首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The acrosome is a secretory vesicle attached to the nucleus of the sperm. Our hypothesis is that microtubules participate in the membrane traffic between the Golgi apparatus and acrosome during the first steps of spermatid differentiation. In this work, we show that nocodazole-induced microtubule depolarization triggers the formation of vesicles of the acrosomal membrane, without detaching the acrosome from the nuclear envelope. Nocodazole also induced fragmentation of the Golgi apparatus as determined by antibodies against giantin, golgin-97 and GM130, and electron microscopy. Conversely, neither the acrosome nor the Golgi apparatus underwent fragmentation in elongating spermatids (acrosome- and maturation-phase). The microtubule network of round spermatids of azh/azh mice also became disorganized. Disorganization correlated with fragmentation of the acrosome and the Golgi apparatus, as evaluated by domain-specific markers. Elongating spermatids (acrosome and maturation-phase) of azh/azh mice also had alterations in microtubule organization, acrosome, and Golgi apparatus. Finally, the spermatozoa of azh/azh mice displayed aberrant localization of the acrosomal protein sp56 in both the post-acrosomal and flagellum domains. Our results suggest that microtubules participate in the formation and/or maintenance of the structure of the acrosome and the Golgi apparatus and that the organization of the microtubules in round spermatids is key to sorting acrosomal proteins to the proper organelle.  相似文献   

2.
Active trafficking from the Golgi apparatus is involved in acrosome formation, both by delivering acrosomal contents to the nascent secretory vesicle and by controlling organelle growth and shaping. During murine spermiogenesis, Golgi antigens (giantin, beta-COP, golgin 97, mannosidase II) are detected in the acrosome until the late cap-phase spermatids, but are not found in testicular spermatozoa (maturation-phase spermatids). This suggests that Golgi-acrosome flow may be relatively unselective, with Golgi residents retrieved before spermiation is complete. Treatment of spermatogenic cells with brefeldin A, a drug that causes the Golgi apparatus to collapse into the endoplasmic reticulum, disrupted the Golgi in both pachytene spermatocytes and round spermatids. However, this treatment did not affect the acrosomal granule, and some beta-COP labeling on the acrosome of elongating spermatids was maintained. Additionally, N-ethylmaleimide sensitive factor, soluble NSF attachment proteins, and homologues of the t-SNARE syntaxin and of the v-SNARE VAMP/synaptobrevin, as well as members of the rab family of small GTPases, are associated with the acrosome (but not the acrosomal granule) in round and elongated spermatids. This suggests that rab proteins and the SNARE machinery for membrane recognition/docking/fusion may be involved in trafficking during mammalian acrosome biogenesis.  相似文献   

3.
Intact Golgi apparatus have been isolated with good purity from rat testis by a simplified sucrose gradient technique. The procedure is inherently selective in that most of the Golgi apparatus in the isolate are from germ cells in late spermatocyte or early spermatid development. No Sertoli cell Golgi apparatus are present in the fraction. Biochemical analyses showed that the enzyme N-acetylglucosamine galactosyltransferase is enhanced in the band containing Golgi apparatus. Because they are easy to isolate, and because they are involved with the formation of a specific internal cellular component (the acrosome), these Golgi apparatus will be useful objects for comparison with other kinds of Golgi apparatus and for other studies leading to a better understanding of the basic functioning of Golgi apparatus.  相似文献   

4.
Vesicular membrane trafficking during acrosome biogenesis in bull and rhesus monkey spermatogenesis differs from the somatic cell paradigm as imaged dynamically using the Golgi apparatus probes beta-COP, giantin, Golgin-97, and Golgin-95/GM130. In particular, sorting and delivery of proteins seemed less precise during spermatogenesis. In early stages of spermiogenesis, many Golgi resident proteins and specific acrosomal markers were present in the acrosome. Trafficking in both round and elongating spermatids was similar to what has been described for somatic cells, as judged by the kinetics of Golgi protein incorporation into endoplasmic reticulum-like structures after brefeldin A treatment. These Golgi components were retrieved from the acrosome at later stages of differentiation and were completely devoid of immature spermatozoa. Our data suggest that active anterograde and retrograde vesicular transport trafficking pathways, involving both beta-COP- and clathrin-coated vesicles, are involved in retrieving Golgi proteins missorted to the acrosome and in controlling the growth and shape of this organelle.  相似文献   

