首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The arrangement and structure of sinus hair muscles in the snout of the shrew, Sorex unguiculatus, were studied by electron microscopy and serial section light microscopy. Both striated and smooth muscles are directly associated with sinus hair follicles. The striated muscle fibers originate from the base of a follicle and insert onto the superficial portion of adjoining caudally positioned follicles. Some fibers insert into the corium instead of inserting into a follicle. The fibers show a fine structure typical of red fibers. Smooth muscle cells form a network with elastic fibers beneath the corium. Some cells are directly attached to the capsule of the sinus, thus forming a type of M. arrector pili. Striated muscle fibers that appear to end in the corium are connected with the smooth muscle network through the elastic fibers which appear to function as the tendon of these two types of muscle cell.  相似文献   

2.
Transformation of amnion epithelium into skin and hair follicles   总被引:11,自引:0,他引:11  
There is increasing interest into the extent to which epithelial differentiation can be altered by mesenchymal influence, and the molecular basis for these changes. In this study, we investigated whether amnion epithelium could be transformed into skin and hair follicles by associating E12.5 to E14.5 mouse amnion from the ROSA 26 strain, with mouse embryonic hair-forming dermis from a wild-type strain. These associations were able to produce fully formed hair follicles with associated sebaceous glands, and skin epidermis. Using beta-galactosidase staining we were able to demonstrate that the follicular epithelium and skin epidermis, but not the associated dermal cells, originated from the amnion. As Noggin and Sonic hedgehog (Shh) were recently shown to be required for early chick ventral skin formation, and able to trigger skin and feather formation from chick amnion, we associated cells engineered to produce those two factors with mouse amnion. In a few cases, we obtained hair buds connected to a pluristratified epithelium; however, the transformation of the amnion was impeded by uncontrolled fibroblastic proliferation. In contrast to an earlier report, none of our control amnion specimens autonomously transformed into skin and hair follicles, indicating that specific influences are necessary to elicit follicle formation from the mouse amnion. The ability to turn amnion into skin and its appendages has practical potential for the tissue engineering of replacement skin, and related biotechnological approaches.  相似文献   

3.
The skin consists of an outer epidermis, the dermis, and the hypodermis. It includes nerves, blood vessels, glands and hair follicles. Epidermis is a continually renewing, stratified squamous epithelium. It is populated by keratinocytes (80 %) and dendritic cells (20 %) : melanocytes, Langerhans and Merkel cells. In standard histology, keratinocytes are arranged in layers that represent different stages of their differentiation while melanocytes and Langerhans cells appear as clear cells respectively between the basal and the supra-basal cells of epidermis. The Merkel cells cannot be clearly identified. Dendritic processes of the dendritic cells can only be recognized by immunocytochemistry. At the dermal-epidermal junction, a PAS reactive basement membrane follows the contour of the basal cells. Dermis consists of collagenous and elastic fibers embedded into an amorphous ground substance. Fibroblasts, macrophages, mast cells and lymphocytes are its resident cells. Hypodermis is composed of adipocyte lobules defined by fibrous connective tissue septa. Hair follicle consists of 3 parts : the lower portion, from the base of the follicle including hair bulb to the insertion of the arrector pili muscle or buldge ; the isthmus, from the insertion of the arrector pili to the entrance of the sebaceous duct, and the infundibulum, from the entrance of the sebaceous duct to the follicular orifice. The lower portion is composed of the dermal hair papilla, the hair matrix, the hair, and the inner and the outer root sheaths. The hair matrix cells within hair bulb give rise to the hair and to the inner root sheath. With the electron microscope, one can obtain a more detailed view of the characteristic skin structures. Much of them can now be explained in terms of function and in many instances, in correlation with its biochemical composition. An attempt has been made in this paper to precisely give the location of molecules that are relevant in basic skin functions and understanding of auto-immune and genetic diseases.  相似文献   

4.
Hair follicle development and growth are regulated by Wnt signalling and depend on interactions between epidermal cells and a population of fibroblasts at the base of the follicle, known as the dermal papilla (DP). DP cells have a distinct gene expression signature from non-DP dermal fibroblasts. However, their origins are largely unknown. By generating chimeric mice and performing skin reconstitution assays we show that, irrespective of whether DP form during development, are induced by epidermal Wnt activation in adult skin or assemble from disaggregated cells, they are polyclonal in origin. While fibroblast proliferation is necessary for hair follicle formation in skin reconstitution assays, mitotically inhibited cells readily contribute to DP. Although new hair follicles do not usually develop in adult skin, adult dermal fibroblasts are competent to contribute to DP during hair follicle neogenesis, irrespective of whether they originate from skin in the resting or growth phase of the hair cycle or skin with β-catenin-induced ectopic follicles. We propose that during skin reconstitution fibroblasts may be induced to become DP cells by interactions with hair follicle epidermal cells, rather than being derived from a distinct subpopulation of cells.  相似文献   

