首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While the common conceptual role of resource subsidies is one of bottom-up nutrient and energy supply, inputs can also alter the structural complexity of environments. This can further impact resource flow by providing refuge for prey and decreasing predation rates. However, the direct influence of different organic subsidies on predator–prey dynamics is rarely examined. In forested wetlands, leaf litter inputs are a dominant energy and nutrient resource and they can also increase benthic surface cover and decrease water clarity, which may provide refugia for prey and subsequently reduce predation rates. In outdoor mesocosms, we investigated how inputs of leaf litter that alter benthic surface cover and water clarity influence the mortality and growth of gray treefrog tadpoles (Hyla versicolor) in the presence of free-swimming adult newts (Notophthalmus viridiscens), which are visual predators. To manipulate surface cover, we added either oak (Quercus spp.) or red pine (Pinus resinosa) litter and crossed these treatments with three levels of red maple (Acer rubrum) litter leachate to manipulate water clarity. In contrast to our predictions, benthic surface cover had no effect on tadpole survival while darkening the water caused lower survival. In addition, individual tadpole mass was lowest in the high maple leachate treatments, suggesting an interaction between bottom-up effects of leaf litter and top-down effects of predation risk that altered mortality and growth of tadpoles. Our results indicate that realistic changes in forest tree composition, which cause concomitant changes in litter inputs to wetlands, can substantially alter community interactions.  相似文献   

2.
A. G. Nicieza 《Oecologia》2000,123(4):497-505
Age and size at metamorphosis are two important fitness components in species with complex life cycles. In anurans, metamorphic traits show remarkable phenotypic plasticity, especially in response to changes in growth conditions. It is also possible that the perception of risk directly determines changes in larval period and the size of metamorphs. This study examines how the perception of predation risk affects the timing of and size at metamorphosis in common frogs (Rana temporaria). I raised tadpoles at two risk levels (fish-conditioned water or unconditioned water) crossed with the availability or lack of food at night (all tadpoles had food available in the day). Tadpoles reacted to chemical cues from predatory fish by decreasing activity. A novel behavioural result was a predation×food interaction effect on refuge use, which also accounted for most of the predator main effect: predation risk only caused increased refuge use in the night-starved treatment. Despite these behavioural modifications, the perception of predation risk did not affect growth rate and mass at metamorphosis in a simple way: the effects of food regime on growth and size at metamorphosis were dependent on the level of predation risk as revealed by significant predation×food interaction effects. Tadpoles who had food withheld at night metamorphosed at the smallest size, suggesting a negative relationship between size at metamorphosis and refuge use. Tadpoles raised in fish-conditioned water had longer larval periods than those in unconditioned water, but these differences were significant only if food was available at night. These results conflict with the hypotheses that tadpoles should reduce their larval period or growth rates (and hence metamorphose at a smaller size) as the risk of predation increases. In contrast to predation risk, food availability strongly affected the length of the larval period: night-starved tadpoles metamorphosed relatively early with or without fish stimulus. Thus, early metamorphosis resulted from periods of low food availability, but not from a heightened ”perceived risk” of predation. This example counters the hypothesis of acceleration of the developmental rate (which shortens the time to metamorphosis) as a mechanism to escape a risky environment. Received: 18 August 1999 / Accepted: 10 January 2000  相似文献   

3.
Tadpoles risk attack from both aquatic and aerial predators. We investigated how body size and group size influenced the behaviour of tadpoles before and during a predatory attack from above to test the predictions of the theoretical economic escape model. We examined escape (swimming) response of small and large Cuban tree frog (Osteopilus septentrionalis) tadpoles kept under three density treatments and predicted that increased group size, body size and depth in the water column would all reduce perceived risk and, therefore, escape responses to simulated predation. Compared with the lower density groups, tadpoles in higher density groups moved shorter distances, and many individuals did not even move away in response to being touched. Contrary to our predictions based on the economic escape model, smaller tadpoles (which should be more vulnerable to a greater suite of predators) were less reactive than larger tadpoles, and this result may reflect different costs of escape. Finally, although tadpoles might be exposed to a wider range of predator species (aerial as well as aquatic predators), we found no effect of initial depth on escape responses. In conclusion, it appears that the main benefit of increased group density in O. septentrionalis tadpoles is likely to be predator dilution, and that variation in densities of tadpoles influences the escape behaviour of individual tadpoles, regardless of tadpole size.  相似文献   

