首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang J  Ma X  Yang JS  Zheng X  Zugates CT  Lee CH  Lee T 《Neuron》2004,43(5):663-672
Besides 19,008 possible ectodomains, Drosophila Dscam contains two alternative transmembrane/juxtamembrane segments, respectively, derived from exon 17.1 and exon 17.2. We wondered whether specific Dscam isoforms mediate formation and segregation of axonal branches in the Drosophila mushroom bodies (MBs). Removal of various subsets of the 12 exon 4s does not affect MB neuronal morphogenesis, while expression of a Dscam transgene only partially rescues Dscam mutant phenotypes. Interestingly, differential rescuing effects are observed between two Dscam transgenes that each possesses one of the two possible exon 17s. Axon bifurcation/segregation abnormalities are better rescued by the exon 17.2-containing transgene, but coexpression of both transgenes is required for rescuing mutant viability. Meanwhile, exon 17.1 targets ectopically expressed Dscam-GFP to dendrites while Dscam[exon 17.2]-GFP is enriched in axons; only Dscam[exon 17.2] affects MB axons. These results suggest that exon 17.1 is minimally involved in axonal morphogenesis and that morphogenesis of MB axons probably involves multiple distinct exon 17.2-containing Dscam isoforms.  相似文献   

2.
Bharadwaj R  Kolodkin AL 《Cell》2006,125(3):421-424
Neuronal processes exhibit exquisitely complex branching patterns crucial for the formation of distinct neural circuits. In this issue of Cell, Chen et al. (2006) show that the isoform diversity of the Dscam protein in Drosophila is required to establish stereotypical axonal branching patterns, suggesting that nonrandom expression of Dscam alternative splice variants determines neural connectivity.  相似文献   

3.
Homophilic Dscam interactions control complex dendrite morphogenesis   总被引:6,自引:0,他引:6  
Alternative splicing of the Drosophila gene Dscam results in up to 38,016 different receptor isoforms proposed to interact by isoform-specific homophilic binding. We report that Dscam controls cell-intrinsic aspects of dendrite guidance in all four classes of dendrite arborization (da) neurons. Loss of Dscam in single neurons causes a strong increase in self-crossing. Restriction of dendritic fields of neighboring class III neurons appeared intact in mutant neurons, suggesting that dendritic self-avoidance, but not heteroneuronal tiling, may depend on Dscam. Overexpression of the same Dscam isoforms in two da neurons with overlapping dendritic fields forced a spatial segregation of the two fields, supporting the model that dendritic branches of da neurons use isoform-specific homophilic interactions to ensure minimal overlap. Homophilic binding of the highly diverse extracellular domains of Dscam may therefore limit the use of the same "core" repulsion mechanism to cell-intrinsic interactions without interfering with heteroneuronal interactions.  相似文献   

4.
Shapiro L 《Neuron》2007,56(1):10-13
The Drosophila Dscams are immunoglobulin superfamily members produced from a single gene that is diversified by alternative splicing to produce a family of cell-surface proteins with over 19,000 different ectodomain isoforms. Dscams are critical for neuronal wiring, and mounting evidence suggests that they play a key role in self-avoidance between sister branches from neurons, which depends on homophilic self-recognition by Dscams. Two recent papers shed new light on Dscam recognition: first by showing that the vast majority of Dscam isoforms mediate specific homophilic binding and second by revealing the essence of the molecular basis of homophilic recognition by Dscams through high-resolution structural studies.  相似文献   

5.
Schmucker D  Clemens JC  Shu H  Worby CA  Xiao J  Muda M  Dixon JE  Zipursky SL 《Cell》2000,101(6):671-684
A Drosophila homolog of human Down syndrome cell adhesion molecule (DSCAM), an immunoglobulin superfamily member, was isolated by its affinity to Dock, an SH3/SH2 adaptor protein required for axon guidance. Dscam binds directly to both Dock's SH2 and SH3 domains. Genetic studies revealed that Dscam, Dock and Pak, a serine/threonine kinase, act together to direct pathfinding of Bolwig's nerve, containing a subclass of sensory axons, to an intermediate target in the embryo. Dscam also is required for the formation of axon pathways in the embryonic central nervous system. cDNA and genomic analyses reveal the existence of multiple forms of Dscam with a conserved architecture containing variable Ig and transmembrane domains. Alternative splicing can potentially generate more than 38,000 Dscam isoforms. This molecular diversity may contribute to the specificity of neuronal connectivity.  相似文献   

