首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SHERIFF  D. W. 《Annals of botany》1982,50(4):535-548
The hydraulic conductances of leaves of a species which exhibitsstomatal responses to humidity (Nicotiana glauca) are significantlylower than the conductances in a species which does not exhibitsuch responses (Tradescantia virginiana). This difference couldat least partly account for their difference in stomatal responseto humidity. In both species, the hydraulic conductance betweenthe leaf bulk and its epidermis is much lower than the conductancein any other part of the pathway. The apparently conflictingresults, reported in recent literature, on the hydraulic conductancesand water pathways in leaves are reinterpreted, and shown tobe due to misinterpretation of results. The recently publishedcriticisms of a technique used to measure hydraulic conductivityare commented on and refuted. An examination of the factors that influence the water potentialat the sites of evaporation from the inner walls of the epidermisnear stomatal pores showed that the water potential at thesesites is lower than the bulk epidermal water potential. Thewater potential at these sites changes in a complex way as stomatalaperture changes. As it is reduced the ratio of: ‘waterpotential at sites of evaporation on the inner walls of theepidermis near stomatal pores/bulk leaf water potential‘increases. The positive feedback effect of this phenomenon,which tends to keep stomatal water potential constant as thestomata close and therefore enhances closure, and two other‘passive’ positive feedback effects on the waterpotential at sites of evaporation near stomata that have beenreported in the literature are briefly discussed. Nicotiana glauca (Grah.), Tradescantia virginiana (L.), sub-stomatal cavities, peristomatal evaporation, stomata, humidity response, leaf hydraulic conductance, water potential  相似文献   

2.
Stomatal control of transpiration from a developing sugarcane canopy   总被引:2,自引:2,他引:0  
Abstract. Stomatal conductance of single leaves and transpiration from an entire sugarcane (Saccharum spp. hybrid) canopy were measured simultaneously using independent techniques. Stomatal and environmental controls of transpiration were assessed at three stages of canopy development, corresponding to leaf area indices (L) of 2.2, 3.6 and 5.6. Leaf and canopy boundary layers impeded transport of transpired water vapour away from the canopy, causing humidity around the leaves to find its own value through local equilibration rather than a value determined by the humidity of the bulk air mass above the canopy. This tended to uncouple transpiration from direct stomatal control, so that transpiration predicted from measurement of stomatal conductance and leaf-to-air vapour pressure differences was increasingly overestimated as the reference point for ambient vapour pressure measurement was moved farther from the leaf and into the bulk air. The partitioning of control between net radiation and stomata was expressed as a dimensionless decoupling coefficent ranging from zero to 1.0. When the stomatal aperture was near its maximum this coefficient was approximately 0.9, indicating that small reductions in stomatal aperture would have had little effect on canopy transpiration. Maximum rates of transpiration were, however, limited by large adjustments in maximum stomatal conductance during canopy development. The product of maximum stomatal conductance and L. a potential total canopy conductance in the absence of boundary layer effects, remained constant as L increased. Similarly, maximum canopy conductance, derived from independent micrometeorological measurements, also remained constant over this period. Calculations indicated that combined leaf and canopy boundary layer conductance decreased with increasing L such that the ratio of boundary layer conductance to maximum stomatal conductance remained nearly constant at approximately 0.5. These observations indicated that stomata adjusted to maintain both transpiration and the degree of stomatal control of transpiration constant as canopy development proceeded.  相似文献   

3.
Drought increased the pH of Commelina communis xylem sap from 6.1 to 6.7. Conductances of transpiring leaves were 50% lower in pH 7.0 than in pH 6.0 buffers, but bulk leaf abscisic acid (ABA) concentration and shoot water status were unaffected by pH. Stomatal apertures of isolated abaxial epidermis incubated on simple buffers increased with external pH, so in vivo this must be overridden by alternative pH effects. Reductions in leaf transpiration rate at pH 7.0 were dependent on the presence of 10-8 mol dm-3 ABA in the xylem stream. We inferred that at pH 7.0 leaf apoplastic ABA concentrations increased: pH did not affect distributions of ABA among leaf tissues, but isolated epidermis and mesophyll tissue took up more 3H-ABA from pH 6.0 than from pH 7.0 buffers. The apoplastic ABA increase at pH 7.0 may result from reduced symplastic sequestration. A portion of 3H-ABA uptake by the epidermis was saturable at pH 6.0 but not at pH 7.0. An ABA uptake carrier may contribute to ABA sequestration by the leaf symplast of well-watered plants, and its inactivity at pH 7.0 may favor apoplastic ABA accumulation in draughted plants. Effects of external pH on stomatal apertures in the isolated epidermis indicate that published data supporting a role for internal guard cell ABA receptors should be reassessed.  相似文献   