4.
Individual and relative body size are key determinants of ecological performance, shaping the strength and types of interactions within and among species. Size-dependent performance is particularly important for iteroparous species with overlapping cohorts, determining the ability of new cohorts to invade habitats with older, larger conspecifics. We conducted two mesocosm experiments to examine the role of size and size structure in shaping growth and survival in tadpoles of the red-eyed treefrog (Agalychnis callidryas), a tropical species with a prolonged breeding season. First, we used a response surface design to quantify the competitive effect and response of two tadpole size classes across three competitive environments. Large tadpoles were superior per capita effect competitors, increasing the size difference between cohorts through time at high resource availability. Hatchlings were better per biomass response competitors, and maintained the size difference between cohorts when resource availability was low. However, in contrast to previous studies, small tadpoles never closed the size gap with large tadpoles. Second, we examine the relationship between body size, size structure, and predation by dragonfly nymphs (Anax amazili) on tadpole survival and growth. Hatchlings were more vulnerable to predation; predator and large competitor presence interacted to reduce hatchling growth. Again, the size gap between cohorts increased over time, but increased marginally more with predators present. These findings have implications for understanding how variation in resources and predation over the breeding season will shape population size structure through time and the ability of new cohorts to invade habitats with older conspecifics.  相似文献   

5.
Temporal variation in predation risk may be an important determinant of prey antipredator behaviours. According to the risk allocation hypothesis, the strongest antipredator behaviours are expected when periods of high risk are short and infrequent. We tested this prediction in a laboratory experiment where common frog Rana temporaria tadpoles were raised form early larval stages until metamorphosis. We manipulated the time a predatory Aeshna dragonfly larva was present and recorded behavioural responses (activity) of the tadpoles at three different time points during the tadpoles' development. We also investigated how tadpole shape, size and age at metamorphosis were affected by temporal variation in predation risk. We found that during the two first time points activity was always lowest in the constant high-risk situation. However, antipredator response in the two treatments with brief high-risk situation increased as tadpoles developed, and by the third time point, when the tadpoles were close to metamorphosis, activity was as low as in the constant high-risk situation. Exposure to chemical cues of a predation event tended to reduce activity during the first time period, but caused no response later on. Induced morphological changes (deeper tail and shorter relative body length) were graded the response being stronger as the time spent in the proximity of predator increased. Tadpoles in the brief risk and chemical cue treatments showed intermediate responses. Modification of life history was only found in the constant high-risk treatment in which tadpoles had longer larval period and larger metamorphic size. Our results indicate that both behavioural and morphological defences were sensitive to temporal variation in predation risk, but behaviour did not respond in the manner predicted by the risk allocation model. We discuss the roles of concentration of predator chemical cues and prey stage-dependency in determining these responses.  相似文献   

6.
1. While the antipredator behaviour of prey has been well studied, little is known about the rules governing the predation risk assessment of prey. In this study, I measured the activity levels of predator-naive green frog (Rana clamitans) tadpoles during and after exposures to the chemical cue of predatory larval dragonflies (Anax spp.). I then used the lengths of the time lags from the end of the cue exposures until the tadpoles returned to a control level of activity as an index of the perceived risk of the tadpoles. 2. While tadpoles always responded upon exposure to the Anax chemical cue by strongly reducing their activity level, their perceived risk increased asymptotically over time during the initial period of the cue exposure. Tadpoles of all size classes perceived increasing risk in proportion to chemical cue concentration, but the length of time that tadpoles responded during cue exposure and the length of their post-exposure time lags decreased with increasing body mass. 3. The results suggest that the perceived risk of green frog tadpoles varies over time and does not correspond directly to their behavioural response (i.e. activity level). However, their perceived risk does appear to vary in accordance with the predation risk associated with the Anax chemical cue and the reliability of the information from the cue, and therefore may be predictable.  相似文献   