6.
Dendrite self-avoidance is controlled by Dscam   总被引:6,自引:0,他引:6  
Dendrites distinguish between sister branches and those of other cells. Self-recognition can often lead to repulsion, a process termed "self-avoidance." Here we demonstrate that dendrite self-avoidance in Drosophila da sensory neurons requires cell-recognition molecules encoded by the Dscam locus. By alternative splicing, Dscam encodes a vast number of cell-surface proteins of the immunoglobulin superfamily. We demonstrate that interactions between identical Dscam isoforms on the cell surface underlie self-recognition, while the cytoplasmic tail converts this recognition to dendrite repulsion. Sister dendrites expressing the same isoforms engage in homophilic repulsion. By contrast, Dscam diversity ensures that inappropriate repulsive interactions between dendrites sharing the same receptive field do not occur. The selectivity of Dscam-mediated cell interactions is likely to be widely important in the developing fly nervous system, where processes of cells must distinguish between self and nonself during the construction of neural circuits.  相似文献   

7.
Dscam is an immunoglobulin (Ig) superfamily member that regulates axon guidance and targeting in Drosophila. Alternative splicing potentially generates 38,016 isoforms differing in their extracellular Ig and transmembrane domains. We demonstrate that Dscam mediates the sorting of axons in the developing mushroom body (MB). This correlates with the precise spatiotemporal pattern of Dscam protein expression. We demonstrate that MB neurons express different arrays of Dscam isoforms and that single MB neurons express multiple isoforms. Two different Dscam isoforms differing in their extracellular domains introduced as transgenes into single mutant cells partially rescued the mutant phenotype. Expression of one isoform of Dscam in a cohort of MB neurons induced dominant phenotypes, while expression of a single isoform in a single cell did not. We propose that different extracellular domains of Dscam share a common function and that differences in isoforms expressed on the surface of neighboring axons influence interactions between them.  相似文献   

8.
Soba P  Zhu S  Emoto K  Younger S  Yang SJ  Yu HH  Lee T  Jan LY  Jan YN 《Neuron》2007,54(3):403-416
A neuron's dendrites typically do not cross one another. This intrinsic self-avoidance mechanism ensures unambiguous processing of sensory or synaptic inputs. Moreover, some neurons respect the territory of others of the same type, a phenomenon known as tiling. Different types of neurons, however, often have overlapping dendritic fields. We found that Down's syndrome Cell Adhesion Molecule (Dscam) is required for dendritic self-avoidance of all four classes of Drosophila dendritic arborization (da) neurons. However, neighboring mutant class IV da neurons still exhibited tiling, suggesting that self-avoidance and tiling differ in their recognition and repulsion mechanisms. Introducing 1 of the 38,016 Dscam isoforms to da neurons in Dscam mutants was sufficient to significantly restore self-avoidance. Remarkably, expression of a common Dscam isoform in da neurons of different classes prevented their dendrites from sharing the same territory, suggesting that coexistence of dendritic fields of different neuronal classes requires divergent expression of Dscam isoforms.  相似文献   

9.
Schmucker D  Flanagan JG 《Neuron》2004,44(2):219-222
For decades, it has been suggested that complex neural wiring might be specified by extensive diversity in receptor isoforms. Dscam is a cell surface protein with 38,016 potential alternatively spliced isoforms in the fly nervous system. Remarkable binding studies now show that Dscam isoform diversity indeed results in an unprecedented level of recognition diversity, showing isoform-specific homophilic binding. In vivo studies have begun to suggest models for use of Dscam diversity in neuron-target recognition, axon fasciculation, and neuron self-recognition.  相似文献   

10.
Wang J  Zugates CT  Liang IH  Lee CH  Lee T 《Neuron》2002,33(4):559-571
Axon bifurcation results in the formation of sister branches, and divergent segregation of the sister branches is essential for efficient innervation of multiple targets. From a genetic mosaic screen, we find that a lethal mutation in the Drosophila Down syndrome cell adhesion molecule (Dscam) specifically perturbs segregation of axonal branches in the mushroom bodies. Single axon analysis further reveals that Dscam mutant axons generate additional branches, which randomly segregate among the available targets. Moreover, when only one target remains, branching is suppressed in wild-type axons while Dscam mutant axons still form multiple branches at the original bifurcation point. Taken together, we conclude that Dscam controls axon branching and guidance such that a neuron can innervate multiple targets with minimal branching.  相似文献   