5.
小鼠皮肤及其毛囊早期发育的组织学观察   总被引:1,自引:0,他引:1  
目的探讨小鼠皮肤及其毛囊的早期发育规律。方法采用常规石蜡切片和H-E染色技术,观察昆明系小鼠出生前后皮肤及其毛囊的形态发育。结果(1)孕龄16 d胎鼠的皮肤表面形成凹凸不平的深褶皱,但在生后3 d~5 d不仅皱褶的数量减少,而且凹陷变浅;(2)胎鼠孕龄16 d至19 d,其皮肤的表皮、真皮及皮肤总厚度呈现平稳增厚。但是,出生后,其表皮、真皮和皮肤总厚度急剧降低;在生后第1天至第9天,表皮呈现平稳增厚,而真皮则在生后快速厚度,第7天达到最高值(1861.50μm);(3)孕龄16 d的胎鼠皮肤中可观察到初级毛囊,至生后第7天其密度呈现平稳增长;与其相比,次级毛囊从18 d胎鼠开始出现,其密度增长非常迅速,出生后第7天达到1257.14/mm;毛囊的总密度与次级毛囊呈现相似的变化趋势。出生第7天后,由于毛囊的数量急剧增加,无法观察初级毛囊和次级毛囊的变化规律;(4)初级毛囊和次级毛囊的长度与深度变化在出生前后的相对缓慢,与其相比在第3天以后至第7天呈现迅速变化趋势。结论小鼠皮肤及其毛囊的生长性发育发生在胎儿晚期和生后的早期,而其周期性变化可能从出生后的第9天以后开始出现;在孕期16 d至生后第7天可能是检测毛囊特异性基因表达的最佳期。  相似文献   

6.
Melanocytes in human skin reside both in the epidermis and in the matrix and outer root sheath of anagen hair follicles. Comparative study of melanocytes in these different locations has been difficult as hair follicle melanocytes could not be cultured. In this study we used a recently described method of growing hair follicle melanocytes to characterize and compare hair follicle and epidermal melanocytes in the scalp of the same individual. Three morphologically and antigenically distinct types of melanocytes were observed in primary culture. These included (1) moderately pigmented and polydendritic melanocytes derived from epidermis; (2) small, bipolar, amelanotic melanocytes; and (3) large, intensely pigmented melanocytes; the latter two were derived from hair follicles. The three sub-populations of cells all reacted with melanocyte-specific monoclonal antibody. Epidermal and amelanotic hair follicle melanocytes proliferated well in culture, whereas the intensely pigmented hair follicle melanocytes did not. Amelanotic hair follicle melanocytes differed from epidermal melanocytes in being less differentiated, and they expressed less mature melanosome antigens. In addition, hair follicle melanocytes expressed some antigens associated with alopecia areata, but not antigens associated with vitiligo, whereas the reverse was true for epidermal melanocytes. Thus, antigenically different populations of melanocytes are present in epidermis and hair follicle. This could account for the preferential destruction of hair follicle melanocytes in alopecia areata and of epidermal melanocytes in vitiligo.  相似文献   

7.
Melanoblasts, the precursors of the pigment-producing cells of the skin and hair, are derived from the neural crest and migrate to the skin around 12 days of gestation in the mouse. In adult mice almost all the melanoblasts are confined to the hair follicles except for the epidermal layers of nonhairy skin. The receptor tyrosine kinase, KIT, is necessary for the survival, proliferation, and migration of melanoblasts. We have utilised an organ culture for embryonic skin taken from Dct-lacZ transgenic mice. The early patterning of the follicles and developing skin layers is retained within the cultures and the lacZ reporter allows visualisation of the melanoblasts within their native tissue environment. Soon after initiation of hair follicle development, melanoblasts localise in the follicles. Inhibition of follicle formation demonstrates that this localisation is an active process; in the absence of follicles, the melanoblasts proliferate but remain associated with the basement membrane. Implantation of beads releasing MGF, the ligand of KIT, does not result in melanoblast migration towards the bead, rather their localisation to the follicles is accelerated. Addition of soluble MGF induces the same effect; KIT therefore promotes melanocyte movement and acts as a chemokinetic, or motogenic, receptor. The melanoblasts must be guided to their correct location by other chemotactic signals or move at random and locate by ceasing movement when the follicle is engaged.  相似文献   