7.
Most anurans of the species-rich community of the Comoé National Park (Ivory Coast) use ephemeral savannah ponds to spawn. Owing to the great risk of desiccation and the large number of predators, the mortality for tadpoles is very high in these ponds. Therefore, colonization of other spawning habitats might be highly advantageous. Such spawning sites are presented by the Comoé river, which is characterized by frequent and unpredictable changes of the water level. Only Bufo maculatus (Anura: Bufonidae) and one other bufonid species breed in small and shallow inlets and puddles created by the rising and falling of the predator-rich Comoé river. We observed that predatory fish advanced to the spawning sites of the toads, when the water level rose. If the toad larvae were attacked by these predators, they formed dense aggregations of up to several thousand individuals. These aggregations were maintained for longer periods on one place at the river's edge where they are inaccessible to the larger predators. In field experiments we ascertained that this aggregation behaviour in tadpoles was caused by a combination of two stimuli: first, a chemical cue from injured tadpoles and second, a mechanical stimulus caused by rapid movements of aquatic predators. Initial trials indicated that tadpoles aggregating at the bank were, however, disadvantaged compared with free-swimming larvae in having slower growth and an increased risk of desiccation. This is presumably why aggregations broke up within 24 h after the predators had left these puddles, as the water level fell. At this point these tadpoles either spread out or formed loose swarms near the bottom of the puddles. This swarming behaviour differed considerably from that induced by aquatic predators.  相似文献   

8.
Previous laboratory studies have shown that Rana cascadae larvae preferentially associated with siblings over non-siblings in choice tests. This study, conducted during three consecutive summers, tests the hypothesis that R. cascadae larvae aggregate nonrandomly with respect to sibship in natural ponds. Pairs of sibships were reared in separate tanks or together in the same tank in the laboratory. Each sibship within a pair was then stained with neutral red or methylene blue dye and released together in a natural pond. Over a period of several days, aggregations of tadpoles within test ponds were repeatedly captured, censused for sibship composition, and released. In control tests, two groups of tadpoles from the same sibship were dyed different colors and released together. In total, 25 different tests were conducted using tadpoles from 31 sibships and 456 aggregations were sampled. The distribution of color compositions of aggregations in control tests did not differ from an expected random distribution. Color compositions of aggregations in experimental tests differed from controls and from an expected random distribution. Aggregations in these tests tended to be dominated by one of the two colors (sibships). We conclude that R. cascadae tadpoles recognize and prefer to aggregate with siblings in natural field conditions. Circumstances of early rearing (i.e., whether tadpoles were reared with siblings or in mixed sibling/non-sibling groups) had no influence on preferences to associate with siblings, but there was an inverse correlation between group size and sibling association.  相似文献   

9.
This study assessed effects of abiotic (current velocity, water depth, particle size) and biotic (predation risk for crayfish, size distribution and densities of predatory fish) variables on habitat- and size-specific distribution patterns of lotic crayfish (Orconectes obscurus) using field surveys and tethering experiments. Additionally, particle size manipulations were used with predation assays to assess habitat-specific interactions since the average particle size increased from deep pools to shallow pools to riffles. Large crayfish had the highest densities in deep pools and were associated with increased water depth, whereas small and medium crayfish had the highest densities in shallow pools and were strongly associated with increased particle size and decreased water depth. Regardless of size, crayfish in deep pools had significantly lower survival than in shallow pools and riffles. However, only small crayfish showed consistent differences in predation risk by habitat type and were significantly more vulnerable to predation than larger crayfish. Additionally, large rocky refugia resulted in significantly higher survival of small crayfish in the combined particle manipulation/tethering experiment. Overall, predation appears to be a key mechanism structuring habitat-specific distribution patterns for only small O. obscurus. Large substrates may be particularly important in habitats where both small crayfish density and predation risk are high.  相似文献   