11.
Alternative splicing of eukaryotic pre-mRNAs is an important mechanism for generating proteome diversity and regulating gene expression. The Drosophila melanogaster Down Syndrome Cell Adhesion Molecule (Dscam) gene is an extreme example of mutually exclusive splicing. Dscam contains 95 alternatively spliced exons that potentially encode 38,016 distinct mRNA and protein isoforms. We previously identified two sets of conserved sequence elements, the docking site and selector sequences in the Dscam exon 6 cluster, which contains 48 mutually exclusive exons. These elements were proposed to engage in competing RNA secondary structures required for mutually exclusive splicing, though this model has not yet been experimentally tested. Here we describe a new system that allowed us to demonstrate that the docking site and selector sequences are indeed required for exon 6 mutually exclusive splicing and that the strength of these RNA structures determines the frequency of exon 6 inclusion. We also show that the function of the docking site has been conserved for ~500 million years of evolution. This work demonstrates that conserved intronic sequences play a functional role in mutually exclusive splicing of the Dscam exon 6 cluster.  相似文献   

12.
Celotto AM  Graveley BR 《Genetics》2001,159(2):599-608
The Drosophila melanogaster Down syndrome cell adhesion molecule (Dscam) gene encodes an axon guidance receptor that can express 38,016 different mRNAs by virtue of alternative splicing. The Dscam gene contains 95 alternative exons that are organized into four clusters of 12, 48, 33, and 2 exons each. Although numerous Dscam mRNA isoforms can be synthesized, it remains to be determined whether different Dscam isoforms are synthesized at different times in development or in different tissues. We have investigated the alternative splicing of the Dscam exon 4 cluster, which contains 12 mutually exclusive alternative exons, and found that Dscam exon 4 alternative splicing is developmentally regulated. The most highly regulated exon, 4.2, is infrequently used in early embryos but is the predominant exon 4 variant used in adults. Moreover, the developmental regulation of exon 4.2 alternative splicing is conserved in D. yakuba. In addition, different adult tissues express distinct collections of Dscam mRNA isoforms. Given the role of Dscam in neural development, these results suggest that the regulation of alternative splicing plays an important role in determining the specificity of neuronal wiring. In addition, this work provides a framework to determine the mechanisms by which complex alternative splicing events are regulated.  相似文献   

13.
Drosophila Down syndrome cell adhesion molecule (Dscam) potentially produces more than 150,000 cell adhesion molecules that share two alternative transmembrane/juxtamembrane (TM) domains, which dictate the dendrite versus axon subcellular distribution and function of different Dscam isoforms. Vertebrate genomes contain two closely related genes, DSCAM and DSCAM-Like1 (DSCAML1), which do not have extensive alternative splicing. We investigated the functional conservation between invertebrate Dscams and vertebrate DSCAMs by cross-species rescue assays and found that human DSCAM and DSCAML1 partially, but substantially, rescued the larval lethality of Drosophila Dscam mutants. Interestingly, both human DSCAM and DSCAML1 were targeted to the dendrites in Drosophila neurons, had synergistic rescue effects with Drosophila Dscam[TM2], and preferentially rescued the dendrite defects of Drosophila Dscam mutant neurons. Therefore, human DSCAM and DSCAML1 are functionally conserved with Drosophila Dscam[TM1] isoforms.  相似文献   

14.
Wojtowicz WM  Wu W  Andre I  Qian B  Baker D  Zipursky SL 《Cell》2007,130(6):1134-1145
Dscam encodes a family of cell surface proteins required for establishing neural circuits in Drosophila. Alternative splicing of Drosophila Dscam can generate 19,008 distinct extracellular domains containing different combinations of three variable immunoglobulin domains. To test the binding properties of many Dscam isoforms, we developed a high-throughput ELISA-based binding assay. We provide evidence that 95% (>18,000) of Dscam isoforms exhibit striking isoform-specific homophilic binding. We demonstrate that each of the three variable domains binds to the same variable domain in an opposing isoform and identify the structural elements that mediate this self-binding of each domain. These studies demonstrate that self-binding domains can assemble in different combinations to generate an enormous family of homophilic binding proteins. We propose that this vast repertoire of Dscam recognition molecules is sufficient to provide each neuron with a unique identity and homotypic binding specificity, thereby allowing neuronal processes to distinguish between self and nonself.  相似文献   

15.
Different classes of olfactory receptor neurons (ORNs) in Drosophila innervate distinct targets, or glomeruli, in the antennal lobe of the brain. Here we demonstrate that specific ORN classes require the cell surface protein Dscam (Down Syndrome Cell Adhesion Molecule) to synapse in the correct glomeruli. Dscam mutant ORNs frequently terminated in ectopic sites both within and outside the antennal lobe. The morphology of Dscam mutant axon terminals in either ectopic or cognate targets was abnormal. Target specificity for other ORNs was not altered in Dscam mutants, suggesting that different ORNs use different strategies to regulate wiring. Multiple forms of Dscam RNA were detected in the developing antenna, and Dscam protein was localized to developing ORN axons. We propose a role for Dscam protein diversity in regulating ORN target specificity.  相似文献   