5.
The spermatozoa of the musk shrew, Suncus murinus, have a fan-like giant acrosome with a diameter of approximately 20 mm. The aim of this study was to investigate how this giant acrosome is constructed in the musk shrew spermatid and, in particular, how the Golgi apparatus involved in acrosome formation behaves. The behaviour of the Golgi apparatus was monitored by confocal laser scanning microscopy with antibody against a Golgi-associated Rab6 small GTPase. In the early Golgi phase, small Golgi units, the Golgi satellites, localized as a large aggregate in the juxtanuclear cytoplasm. As acrosome formation progressed, the Golgi satellites gradually dispersed, associated with proacrosomal vesicles and an acrosomal vesicle, and finally became distributed as multiple small units over the whole surface of an acrosomal cap in the round spermatid. The mode of acrosome formation in musk shrews was distinctly different from that in rats and mice, in which the Golgi apparatus remains as a single unit throughout acrosome formation. In musk shrews, the proacrosomal vesicles formed successively by the Golgi satellites coalesced, one after another, into a potential acrosomal vesicle. This process may result in further enlargement of the acrosome. The results of the present study indicate that Golgi satellites are necessary for the biogenesis and development of the giant acrosome in musk shrew spermatozoa.  相似文献   

6.
The molecular basis of changes in structure, cellular location, and function of the Golgi apparatus during male germ cell differentiation is unknown. To deduce cognate Golgi proteins, we isolated germ cell Golgi fractions, and 1318 proteins were characterized, with 20 localized in situ. The most abundant protein, GL54D of unknown function, is characterized as a germ cell–specific Golgi-localized type II integral membrane glycoprotein. TM9SF3, also of unknown function, was revealed to be a universal Golgi marker for both somatic and germ cells. During acrosome formation, several Golgi proteins (GBF1, GPP34, GRASP55) localize to both the acrosome and Golgi, while GL54D, TM9SF3, and the Golgi trafficking protein TMED7/p27 are segregated from the acrosome. After acrosome formation, GL54D, TM9SF3, TMED4/p25, and TMED7/p27 continue to mark Golgi identity as it migrates away from the acrosome, while the others (GBF1, GPP34, GRASP55) remain in the acrosome and are progressively lost in later steps of differentiation. Cytoplasmic HSP70.2 and the endoplasmic reticulum luminal protein-folding enzyme PDILT are also Golgi recruited but only during acrosome formation. This resource identifies abundant Golgi proteins that are expressed differentially during mitosis, meiosis, and postacrosome Golgi migration, including the last step of differentiation.  相似文献   

7.
Regulated exocytosis is controlled by internal and external signals. The molecular machinery controlling the sorting from the newly synthesized vesicles from the Golgi apparatus to the plasma membrane play a key role in the regulation of both the number and spatial location of the vesicles. In this context the mammalian acrosome is a unique vesicle since it is the only secretory vesicle attached to the nucleus. In this work we have studied the membrane trafficking between the Golgi apparatus and the acrosome during mammalian spermiogenesis. During bovine spermiogenesis, Golgi antigens (mannosidase II) were detected in the acrosome until the late cap-phase spermatids, but are not found in testicular spermatozoa (maturation-phase spermatids). This suggests that Golgiacrosome flow may be relatively unselective, with Golgi residents retrieved before spermination is complete. Surprisingly, rab7, a protein involved in lysosome/endosome trafficking was also found associated with the acrosomal vesicle during mouse spermiogenesis. Our results suggest that the acrosome biogenesis is associated with membrane flow from both the Golgi apparatus and the endosome/lysosome system in mammalian spermatids.  相似文献   

8.
本实验用电镜放射自显影技术,在注射~3H-岩藻糖后30分钟和1、4、8、24小时示踪大鼠精子细胞合成糖蛋白的情况以及新合成糖蛋白的去路。实验结果表明: 1.在注射~3H-岩藻糖后30分钟到1小时,放射自显影标记最初出现在高尔基体上。岩藻糖分子首先在高尔基体的外周(皮质)部位掺入糖蛋白,随后,新合成的糖蛋白并不直接转运到别处,而在高尔基体中央(髓质)部位作短暂贮存。说明中央部位在功能上是高尔基体的一个重要组成部分。2.~3H-岩藻糖不仅掺入高尔基期和顶帽期精子细胞的高尔基体,而且掺入顶体期精子细胞的高尔基体,说明顶体期的高尔基体仍有合成糖蛋白的功能。3.新合成糖蛋白的去路,在精子细胞发育的不同阶段是不一样的。在高尔基期和顶帽期精子细胞中,新合成的糖蛋白  相似文献   