10.
Hampton SE 《Oecologia》2004,138(3):475-484
Environmental heterogeneity can promote coexistence of conflicting species by providing spatial or temporal refuges from strong interactions (e.g., intraguild predation, competition). However, in many systems, refuge availability and effectiveness may change through time and space because of variability in habitat use by either species. Here I consider how the intensity of intraguild predation risk varies from day to night for aquatic insects that use both vegetated and open water habitats. Large (1,265 l) and small (42 l) mesocosms were used to test the hypothesis that Buenoa would choose an open-water habitat that minimized predation by the ambush predator Notonecta during the day, but that at night Buenoa would safely use both vegetated and open water. Regardless of container size, Notonecta remained in vegetated water during the day and exploited both habitats at night, despite exhibiting greatest instantaneous predation rates in open water during the day. In contrast, Buenoa maintained an even distribution throughout the mesocosms during day and night, even though habitat-specific predation risks were fivefold lower in open waters than in vegetation during the day and habitat-specific predation risk would have been reduced threefold by fully exploiting open waters. Thus, temporal heterogeneity was both beneficial and detrimental to Buenoa; darkness of night reduced predation, but spatial refuges also disappeared. Together, these patterns suggest that while environmental heterogeneity can dampen intense biotic interactions, enemies do not select habitats solely on the basis of conflict avoidance. Instead, it appears that habitat-specific variation in other biotic (e.g., visual predators) or physical factors (e.g., UV radiation) may also mediate species interactions by influencing habitat selection.  相似文献   

11.
By associating closely with others to form a group, an animal can benefit from a number of advantages including reduced risk of predation, amelioration of environmental conditions, and increased reproductive success, but at the price of reduced resources. Although made up of individual members, an aggregation often displays novel effects that do not manifest at the level of the individual organism. Here we show that very simple behaviour in intertidal mussels shows new effects in dense aggregations but not in isolated individuals. Perna perna and Mytilus galloprovincialis are gaping (periodic valve movement during emersion) and non-gaping mussels respectively. P. perna gaping behaviour had no effect on body temperatures of isolated individuals, while it led to increased humidity and decreased temperatures in dense groups (beds). Gaping resulted in cooler body temperatures for P. perna than M. galloprovincialis when in aggregations, while solitary individuals exhibited the highest temperatures. Gradients of increasing body temperature were detected from the center to edges of beds, but M. galloprovincialis at the edge had the same temperature as isolated individuals. Furthermore, a field study showed that during periods of severe heat stress, mortality rates of mussels within beds of the gaping P. perna were lower than those of isolated individuals or within beds of M. galloprovincialis, highlighting the determinant role of gaping on fitness and group functioning. We demonstrate that new effects of very simple individual behaviour lead to amelioration of abiotic conditions at the aggregation level and that these effects increase mussel resistance to thermal stress.  相似文献   

12.
Many species alter their activity, microhabitat use, morphology and life history in response to predators. Predation risk is related to predator size and palatability of prey among others factors. We analyzed the predation risk of three species of tadpoles that occur in norwestern Patagonia, Argentina: Pleurodema thaul, Pleurodema bufoninum and Rhinella spinulosa. We sampled aquatic insect predators in 18 ponds to determine predator–tadpole assemblage in the study area. In laboratory conditions, we analysed the predation rate imposed by each predator on each tadpole species at different tadpole sizes. Finally, we tested whether tadpoles alter their activity in the presence of chemical and visual cues from predators. Small P. thaul and P. bufoninum tadpoles were the most vulnerable prey species, while small R. spinulosa tadpoles were only consumed by water bugs. Dragonflies and water bugs were the most dangerous tadpole predators. Small P. thaul tadpoles reduced their activity when they were exposed to all predators, while large tadpoles only reduced the activity in the presence of large predators (dragonfly larvae and water bugs). Small P. bufoninum tadpoles reduced the activity when they were exposed to beetle larvae and dragonfly larvae, while large tadpoles only reduced activity when they were exposed to larger predators (water bugs and dragonfly larvae). R. spinulosa tadpoles were the less sensitive to presence of predators, only larger tadpoles responded significantly to dragonfly larvae by reducing their activity. We conclude that behavioural responses of these anuran species were predator-specific and related to the risk imposed by each predator.  相似文献   

13.
Satiated predation, predation rate and prey preference of different weight groups of Rana tigrina (Daud) tadpoles on different larval and pupal stages of Culex fatigans were studied. Irrespective of the prey and predator size, the satiation time remained more or less equal. There exists a mass-dependent predation: Calculated predation rates or predatory constants (Kpr) showed that I instar prey was preyed upon at about equal rate, while other instars and pupa showed an increasing trend with increasing body weight of the predator. The prey preference assessed using the Kpr, revealed that prey size is an important parameter in predation. The R. tigrina tadpole is a more efficient pupal predator than other mosquito predators.  相似文献   