16.
The c-jun N-terminal kinase (JNK) proteins are encoded by three genes (Jnk1-3), giving rise to 10 isoforms in the mammalian brain. The differential roles of JNK isoforms in neuronal cell death and development have been noticed in several pathological and physiological contexts. However, the mechanisms underlying the regulation of different JNK isoforms to fulfill their specific roles are poorly understood. Here, we report an isoform-specific regulation of JNK3 by palmitoylation, a posttranslational modification, and the involvement of JNK3 palmitoylation in axonal development and morphogenesis. Two cysteine residues at the COOH-terminus of JNK3 are required for dynamic palmitoylation, which regulates JNK3's distribution on the actin cytoskeleton. Expression of palmitoylation-deficient JNK3 increases axonal branching and the motility of axonal filopodia in cultured hippocampal neurons. The Wnt family member Wnt7a, a known modulator of axonal branching and remodelling, regulates the palmitoylation and distribution of JNK3. Palmitoylation-deficient JNK3 mimics the effect of Wnt7a application on axonal branching, whereas constitutively palmitoylated JNK3 results in reduced axonal branches and blocked Wnt7a induction. Our results demonstrate that protein palmitoylation is a novel mechanism for isoform-specific regulation of JNK3 and suggests a potential role of JNK3 palmitoylation in modulating axonal branching.  相似文献   

17.
Sawaya MR  Wojtowicz WM  Andre I  Qian B  Wu W  Baker D  Eisenberg D  Zipursky SL 《Cell》2008,134(6):1007-1018
Drosophila Dscam encodes a vast family of immunoglobulin (Ig)-containing proteins that exhibit isoform-specific homophilic binding. This diversity is essential for cell recognition events required for wiring the brain. Each isoform binds to itself but rarely to other isoforms. Specificity is determined by "matching" of three variable Ig domains within an approximately 220 kD ectodomain. Here, we present the structure of the homophilic binding region of Dscam, comprising the eight N-terminal Ig domains (Dscam(1-8)). Dscam(1-8) forms a symmetric homodimer of S-shaped molecules. This conformation, comprising two reverse turns, allows each pair of the three variable domains to "match" in an antiparallel fashion. Structural, genetic, and biochemical studies demonstrate that, in addition to variable domain "matching," intramolecular interactions between constant domains promote homophilic binding. These studies provide insight into how "matching" at all three pairs of variable domains in Dscam mediates isoform-specific recognition.  相似文献   

18.
The Drosophila gene Dscam, encoding Down syndrome cell-adhesion molecule, is required for the development of neural circuits. Alternative splicing of Dscam mRNA potentially generates 38016 isoforms of a cell-surface recognition protein of the immunoglobulin superfamily. These isoforms include 19008 different ectodomains joined to one of two alternative transmembrane segments. Each ectodomain comprises a unique combination of three variable immunoglobulin domains. Biochemical studies support a model in which each isoform preferentially binds to the same isoform on opposing cell surfaces. This homophilic binding requires matching at all three variable immunoglobulin domains. These findings raise the intriguing possibility that specificity of binding by the Dscam isoforms mediates cell-surface recognition events required for wiring the fly brain.  相似文献   

19.
Zinn K 《Cell》2007,129(3):455-456
In the fruit fly Drosophila the gene encoding the cell adhesion molecule Dscam generates alternatively spliced mRNAs that can be translated into thousands of different protein isoforms. Three recent papers show that isoform-specific homophilic Dscam interactions cause dendritic branches of the same neuron to avoid each other (Hughes et al., 2007; Soba et al., 2007; Matthews et al., 2007). This process ensures the correct patterning of dendrites in the peripheral nervous system.  相似文献   

20.
Dscam is an immunoglobulin (Ig) superfamily protein required for the formation of neuronal connections in Drosophila. Through alternative splicing, Dscam potentially gives rise to 19,008 different extracellular domains linked to one of two alternative transmembrane segments, resulting in 38,016 isoforms. All isoforms share the same domain structure but contain variable amino acid sequences within three Ig domains in the extracellular region. We demonstrate that different isoforms exhibit different binding specificity. Each isoform binds to itself but does not bind or binds poorly to other isoforms. The amino acid sequences of all three variable Ig domains determine binding specificity. Even closely related isoforms sharing nearly identical amino acid sequences exhibit isoform-specific binding. We propose that this preferential homophilic binding specificity regulates interactions between cells and contributes to the formation of complex patterns of neuronal connections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号