4.
胡杨叶片气孔导度特征及其对环境因子的响应   总被引:19,自引:2,他引:17  
依据2005年对极端干旱区荒漠河岸林胡杨的观测资料,对胡杨气孔运动进行了分析研究以揭示胡杨的水分利用特征与抗旱机理。结果表明:(1)胡杨叶片气孔导度日变化呈现为周期波动曲线,其波动周期为2 h,傍晚(20:00)波动消失;净光合速率和蒸腾速率与气孔导度的波动相对应而呈现同步周期波动。(2)胡杨的阳生叶气孔导度高于阴生叶,且不同季节气孔导度值不同,阳生叶气孔导度的季节变幅大于阴生叶。(3)胡杨气孔导度与气温、相对湿度和叶水势有显著相关关系,当CO2浓度较小时,胡杨气孔导度随CO2浓度的增加而增加,当CO2浓度达到一定值后气孔导度不再增加,反而随CO2浓度的增加大幅度降低。(4)胡杨适应极端干旱区生境的气孔调节机制为反馈式反应,即由于叶水势降低导致气孔导度减小,从而减少蒸腾耗水,达到节约用水、适应干旱的目的,表明胡杨的水分利用效率随气孔限制值的增大而减小,二者呈显著负相关。  相似文献   

5.
Stomatal control of crown transpiration was studied in Anacardium excelsum, a large-leaved, emergent canopy species common in the moist forests of Central and northern South America. A construction crane equipped with a gondola was used to gain access to the uppermost level in the crown of a 35-m-tall individual. Stomatal conductance at the single leaf scale, and transpiration and total vapour phase conductance (stomatal and boundary layer) at the branch scale were measured simultaneously using the independent techniques of porometry and stem heat balance, respectively. This permitted the sensitivity of transpiration to a marginal change in stomatal conductance to be evaluated using a dimensionless coupling coefficient (1-ω) ranging from zero to 1, with 1 representing maximal stomatal control of transpiration. Average stomatal conductance varied from 0.09 mol m?2 s?1 during the dry season to 0.3 mol m?2 s?1 during the wet season. Since boundary layer conductance was relatively low (0.4 mol m?2 s?1), 1-ω ranged from 0.46 during the dry season to only 0.25 during the wet season. A pronounced stomatal response to humidity was observed, which strongly limited transpiration as evaporative demand increased. The stomatal response to humidity was apparent only when the leaf surface was used as the reference point for measurement of external vapour pressure. Average transpiration was predicted to be nearly the same during the dry and wet seasons despite a 1 kPa difference in the prevailing leaf-to-air vapour pressure difference. The patterns of stomatal behaviour and transpiration observed were consistent with recent proposals that stomatal responses to humidity are based on sensing the transpiration rate itself.  相似文献   

6.
Plant response to atmospheric humidity   总被引:15,自引:5,他引:10  
Abstract. Plants growing in environments differing in prevailing humidity exhibit variations in traits associated with regulation of water loss, particularly cuticular and stomatal properties. Expansive growth is also typically reduced by low humidity. Nevertheless, there is little evidence in plants for a specific sensor for humidity, analogous to the blue light or phytochrome photoreceptors. The detailed mechanism of the stomatal response to humidity remains unknown. Available data suggest mediation by fluxes of water vapour, with evaporation rate assuming the role of sensor. This implies that stomata respond to the driving force for diffusional water loss, leaf-air vapour pressure difference. Induction of metabolic stomatal response to humidity may involve signal metabolites, such as abscisic acid, that are present in the transpiration stream. These materials may accumulate in the vicinity of guard cells according to the magnitude and location of cuticular transpiration, both of which could change with humidity. Such a mechanism remains hypothetical, but is suggested to account for feedforward responses in which transpiration decreases with increasing evaporative demand, and for the apparent insensitivity of stomatal aperture in isolated epidermis to epidermal water status. Other responses of plants to humidity may involve similar indirect response mechanisms, in the absence of specific humidity sensors.  相似文献   