8.
目的观察不同日龄SD大鼠皮肤组织学结构。方法10%甲醛固定,行石蜡切片,HE染色。结果新生大鼠皮肤较薄,透明层缺乏,皮脂腺发育良好。6月龄时表皮、真皮和皮下组织明显增厚,毛囊增粗,生长旺盛,毛囊深入皮下脂肪层。24月龄时,大鼠皮脂腺及汗腺萎缩,表皮变薄,真皮成纤维细胞、血管数量减少,弹力纤维变细。结论不同日龄SD大鼠皮肤组织学结构有差异。  相似文献   

9.
An increasing number of studies show that platelet‐rich plasma (PRP) is effective for androgenic alopecia (AGA). However, the underlying cellular and molecular mechanisms along with its effect on hair follicle stem cells are poorly understood. In this study, we designed to induce platelets in PRP to release factors by calcium chloride (PC) or by sonication where platelet lysates (PS) or the supernatants of platelet lysate (PSS) were used to evaluate their effect on the hair follicle activation and regeneration. We found that PSS and PS exhibited a superior effect in activating telogen hair follicles than PC. In addition, PSS injection into the skin activated quiescent hair follicles and induced K15+ hair follicle stem cell proliferation in K14‐H2B‐GFP mice. Moreover, PSS promoted skin‐derived precursor (SKP) survival in vitro and enhanced hair follicle formation in vivo. In consistence, protein array analysis of different PRP preparations revealed that PSS contained higher levels of 16 growth factors (out of 41 factors analysed) than PC, many of them have been known to promote hair follicle regeneration. Thus, our data indicate that sonicated PRP promotes hair follicle stem cell activation and de novo hair follicle regeneration.  相似文献   

10.
Hair follicles (HFs) are self-renewing structures that reconstitute themselves through the hair cycle. They maintain reservoirs of stem cells (SC) that are thought to reside in the bulge area, a region localized in the lowermost permanent portion of HFs. In mice and humans, HF bulge cells express nestin and present stem features as pluripotency. Nestin is a class VI intermediate filament protein; it was first described as a specific marker of CNS stem cells, but recent studies suggest that it may represent a more general stem cell marker (Wiese et al., 2004; Hoffman, 2006). Bulge cell characteristics have mainly been studied in mice and humans, but recently, a bulge-like region was identified also in dog HFs (Pascucci et al., 2006). In this work we investigate the presence and localization of nestin in dog HFs with the aim of evaluating its expression and to correlate it with the location of the bulge-like region. Immunostaining of skin samples collected from healthy dogs was performed by using a rabbit anti-nestin polyclonal antibody. The presence of a population of immunoreactive cells was revealed in the hair follicle middle region, at the arrector pili muscle insertion level. An immunohistochemical signal was detected only in primary hair follicles throughout the hair cycle. These observations led us to conclude that nestin positive cells are located in the bulge-like region of dog HFs and strengthen our hypothesis regarding the correlation between this region and the dog HF stem compartment.  相似文献   

11.
Skin acts an important protection role in animal survival and it evolves with the animal divergence. We identified the conserved miRNA families of skin among duck and other species. Cluster analysis showed that the species with similar skin characteristics were clustered into the same group, indicating miRNAs are important in skin function and skin evolution. The miRNA profiles demonstrated that different miRNA regulation mechanism may exist in contour feather follicles (with the surrounding skin) and down feather follicles (with the surrounding skin). Comparing the highly abundant miRNAs with those of mammalian hair follicles and skins, different miRNAs and miRNA families were found, suggesting the different ways in feather follicles and mammalian hair follicles. Bioinformatics prediction indicated that seven miRNAs probably targeted the genes of Wnt/β-catenin, Shh/BMP and Notch pathways which were important in feather morphogenesis. Further analysis should be conducted to experimentally validate the relationships between miRNAs and their predicted target genes because the target genes were based exclusively upon the bioinformatics.  相似文献   

