Thousand Island Lake, China. Methods We compiled presence/absence data of vascular plant and bird species through exhaustive surveys of 41 islands. Plant species were assigned to two categories: shade‐intolerant and shade‐tolerant species; bird species were assigned to three categories: edge, interior, and generalist species. We analysed the relationships between island attributes (area, isolation, elevation, shape complexity, and perimeter to area ratio) and species richness using generalized linear models (GLMs). We also investigated patterns of composition in relation to island attributes using ordination (redundancy analysis). Results We found that island area explained a high degree of variation in the species richness of all species groups. The slope of the species–area relationship (z) was 0.16 for all plant species and 0.11 for all bird species. The lowest z‐value was for generalist birds (0.04). The species richness of the three plant species groups was associated with island area per se, while that of all, generalist, and interior birds was explained mainly by elevation, and that of edge bird species was associated primarily with island shape. Patterns of species composition were most strongly related to elevation, island shape complexity, and perimeter to area ratio rather than to island area per se. Species richness had no significant relationship with isolation, but species composition did. We also found differential responses among the species groups to changes in island attributes. Main conclusions Within the Thousand Island Lake system, the effects of fragmentation on both bird and plant species appear to be scale‐dependent and taxon‐specific. The number of plant species occurring on an island is strongly correlated with island area, and the richness of birds and the species composition of plants and birds are associated with variables related to habitat heterogeneity. We conclude that the effects of fragmentation on species diversity and composition depend not only on the degree of habitat loss but also on the specific patterns of habitat fragmentation.  相似文献   

10.
Towards a biogeographic regionalization of the European biota   总被引:1,自引:0,他引:1  
Aim To determine if it is possible to generate analytically derived regionalizations for multiple groups of European plants and animals and to explore potential influences on the regions for each taxonomic group. Location Europe. Methods We subjected range maps of trees, butterflies, reptiles, amphibians, birds and mammals to k‐means clustering followed by v‐fold cross‐validation to determine the pattern and number of regions (clusters). We then used the mean range sizes of species in each group as a correlate of the number of regions obtained for each taxon, and climate and species richness gradients as correlates of the spatial arrangement of the group‐specific regions. We also included the pattern of tree clusters as a predictor of animal clusters in order to test the ‘habitat templet’ concept as an explanation of animal distribution patterns. Results Spatially coherent clusters were found for all groups. The number of regions ranged from three to eight and was strongly associated with the mean range sizes of the species in each taxon. The cluster patterns of all groups were associated with various combinations of climate, underlying species richness gradients and, in the case of animals, the arrangement of tree clusters, although the rankings of the correlates differed among groups. In four of five groups the tree pattern was the strongest single predictor of the animal cluster patterns. Main conclusions Despite a long history of human disturbance and habitat modification, the European biota retains a discernable biogeographic structure. The primary driver appears to be aspects of climate related to water–energy balance, which also influence richness gradients. For many animals, the underlying habitat structure, as measured by tree distributions, appears to have a strong influence on their biogeographic structure, highlighting the need to preserve natural forest formations if we want to preserve the historical signal found in geographic distributions.  相似文献   

11.
The aim was to uncover factors that influence short-term (decade) flora dynamics and species richness of northern marine islets characterized by poor flora and weak anthropogenic pressure. The study used presence–absence data of vascular plant species on 100 small uprising islets of the Kandalaksha Gulf of White Sea (Northern Karelia, Russia). We investigated the influence of islands' attributes on species richness and rates of flora dynamics. Two island types were analyzed separately: younger, stone-like and older, islet-like (which generally are larger and have higher diversity of habitats). Sampled islands were studied via classical biogeographical per island approach and metapopulation per species approach. Stone-like islands had noticeably poorer flora with higher rates of immigration and extinction when compared to those of islet-like islands. The species number for islet-like islands correlated positively with number of habitats, abundance of different habitat types and island area. Species richness of stone-like islands correlated positively only with number of habitat types. Plant species associated with birds, crowberry thickets and coastal rocks were the most stable, and the species of disturbed habitats were significantly less stable. Floristic changes that have occurred have been caused by the massive establishment of new species rather than the extinction of pre-existing taxa. Thus, most of these islands are still in the colonization (assortative) stage. While we found no relationship between island area and species number for stone-like islands, this relationship was seen on islet-like islands.  相似文献   