9.
Golgins in the structure and dynamics of the Golgi apparatus   总被引:28,自引:0,他引:28  
Golgins are a family of coiled-coil proteins associated with the Golgi apparatus necessary for tethering events in membrane fusion and as structural supports for Golgi cisternae. Recent work has shown that golgins such as GM130, golgin-45 and p115 bind to Rab GTPases via their coiled-coil domains, and that GM130, rather than being part of a static structural matrix, is in dynamic exchange between the membrane surface and the cytoplasm. Golgins such as bicaudal-D1 and -D2 bind to Rab6, but, rather than tethering membranes together, link vesicles to the cytoskeleton, thus adding a new function for this class of proteins. Other golgins containing the Golgi targeting GRIP domain, rather than binding Rabs, interact with and are recruited to membranes by another class of GTPase, the Arls. Current evidence therefore suggests that golgins function in a variety of membrane-membrane and membrane-cytoskeleton tethering events at the Golgi apparatus, and that all these are regulated by small GTPases of the Rab and Arl families.  相似文献   

10.
The GRASP and golgin families of proteins have emerged as key components of the Golgi apparatus, with major roles in both the structural organisation of this organelle and the trafficking that occurs there. Both types of protein participate in membrane tethering events that occur upstream of membrane fusion as well as contributing to the structural scaffold that defines Golgi architecture, referred to as the Golgi matrix. The importance of these proteins is highlighted by their targeting in mitosis, apoptosis, and pathogenic infections that cause dramatic structural and functional reorganisation of the Golgi apparatus. In this review we will discuss our current understanding of GRASP and golgin function, highlighting some of the common themes that have emerged as well as describing previously unsuspected roles for these proteins in various cellular processes.  相似文献   

11.
The structure of the spermatogonia, spermatocytes, spermatids and Sertoli cells of the hermaphroditic snail Bulinus truncatus was studied by electron microscopy. The spermatogonia are small, with relatively large nuclei. The acrosome develops from a small proacrosomal granule which is probably derived from the Golgi apparatus in the spermatocyte stage. Condensation and elongation of the nuclei were found in the spermatids. The shape and components of the Sertoli cells did not change during the spermatogonium and spermatocyte stages. Before spermiation the Sertoli cells have the morphological features of steroid-producing cells. The study showed that the Sertoli cells are involved in the nutrition and transportation of the spermatogenic cells, in spermiation and in hormone production.  相似文献   

12.
The protein kinase A-anchoring proteins (AKAPs) are defined by their ability to scaffold protein kinase A to specific subcellular compartments. Each of the AKAP family members utilizes unique targeting domains specific for a particular subcellular compartment. AKAP350 is a multiply spliced AKAP family member localized to the centrosome and the Golgi apparatus. Three splicing events in the carboxyl terminus of AKAP350 generate the AKAP350A, AKAP350B, and AKAP350C proteins. A monoclonal antibody recognizing all three splice variants as well as a polyclonal antibody specific for AKAP350A demonstrated both centrosomal and Golgi apparatus staining in paraformaldehyde-fixed HCA-7 cells. Golgi apparatus-associated AKAP350A staining was dispersed following brefeldin A treatment. Using GFP chimeric constructs of the carboxyl-terminal regions of AKAP350A, a Golgi apparatus targeting domain was identified between amino acids 3259 and 3307 of AKAP350A. This domain was functionally distinguishable from the recently described centrosomal targeting domain (PACT domain, amino acids 3308-3324) located adjacent to the Golgi targeting domain. These data definitively establish the specific association of AKAP350A with the Golgi apparatus in HCA-7 cells.  相似文献   

13.
The role of microtubule-based trafficking in acrosomal biogenesis was examined by studying the effects of colchicine on spermiogenesis. In electron micrographs of untreated cap-phase mouse spermatids, coated vesicles were always seen on the apex and caudal margins of the developing acrosomal cap. The increase in volume and the accumulation of materials in the acrosome during the Golgi and cap phases were observed to occur via fusion of vesicles at various sites on the growing acrosome. By studying the acid phosphatase localization pattern and colchicine-treated spermatids, the role of clathrin-coated vesicles became clear. Coated vesicle formation at the caudal margin of the acrosome appeared to be responsible for the spreading and shaping of the acrosome over the surface of the nucleus and also established distinct regional differences in the acrosome. In colchicine-treated spermatids, the Golgi apparatus lost its typical membranous stack conformation and disintegrated into many small vesicles. Acrosome formation was retarded, and there was discordance of the spread of the acrosomal cap with that of the modified nuclear envelope. Many symplasts were also found because of the breakdown of intercellular bridges. Colchicine treatment thus indicated that microtubule-dependent trafficking of transport vesicles between the Golgi apparatus and the acrosome plays a vital role in acrosomal biogenesis. In addition, both anterograde and retrograde vesicle trafficking are extensively involved and seem to be equally important in acrosome formation. This work was supported by grants 83-0211-B-002-184 and 93-2320-B-320-012 from the National Science Council, Taiwan, Republic of China.  相似文献   