7.
Water movement from the xylem to stomata is poorly understood. There is still no consensus about whether apoplastic or symplastic pathways are more important, and recent work suggests vapour diffusion may also play a role. The objective of this study was to estimate the proportions of hydraulic conductance outside the bundle sheath contributed by apoplastic, symplastic and gas phase pathways, using a novel analytical framework based on measurable anatomical and biophysical parameters. The calculations presented here suggest that apoplastic pathways provide the majority of conductance outside the bundle sheath under most conditions, whereas symplastic pathways contribute only a small proportion. The contributions of apoplastic and gas phase pathways vary depending on several critical but poorly known or highly variable parameters namely, the effective Poiseuille radius for apoplastic bulk flow, the thickness of cell walls and vertical temperature gradients within the leaf. The gas phase conductance should increase strongly as the leaf centre becomes warmer than the epidermis – providing up to 44% of vertical water transport for a temperature gradient of 0.2 K. These results may help to explain how leaf water transport is influenced by light absorption, temperature and differences in leaf anatomy among species.  相似文献   

8.
Co-ordination of vapour and liquid phase water transport properties in plants   总被引:26,自引:7,他引:19  
The pathway for water movement from the soil through plants to the atmosphere can be represented by a series of liquid and vapour phase resistances. Stomatal regulation of vapour phase resistance balances transpiration with the efficiency of water supply to the leaves, avoiding leaf desiccation at one extreme, and unnecessary restriction of carbon dioxide uptake at the other. In addition to maintaining a long-term balance between vapour and liquid phase water transport resistances in plants, stomata are exquisitely sensitive to short-term, dynamic perturbations of liquid water transport. In balancing vapour and liquid phase water transport, stomata do not seem to distinguish among potential sources of variation in the apparent efficiency of delivery of water per guard cell complex. Therefore, an apparent soil-to-leaf hydraulic conductance based on relationships between liquid water fluxes and driving forces in situ seems to be the most versatile for interpretation of stomatal regulatory behaviour that achieves relative homeostasis of leaf water status in intact plants. Components of dynamic variation in apparent hydraulic conductance in intact plants include, exchange of water between the transpiration stream and internal storage compartments via capacitive discharge and recharge, cavitation and its reversal, temperature-induced changes in the viscosity of water, direct effects of xylem sap composition on xylem hydraulic properties, and endogenous and environmentally induced variation in the activity of membrane water channels in the hydraulic pathway. Stomatal responses to humidity must also be considered in interpreting co-ordination of vapour and liquid phase water transport because homeostasis of bulk leaf water status can only be achieved through regulation of the actual transpirational flux. Results of studies conducted with multiple species point to considerable convergence with regard to co-ordination of stomatal and hydraulic properties. Because stomata apparently sense and respond to integrated and dynamic soil-to-leaf water transport properties, studies involving intact plants under both natural and controlled conditions are likely to yield the most useful new insights concerning stomatal co-ordination of transpiration with soil and plant hydraulic properties.  相似文献   

9.
A coupled model of stomatal conductance, photosynthesis and transpiration   总被引:18,自引:1,他引:17  
A model that couples stomatal conductance, photosynthesis, leaf energy balance and transport of water through the soil–plant–atmosphere continuum is presented. Stomatal conductance in the model depends on light, temperature and intercellular CO2 concentration via photosynthesis and on leaf water potential, which in turn is a function of soil water potential, the rate of water flow through the soil and plant, and on xylem hydraulic resistance. Water transport from soil to roots is simulated through solution of Richards’ equation. The model captures the observed hysteresis in diurnal variations in stomatal conductance, assimilation rate and transpiration for plant canopies. Hysteresis arises because atmospheric demand for water from the leaves typically peaks in mid‐afternoon and because of uneven distribution of soil matric potentials with distance from the roots. Potentials at the root surfaces are lower than in the bulk soil, and once soil water supply starts to limit transpiration, root potentials are substantially less negative in the morning than in the afternoon. This leads to higher stomatal conductances, CO2 assimilation and transpiration in the morning compared to later in the day. Stomatal conductance is sensitive to soil and plant hydraulic properties and to root length density only after approximately 10 d of soil drying, when supply of water by the soil to the roots becomes limiting. High atmospheric demand causes transpiration rates, LE, to decline at a slightly higher soil water content, θs, than at low atmospheric demand, but all curves of LE versus θs fall on the same line when soil water supply limits transpiration. Stomatal conductance cannot be modelled in isolation, but must be fully coupled with models of photosynthesis/respiration and the transport of water from soil, through roots, stems and leaves to the atmosphere.  相似文献   