12.
Migratory bird species have smaller brains than non-migratory species. The behavioural flexibility/migratory precursor hypothesis suggests that sedentary birds have larger brains to allow the behavioural flexibility required in a seasonally variable habitat. The energy trade-off hypothesis proposes that brains are heavy, energetically expensive and therefore, incompatible with migration. Here, we compared relative brain, neocortex and hippocampus volume between migratory and sedentary bats at the species-level and using phylogenetically independent contrasts. We found that migratory bats had relatively smaller brains and neocortices than sedentary species. Our results support the energy trade-off hypothesis because bats do not exhibit the same degree of flexibility in diet selection as sedentary birds. Our results also suggest that bat brain size differences are subtler than those found in birds, perhaps owing to bats'' shorter migration distances. Conversely, we found no difference in relative hippocampus volume between migratory and sedentary species, underscoring our limited understanding of the role of the hippocampus in bats.  相似文献   

13.
The paper describes an investigation of parasite richness in relation to host life history and ecology using data from an extensive survey of helminth parasites (cestodes, trematodes and nematodes) in Soviet birds. Correlates of parasite richness (number of parasite species per host species) were sought among 13 life-history variables, 13 ecological variables and one non-biological variable (number of host individuals examined) across a sample of 158 species of host. A statistical method to control for the effects of phylogenetic association was adopted throughout. Parasite richness correlates positively with the number of hosts examined (sample size) in all three parasite groups. Positive correlations (after controlling for the effects of sample size) were also found between host body weight and parasite richness for trematodes and nematodes, but not for cestodes.
A number of ecological variables were associated with parasite richness. However, when the effects of sample size and body weight were controlled for, only a single significant correlation (an association between trematode richness and aquatic habitat) remained. Similarly, a number of significant correlates of parasite richness were found among the life-history variables examined. Though several of these were robust to the confounding effects of sample size, all could be explained by the co-variation between life-history traits and body weight among the host species under investigation.  相似文献   

14.
15.
在北京分布的受胁鸟类主要分布在平原区,而平原区为城市发展的主要区域,因此,在城市管理中融入受胁鸟类保护的内容十分必要。以北京市平原区分布的24种受胁鸟类为研究对象,以鸟类对栖息地的需求为分类依据,结合国家土地利用分类标准,采用人工目视解译法,在北京市平原区的高清卫星影像图上识别出5类一级鸟类栖息地和17类二级鸟类栖息地,得到北京市平原区鸟类栖息地分布图。使用24种受胁鸟类的空间分布模型掩膜鸟类栖息地分布,得到24种受胁鸟类的预测空间分布,叠加之后获得受胁鸟类丰富度分布格局,结果显示,水域是受胁鸟类丰富度最高的栖息地。将受胁鸟类丰富度分布格局与北京市国家级和市级自然保护区分布叠加进行空缺分析,结果显示:1)北京市的自然保护区多分布在山区,不能有效保护受胁鸟类;2)受胁鸟类的保护与平原区的城市建设、绿地管理关系密切。采用分区统计方法,计算各类栖息地中分布的平均鸟类种类数,作为栖息地保护行动优先级指标,得出湖泊、水库、坑塘、滩地、沼泽地等湿地区域是具有最高保护优先级的栖息地类型,在保护实践资源充足的情况下,应对各类栖息地开展综合保护。该研究首次为北京城市区域受胁鸟类保护提出空间参考和管理建议。  相似文献   

16.
Feeding innovations and parasitism in birds   总被引:2,自引:0,他引:2  
The rate of behavioural innovation, such as opportunistic feeding innovation, may facilitate adaptation to novel environments. Because parasites may affect how their hosts adopt novel means of resource acquisition, or because opportunistic behaviours may involve the risk of being exposed to a large parasite fauna, we hypothesize an evolutionary link between the rate of feeding innovations and parasitism. We investigated the phylogenetic relationship between relative frequency of feeding innovations (adjusted for research effort and population size) and relative size of immune defense organs (as a relative measure of parasite-mediated selection) and the prevalence of blood parasites in birds. Using generalized least squares models, we found that species with relatively large bursa of Fabricius, thymus, and spleen had higher rates of feeding innovations than species with small immune defense organs. Similarly, there was a positive interspecific association between feeding innovation and haematozoa prevalence. These relationships were not confounded by migration, relative brain size, geographical distribution, and male plumage brightness. Analyses of causality relying on evolutionary modelling of discrete variables and path analysis suggest that increasing rate of feeding innovation may place species under intense selection due to parasitism. Therefore, behavioural adaptation by feeding innovation seems to have consequences for the coevolutionary arm race between parasites and hosts.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 441–455.  相似文献   