14.
The Golgi apparatus is the main site of glycan biosynthesis in eukaryotes. Better understanding of the membrane topology of the proteins and enzymes involved can impart new mechanistic insights into these processes. Publically available bioinformatic tools provide highly variable predictions of membrane topologies for given proteins. Therefore we devised a non-invasive experimental method by which the membrane topologies of Golgi-resident proteins can be determined in the Golgi apparatus in living tissues. A Golgi marker was used to construct a series of reporters based on the principle of bimolecular fluorescence complementation. The reporters and proteins of interest were recombinantly fused to split halves of yellow fluorescent protein (YFP) and transiently co-expressed with the reporters in the Nicotiana benthamiana leaf tissue. Output signals were binary, showing either the presence or absence of fluorescence with signal morphologies characteristic of the Golgi apparatus and endoplasmic reticulum (ER). The method allows prompt and robust determinations of membrane topologies of Golgi-resident proteins and is termed GO-PROMTO (for GOlgi PROtein Membrane TOpology). We applied GO-PROMTO to examine the topologies of proteins involved in the biosynthesis of plant cell wall polysaccharides including xyloglucan and arabinan. The results suggest the existence of novel biosynthetic mechanisms involving transports of intermediates across Golgi membranes.  相似文献   

15.
F A Barr  N Nakamura    G Warren 《The EMBO journal》1998,17(12):3258-3268
The nature of the complex containing GRASP65, a membrane protein involved in establishing the stacked structure of the Golgi apparatus, and GM130, a putative Golgi matrix protein and vesicle docking receptor, was investigated. Gel filtration revealed that GRASP65 and GM130 interact in detergent extracts of Golgi membranes under both interphase and mitotic conditions, and that this complex can bind to the vesicle docking protein p115. Using in vitro translation and site-directed mutagenesis in conjunction with immunoprecipitation, the binding site for GRASP65 on GM130 was mapped to the sequence xxNDxxxIMVI-COOH at the C-terminus of GM130, a region known to be required for its localization to the Golgi apparatus. The same approach was used to show that the binding site for GM130 on GRASP65 maps to amino acids 189-201, a region conserved in the mammalian and yeast proteins and reminiscent of PDZ domains. Using green fluorescent protein (GFP)-tagged reporter constructs, it was shown that one essential function of the interaction between GRASP65 and GM130 is in the correct targeting of the two proteins to the Golgi apparatus.  相似文献   

16.
During spermiogenesis, hydrolytic enzymes are sorted from the Golgi apparatus to the acrosome, a supranuclear megavesicle. At fertilization, the enzymatic content of the acrosome is released by exocytosis when a portion of the plasma membrane enveloping the sperm head fuses with the outer membrane of the acrosome. Membrane fusion involves the interaction of a specific pair of proteins, called SNAREs (for soluble N-ethylmaleimide sensitive factor attachment protein receptor). v-SNARE is presumably associated with the membrane of the acrosomal vesicle. Target t-SNARE is associated with the plasma membrane. The interaction of v-SNARE and t-SNARE requires two additional proteins: Rab proteins, members of a family of small GTPases related to the Ras proteins, and a complex of two proteins, NSF-SNAP, recruited by the interacting v-SNARE-tSNARE pair. Syntaxin 2, a v-SNARE member, and Rab3A, a member of the Rab GTPases, have been localized in the acrosome of rodent sperm.  相似文献   

17.
Membrane trafficking plays a crucial role in cell polarity by directing lipids and proteins to specific subcellular locations in the cell and sustaining a polarized state. The Golgi apparatus, the master organizer of membrane trafficking, can be subdivided into three layers that play different mechanical roles: a cytoskeletal layer, the so-called Golgi matrix, and the Golgi membranes. First, the outer regions of the Golgi apparatus interact with cytoskeletal elements, mainly actin and microtubules, which shape, position, and orient the organelle. Closer to the Golgi membranes, a matrix of long coiled–coiled proteins not only selectively captures transport intermediates but also participates in signaling events during polarization of membrane trafficking. Finally, the Golgi membranes themselves serve as active signaling platforms during cell polarity events. We review here the recent findings that link the Golgi apparatus to cell polarity, focusing on the roles of the cytoskeleton, the Golgi matrix, and the Golgi membranes.  相似文献   