12.
Hair follicles are easily accessible skin appendages that protect against cold and potential injuries. Hair follicles contain various pools of stem cells, such as epithelial, melanocyte, and mesenchymal stem cells (MSCs) that continuously self-renew, differentiate, regulate hair growth, and maintain skin homeostasis. Recently, MSCs derived from the dermal papilla or dermal sheath of the human hair follicle have received attention because of their accessibility and broad differentiation potential. In this review, we describe the applications of human hair follicle-derived MSCs (hHF-MSCs) in tissue engineering and regenerative medicine. We have described protocols for isolating hHF-MSCs from human hair follicles and their culture condition in detail. We also summarize strategies for maintaining hHF-MSCs in a highly proliferative but undifferentiated state after repeated in vitro passages, including supplementation of growth factors, 3D suspension culture technology, and 3D aggregates of MSCs. In addition, we report the potential of hHF-MSCs in obtaining induced smooth muscle cells and tissue-engineered blood vessels, regenerated hair follicles, induced red blood cells, and induced pluripotent stem cells. In summary, the abundance, convenient accessibility, and broad differentiation potential make hHF-MSCs an ideal seed cell source of regenerative medical and cell therapy.  相似文献   

13.
Hair differentiation and growth are controlled by complex reciprocal signaling between epithelial and mesenchymal cells. To better understand the requirement and molecular mechanism of BMP signaling in hair follicle development, we performed genetic analyses of bone morphogenetic protein receptor 1A (BMPR-IA) function during hair follicle development by using a conditional knockout approach. The conditional mutation of Bmpr1a in ventral limb ectoderm and its derivatives (epidermis and hair follicles) resulted in a lack of hair outgrowth from the affected skin regions. Mutant hair follicles exhibited abnormal morphology and lacked hair formation and pigment deposition during anagen. The timing of the hair cycle and the proliferation of hair matrix cells were also affected in the mutant follicles. We demonstrate that signaling via epithelial BMPR-IA is required for differentiation of both hair shaft and inner root sheath from hair matrix precursor cells in anagen hair follicles but is dispensable for embryonic hair follicle induction. Surprisingly, aberrant de novo hair follicle morphogenesis together with hair matrix cell hyperplasia was observed in the absence of BMPR-IA signaling within the affected skin of adult mutants. They developed hair follicle tumors from 3 months of age, indicating that inactivation of epidermal BMPR-IA signaling can lead to hair tumor formation. Taken together, our data provide genetic evidence that BMPR-IA signaling plays critical and multiple roles in controlling cell fate decisions or maintenance, proliferation, and differentiation during hair morphogenesis and growth, and implicate Bmpr1a as a tumor suppressor in skin tumorigenesis.  相似文献   

14.
15.
G Cotsarelis  T T Sun  R M Lavker 《Cell》1990,61(7):1329-1337
Inconsistent with the view that hair follicle stem cells reside in the matrix area of the hair bulb, we found that label-retaining cells exist exclusively in the bulge area of the mouse hair follicle. The bulge consists of a subpopulation of outer root sheath cells located in the midportion of the follicle at the arrector pili muscle attachment site. Keratinocytes in the bulge area are relatively undifferentiated ultrastructurally. They are normally slow cycling, but can be stimulated to proliferate transiently by TPA. Located in a well-protected and nourished environment, these cells mark the lower end of the "permanent" portion of the follicle. Our findings, plus a reevaluation of the literature, suggest that follicular stem cells reside in the bulge region, instead of the lower bulb. This new view provides insights into hair cycle control and the possible involvement of hair follicle stem cells in skin carcinogenesis.  相似文献   

16.
A mechanism based on a reaction-diffusion system is proposed for the initiation of hair follicles in the epidermis during fetal development. It is demonstrated that initiation of primary follicles in a series of waves, within the proposed mechanism, is a consequence of the size and shape dependent properties of the reaction-diffusion system without the need for the propagation of signals through the skin. The observed trio grouping of follicles and variation of primary follicle density per unit skin area during development are also correctly predicted. An explanation, based on the reaction-diffusion system and the variation of its characteristic spatial wavelength with time during development, is suggested for the termination of both primary and secondary follicle initiation as well as follicle neogenesis. The proposed initiation mechanism is basically the same as that used to explain various spatial patterns observed in hair fibre formation (Nagorcka & Mooney, 1982).  相似文献   