14.
Predation by visual predators is often affected by light conditions and may therefore exhibit strong diel variation. The dominant predators on grass shrimp, Palaemonetes pugio, are finfish predators that are thought to locate their prey by visual cues. We examined the response of grass shrimp to diel variation in predation risk in the nearshore shallow waters of the Chesapeake Bay. We used diel shoreline seines to assess the relative abundance of predators. We assessed the relative risk of predation with shrimp tethered at refuge (30 cm) and nonrefuge (60 cm) depths. To measure grass shrimp response to predation risk, we used dipnets to monitor habitat use. Four predominantly visual predators dominated the shoreline seine catches, Fundulus heteroclitus, Micropogonias undulatus, Morone americana and Morone saxatilis. Total predator abundance had a diel component, with dramatic nighttime decreases in total abundance, whereas guild composition and relative abundance remained unchanged. Relative predation risk for tethered shrimp exhibited significant time by habitat interaction. During the day, depth negatively affected survivorship of tethered shrimp while at night overall survivorship increased and there was no effect of depth. Shrimp habitats use reflected diel predation risks. Abundances in the near shore were highest during the day with decreased abundances at night. Together, the seine and tethering data highlight the importance for a refuge (e.g., shallow water) from predation during the daytime and a relaxation of predation pressure at night.  相似文献   

15.
Predation threat-associated behavioral response was studied in Rana temporalis tadpoles to discover the importance of predators’ visual and chemical cues (kairomones and diet-derived metabolites of consumed prey) in evoking antipredator behavior. The caged predators (dragonfly larvae) fed on prey tadpoles or insects (Notonecta spp.) and water conditioned with the predators provided the threat stimuli to the tadpole prey. The predators’ visual cues were ineffective in evoking antipredator behaviors in the tadpole prey. However, exposure to caged tadpole-fed predators or water conditioned with tadpole-fed predators elicited predator avoidance behavior in the tadpoles; they stayed away from the predators, significantly reduced swimming activity (swimming time and distance traveled), and increased burst speed. Interestingly, exposure to water conditioned with starved predators did not elicit any antipredator behavior in the prey. Further, the antipredator responses of predator-experienced tadpoles were significantly greater than those exhibited by predator-na?ve tadpoles. The study shows that R. temporalis tadpoles assess predation threat based exclusively on chemical cues emanating from the predators’ dietary metabolites and that the inclusion of conspecific prey items in the diet of the predators is perceived as a threat. The study also shows that antipredator behavior in these tadpoles is innate and is enhanced during subsequent encounters with the predators.  相似文献   

16.
Cannibalism among predators is a key intraspecific interaction affecting their density and foraging behavior, eventually modifying the strength of predation on heterospecific prey. Interestingly, previous studies showed that cannibalism among predators can increase or reduce predation on heterospecific prey; however, we know less about the factors that lead to these outcomes. Using a simple pond community consisting of Hynobius retardatus salamander larvae and their associated prey, I report empirical evidence that cannibalism among predators can increase predation on large heterospecific prey but reduce that on small heterospecific prey. In a field‐enclosure experiment in which I manipulated the occurrence of salamander cannibalism, I found that salamander cannibalism increased predation on frog tadpoles but reduced that on aquatic insects simultaneously. The contrasting effects are most likely to be explained by prey body size. In the study system, frog tadpoles were too large for non‐cannibal salamanders to consume, while aquatic insects were within the non‐cannibals’ consumable prey size range. However, when cannibalism occurred, a few individuals that succeeded in cannibalizing reached large enough size to consume frog tadpoles. Consequently, although cannibalism among salamanders reduced their density, salamander cannibalism increased predation on large prey frog tadpoles. Meanwhile, salamander cannibalism reduced predation on small prey aquatic insects probably because of a density reduction of non‐cannibals primarily consuming aquatic insects. Body size is often correlated with various ecological traits, for instance, diet width, consumption, and excretion rates, and is thus considered a good indicator of species’ effects on ecosystem function. All this considered, cannibalism among predators could eventually affect ecosystem function by shifting the size composition of the prey community.  相似文献   