18.
Golgi localization of glycosyltransferases requires a Vps74p oligomer   总被引:1,自引:0,他引:1  
The mechanism of glycosyltransferase localization to the Golgi apparatus is a long-standing question in secretory cell biology. All Golgi glycosyltransferases are type II membrane proteins with small cytosolic domains that contribute to Golgi localization. To date, no protein has been identified that recognizes the cytosolic domains of Golgi enzymes and contributes to their localization. Here, we report that yeast Vps74p directly binds to the cytosolic domains of cis and medial Golgi mannosyltransferases and that loss of this interaction correlates with loss of Golgi localization of these enzymes. We have solved the X-ray crystal structure of Vps74p and find that it forms a tetramer, which we also observe in solution. Deletion of a critical structural motif disrupts tetramer formation and results in loss of Vps74p localization and function. Vps74p is highly homologous to the human GMx33 Golgi matrix proteins, suggesting a conserved function for these proteins in the Golgi enzyme localization machinery.  相似文献   

19.
Acrosome biogenesis involves the transport and fusion of Golgi-derived proacrosomal vesicles along the acroplaxome, an F-actin/keratin 5-containing cytoskeletal plate anchored to the spermatid nucleus. A significant issue is whether the acroplaxome develops in acrosomeless mutant mice. Male mice with a Hrb null mutation are infertile and both spermatids and sperm are round-headed and lack an acrosome. Hrb, a protein that contains several NPF motifs (Asn-Pro-Phe) and interacts with proteins with Eps15 homology domains, is regarded as critical for the docking and/or fusion of Golgi-derived proacrosomal vesicles. Here we report that the lack of an acrosome in Hrb mutant spermatids does not prevent the development of the acroplaxome. Yet the acroplaxome in the mutant contains F-actin but is deficient in keratin 5. We also show that the actin-based motor protein myosin Va and its receptor, Rab27a/b, known to be involved in vesicle transport, are present in the Golgi and Golgi-derived proacrosomal vesicles in wild-type and Hrb mutant mouse spermatids. In the Hrb mutant, myosin-Va-bound proacrosome vesicles tether to the acroplaxome, where they flatten and form a flat sac, designated pseudoacrosome. As spermiogenesis advances, round-shaped spermatid nuclei of the mutant display several nuclear protrusions, designated nucleopodes. Nucleopodes are consistently found at the acroplaxome- pseudoacrosome site. Our findings support the interpretation that the acroplaxome provides a focal point for myosin-Va/ Rab27a/b-driven proacrosomal vesicles to accumulate, coalesce, and form an acrosome in wild-type spermatids and a pseudoacrosome in Hrb mutant spermatids. We suggest that nucleopodes develop at a site where a keratin 5-deficient acroplaxome may not withstand tension forces operating during spermatid nuclear shaping.  相似文献   

20.
Effects of a single, high dose of orally administered carbendazim (100 mg/kg) on acrosome formation in the early phases of spermiogenesis were examined by electron microscopy and immunocytochemistry up to day 7.5 post-treatment. No obvious abnormality of acrosome development was noted in the Golgi phase spermatids on day 1.5 post-treatment. On day 3, step 1 spermatids were seen in stage III seminiferous tubules. In stage V tubules at this post-treatment interval, direct connections between the trans-side saccules of the Golgi stacks and the outer acrosomic membranes were observed in step 5 spermatids. Similar direct connections between these two organelles were also observed in the advanced round spermatids in later stages at days 4.5 and 7.5. On day 4.5, step 1 and 3 spermatids were seen in stage V tubules. On day 7.5, round spermatids with various abnormalities of acrosome development were observed in stage VII tubules, in addition to the discontinuous and granular acrosomes reported previously. These features were not observed in testes of control animals. In the immunocytochemical analysis using an antibody mMN7 that recognizes a protein delivered from the Golgi apparatus to the acrosome, spermatids exposed to carbendazim showed various abnormal immunostaining patterns in the acrosomes. On the other hand, strong immunoreactivity was observed in the Golgi saccules connecting to the acrosomes. These results suggest that in testis treated with carbendazim acrosome development is impaired during the early phases of spermiogenesis, and material supply from the Golgi apparatus to the acrosome is perturbed, which is a possible cause of the abnormal development. Received: 31 March 1998 / Accepted: 28 May 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号