17.
40 min after a single injection of 50 µCi of tritiated thymidine a 3 mm punch of DBA-1 mouse skin contains about 1000 dpm. This value remains constant for at least 48 hr after injection. 50 hair follicles contain about 40 dpm, and from these values the activity calculated to reside in the basal layer of a 3 mm punch of skin is 760 dpm. These values also remain constant with time after injection. Fresh punches of skin contain much more activity. The fixative-soluble fraction (the difference between fresh and fixed values) decays slowly with time. The values for DBA-2 mice are similar. Plucking the hair from the follicles appears immediately to increase the size of the fixative-soluble fraction and decrease the fixed tissue values to about 500 dpm per punch for whole skin and about 1 dpm per 50 follicles for DBA-1. Thus almost all the activity is restricted to the epidermis. The fixative-soluble fraction returns approximately to the unplucked value between 24 and 48 hr after plucking. However, during this period the fixed tissue values are rising rapidly as stimulated cells enter S. It appears that in both strains labeled material remains available for incorporation into stimulated cells for at least 48 hr after a single injection. The amount persisting appears to decrease with time. The whole-fixed skin, the hair follicles, and the epidermis all contain cells that are capable of becoming labeled after stimulation 8–48 hr after an injection. The label in question does not become incorporated into normal cycling skin or hair follicle cells. It is concluded that the DNA precursor pool is possibly connected with G0 cells and that both the hair follicle and the basal layer of the epidermis contain these resting cells.  相似文献   

18.
The general behavior, locomotion, and body from of the angwantibo resemble those of Loris and Nycticebus. Its skin, however, is similar to that of Pottos and Galagos; singular among the similarities is the occurrence of alkaline phosphatase-positive dendritic cells in the epidermis. The presence of elongated, sausageshaped end-organs in the mucocutaneous region, the absence of arrector pili muscle, and the absence of alkaline phosphatase in the hair follicle nerve end-organs are distinctive features of angwantibos. These animals have a well-formed, complete nictitating membrane, thereby differing from all other primates studied.  相似文献   

19.
S M Burge  R P Dawber 《Cryobiology》1990,27(2):153-163
We have investigated the histological changes in hair follicles in guinea pig skin after standardized moderate and severe cryosurgery injuries. Hair follicles were permanently destroyed by cryosurgery, but more than one mechanism may be operative during follicle destruction and shedding. The mechanism depends upon the severity of the freeze. After a light freeze injury, the changes are predominantly within the hair follicle. The hair is shed at the surface and there is selective autolysis of follicular cells, but dermal connective tissue is preserved and there is little surrounding damage. However, after a severe cryoinjury as used in "tumor doses," there is destruction of dermal connective tissue and dermal scarring. The necrotic dermis is shed, taking with it the dead follicles and morphologically normal elastic tissue.  相似文献   

20.
Mammalian hair follicles are complex multicellular structures in the skin, which produce hair fibre under the influence of locally produced and systemic signalling systems. Investigation to determine mechanisms of regulation, follicular responses and the importance of nutritional supply have utilised a number of in vivo and in vitro approaches. Included in these are studies on isolated intact anagen secondary follicles singly or in groups with incubation in culture medium. These utilise techniques developed for investigation of follicles from human skin. Results from selected studies reviewed here demonstrate differences in capacity for hair growth and protein synthesis between secondary follicles from Angora and cashmere-bearing goats. Mohair follicles were shown to exhibit faster hair shaft elongation both in vivo and in vitro, to have greater DNA content per follicle and to deposit significantly more protein per follicle and per unit of DNA. Incubation of anagen mohair and cashmere follicles in the presence of melatonin or prolactin showed positive responses in hair shaft growth and protein synthesis to both signalling molecules. This result indicated directly acting effects on the follicle in addition to any indirect effects arising at a whole animal level in response to, for example, variation in photoperiod. Similarly, epidermal growth factor was shown to alter elongation and protein synthesis in mohair follicles and to produce, at higher concentration, club hair structures similar to effects observed in other species. The vitamin biotin was shown to be important in maintaining viability of isolated sheep secondary hair follicles where supplementation increased the proportion continuing to grow. Effects on growth and apparent protein synthesis suggested comparatively lesser effects on follicles, which remained viable. Histology on follicles indicated effects of biotin deficiency in reducing proliferation of basal keratinocytes. The final study, included in this review, demonstrated that supply of the essential sulphur-containing amino acid l-methionine was necessary to maintain the viability and growth of mohair follicles. l-cysteine was not required in the presence of l-methionine, although there was evidence of an optimisation when both amino acids were present in adequate concentrations. Consideration is given to the importance of transport mechanisms and capacity to utilise absorbed nutrients when considering optimising nutritional supply to individual follicles. These may then provide targets for attainment in applied nutrition of animals in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号