17.
Under the threat of predation, animals can decrease their level of risk by moving towards other individuals to form compact groups. A significant body of theoretical work has proposed multiple movement rules, varying in complexity, which might underlie this process of aggregation. However, if and how animals use these rules to form compact groups is still not well understood, and how environmental factors affect the use of these rules even less so. Here, we evaluate the success of different movement rules, by comparing their predictions with the movement seen when shoals of guppies (Poecilia reticulata) form under the threat of predation. We repeated the experiment in a turbid environment to assess how the use of the movement rules changed when visual information is reduced. During a simulated predator attack, guppies in clear water used complex rules that took multiple neighbours into account, forming compact groups. In turbid water, the difference between all rule predictions and fish movement paths increased, particularly for complex rules, and the resulting shoals were more fragmented than in clear water. We conclude that guppies are able to use complex rules to form dense aggregations, but that environmental factors can limit their ability to do so.  相似文献   

18.
Chemical cues transmitted through the environment are thought to underlie many prey responses to predation risk, but despite the known ecological and evolutionary significance of such cues, their basic composition are poorly understood. Using anuran tadpoles (prey) and dragonfly larvae (predators), we identified chemical cues associated with predation risk via solid phase extraction and mass spectrometry of the extracts. We found that dragonfly larvae predators consistently produced a negative ion, m/z 501.3, when they fed on bullfrog (Rana catesbeiana) and mink frog (Rana septentrionalis) tadpoles, but this ion was absent when dragonflies were fasted or fed invertebrate prey. When tadpole behavioral responses to dragonfly chemical cues were examined, tadpoles reduced their activity, particularly in response to dragonflies feeding on tadpoles. Furthermore, a negative correlation was noted between the level of tadpole activity and the concentration of the m/z 501.3 compound in dragonfly feeding trials, indicating that this ion was possibly responsible for tadpole anti-predator behavior.  相似文献   

19.
The quality of breeding sites is of great importance for the reproductive success and accordingly the fitness of many animal species. Hence, individuals should decide carefully where to rear their offspring. Often parents have to account for multiple characteristics of habitat quality at once, which in turn might change over time. Specimens confronted with such variability may evolve the ability to display context-dependant decision plasticity. Anuran amphibians breeding in ephemeral pools largely face two risks for their offspring: desiccation and predation. The Neotropical poison frog Ranitomeya variabilis deposits both eggs and tadpoles in phytotelmata. These small tadpole nurseries lower the risk of offspring predation. However, because most poison frog tadpoles are cannibalistic, even these pools need to be surveyed for predators, and parents tend to avoid deposition with conspecifics. We tested if this avoidance behaviour does change in parental R. variabilis depending on seasonal circumstances. Over several months we provided the frogs the option to deposit their eggs or tadpoles in pools that did and did not contain chemical cues of cannibalistic conspecifics, respectively. During the rainy season, frogs strongly avoided conspecific cues for both eggs and tadpoles. Anyway, with the change to the dry season, parental preferences changed such that parent frogs were more likely to deposit tadpoles (but not eggs) in pools containing cues of conspecific tadpoles. We suggest that R. variabilis, a species that typically isolates its cannibalistic offspring, has evolved a plastic feeding behaviour with regard to the risk of phytotelmata desiccation. We interpret that parents provide older tadpoles with younger ‘trophic’ tadpoles in order to accelerate their development and save them from impending desiccation.  相似文献   

20.
Tadpoles of the cane toad (Rhinella marina) form dense aggregations in the field, but the proximate cues eliciting this behavior are not well understood. We sampled water‐bodies in the Northern Territory of Australia, finding that the density of cane toad tadpoles increased with increasing temperature. Furthermore, we conducted laboratory experiments to explore the roles of biotic factors (attraction to conspecifics; chemical cues from an injured conspecific; food) and spatially heterogeneous abiotic factors (light levels, water depth, physical structure) to identify the cues that induce tadpole aggregation. Annulus and binary choice trials demonstrated weak but significant attraction between conspecifics. Tadpoles decreased swimming speeds, but did not increase grouping in response to cues from an injured conspecific. Larvae aggregated in response to abiotic cues (high levels of illumination and proximity to physical structures) and were strongly attracted to feeding conspecifics. Overall, aggregation by cane toad tadpoles is likely driven by weak social attraction coupled with a shared preference for specific abiotic features, creating loose aggregations that are then reinforced by movement toward feeding conspecifics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号