17.
A sixth great mass extinction is ongoing due to the direct and indirect effects of human pressures. However, not all lineages are affected equally. From an anthropocentric perspective, it is often purported that humans hold a unique place on Earth. Here, we show that our current impacts on the natural world risk realizing that expectation. We simulated species loss on the mammalian phylogenetic tree, informed by species current extinction risks. We explored how Homo sapiens could become isolated in the tree if species currently threatened with extinction disappeared. We analyzed correlates of mammal extinctions risks that may drive this isolation pattern. We show that, within mammals, and more particularly within primates, extinction risks increase with the number of known threat types, and decrease with geographic range size. Extinctions increase with species body mass, trophic level, and the median longitudinal extent of each species range in mammals but not within primates. The risks of extinction are frequently high among H. sapiens close relatives. Pruning threatened primates, including apes (Hominidae, Hylobatidae), from the tree of life will lead to our species being among those with the fewest close relatives. If no action is taken, we will thus not only lose crucial biodiversity for the preservation of Earth ecosystems, but also a key living reference to what makes us human.  相似文献   

18.
Aim Accurate inventories of biota are typically restricted to few locations within an extensive region. Accordingly, effective planning must involve some form of surrogate measures coupled with spatial modelling. We conducted a simultaneous comparison of models of both species richness and the number of rare species using three types of surrogates (indicator species, vegetation composition and structure, and topoclimate) as predictors. We evaluated each type of surrogate alone and in combination with others. Location Data for our analyses were collected from 1996–2004 in three adjacent mountain ranges in the central Great Basin (Lander and Nye counties, Nevada, USA), the Shoshone Mountains, Toiyabe Range and Toquima Range. Methods Data on species richness and species composition of butterflies and birds and measures of vegetation composition and structure were obtained in the field. Topoclimatic variables were derived by GIS from digital sources and satellite images. We used Poisson regression with Bayesian model averaging to predict species richness and the number of rare species. We compared the expected prediction success of all models on the basis of internal and external validation trials. Results Same‐taxon indicator species were the most accurate predictors of species richness and of the number of rare species of butterflies and birds. Cross‐taxon indicator species and topoclimate variables were reasonably accurate predictors of species richness of butterflies and birds and of the number of rare butterfly species. Although vegetation variables were more effective for predicting species richness and number of rare species of birds than of butterflies, they were the least accurate predictors overall. Main conclusions Although indicator species may provide the most accurate predictions of species richness, their practical value, like any surrogate measure, depends greatly on ecological considerations and land‐use context. In general, the ability to predict numbers of rare species based on any set of candidate predictors was weaker than the ability to predict species richness, which may result from the high degree of stochasticity that often characterizes distributions of rare species. Our statistical approach for objective examination of different candidate predictors can help ensure that selection of species‐richness surrogates in any system is scientifically reliable and cost‐effective.  相似文献   

19.
Zoos may play an important role in conservation when they maintain and breed large numbers of animals that are threatened with extinction. Bird conservation is in a privileged situation owing to the extensive biological information available about this class. Annual inventories produced by the "Sociedade de Zoológicos do Brasil" in the years 1981, 1990, 2000, and 2005 were analyzed. Variables, such as the number of zoos per geographic region; number of birds held; number of bird species in each IUCN threat category; number of exotic and native bird species; number of potentially breeding bird species; number of bird species in each order; and number of threatened bird species breeding, were analyzed. Brazilian zoos kept more than 350 bird species. The number of bird species and specimens held by the Brazilian Zoos increased from 1981 to 2000, but decreased in 2005. The same pattern was observed for the number of species in each IUCN threat category. Results showed that the potential of the Brazilian zoos in bird conservation needs to be enhanced because they maintain threatened species but do not implement systematic genetic, reproductive, or behavioral management protocols for most species.  相似文献   

20.
Mammals contribute to important ecosystem processes and services, but many mammalian species are threatened with extinction. We compare how global patterns in three measures of mammalian diversity—species richness, phylogenetic diversity (PD) and body mass variance (BMV)—would change if all currently threatened species were lost. Given that many facets of species'' ecology and life history scale predictably with body mass, the BMV in a region roughly reflects the diversity of species'' roles within ecosystems and so is a simple proxy for functional diversity (FD). PD is also often considered to be a proxy for FD, but our results suggest that BMV losses within ecoregions would be much more severe than losses of PD or species richness, and that its congruence with the latter two measures is low. Because of the disproportionate loss of large mammals, 65 per cent of ecoregions would lose significantly more BMV than under random extinction, while only 11 per cent would lose significantly more PD. Ecosystem consequences of these selective losses may be profound, especially throughout the tropics, but are not captured by PD. This low surrogacy stresses a need for conservation prioritization based on threatened trait diversity, and for conservation efforts to take an ecosystem perspective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号