10.
以叶片的气体传输过程为基础,将蒸腾作用包括在以往光合作用气孔导度的耦合模型中,建立了光合作用蒸腾作用气孔导度的耦合模型。该模型可以模拟边界层导度对生理过程的影响。模拟了C3植物叶片对环境因子,如光照、温度、湿度、边界层导度和CO2浓度等的生理响应(光合作用、蒸腾作用、气孔导度)以及Ci和水分利用效率的变化。在环境因子变化于较大范围的情况下,模拟结果符合许多实验结论。  相似文献   

11.
Transpiration element is included in the integrated stomatal conductance-photosynthesis model by considering gaseous transfer processes, so the present model is capable to simulate the influence of boundary layer conductance. Leuning in his revised Ball' s model replaced relative humidity with VPDs(the vapor pressure deficit from stomatal pore to leaf surface) and thereby made the relation with transpiration more straightforward, and made it possible for the regulation of transpiration and the influence of boundary layer conductance to be integrated into the combined model. If the differences in water vapor and CO2 concentration between leaf and ambient air are considered, VPDs, the evaporative demand, is influenced by stomatal and boundary layer conductance. The physiological responses of photosynthesis, transpiration, and stomatal function, and the changes of intercellular CO2 and water use efficiency to environmental factors, such as wind speed, photon flux density, leaf temperature and ambient CO2, are analyzed. It is shown that ff the boundary layer conductance drops to a level comparable with stomatal conductance, the results of simulation by the model presented here differ significantly from those by the previous model, and, in some cases, are more realistic than the latter.  相似文献   

12.
R. Lösch 《Oecologia》1979,39(2):229-238
Summary Stomatal apertures of isolated and suitably conditioned epidermal strips of Polypodium vulgare are described as the stomata respond to the influences of temperature, air humidity, and water potential at the epidermal inner walls. Water stress as a result of reduced water potential in the substomatal airspace leads to narrower stomatal pores when water potential falls below -8 bar. Water potentials above this threshold value show minor influence. Stomatal responses to such water stress strongly interact with the responses to humidity changes in ambient air and to temperature. The linear dependence of stomatal apertures on the vapor saturation deficit of the air (closing) is shifted to lower values (more closed) by lower leaf bulk water potentials.Stomatal behavior depending on the temperature factor seems to be reversed by higher water stress. Without water stress, rising temperatures between 20 and 28° C are accompanied by further opening of the pores, whereas an increase of temperature within this range leads to narrowing of the stomata under the influence of lower water potentials within the substomatal airspace. It can be demonstrated that stomatal aperture values of Polypodium vulgare depending on temperature always describe optimum curves. With no water stress, closing does not occur before rather high temperatures are reached and above a broad range of maximal opening. Water stress, on the other hand, results in more pronounced narrowing of stomatal pores and shifts the onset to considerably lower temperatures.  相似文献   

13.
对野外海南红豆叶片的气体交换、气孔导度和水分利用效率及其相应环境因子的日变化进行测定的结果表明:夏季7月叶片净光光合速率和蒸腾速率的日变化曲线呈双峰型,前者的变化主要受光控制,与气温、叶温和湿度的关系不明显;后者与光、气温和叶温成正相关,与湿度成负相关,气孔导度对湿度的敏感性比对光和温度明显很多。分析结果显示,气孔导度和光合速率受环境因子的响应是相对独立的,海南红豆的水分利用效率最高值出现在上午较  相似文献   

14.
Cavitation decreases the hydraulic conductance of the xylem and has, therefore, detrimental effects on plant water balance. However, cavitation is also hypothesized to relieve water stress temporarily by releasing water from embolizing conduits to the transpiration stream. Stomatal closure in response to decreasing water potentials in order to avoid excessive cavitation has been well documented in numerous previous studies. However, it has remained unclear whether the stomata sense cavitation events themselves or whether they act in response to a decrease in leaf water potential to a level at which cavitation is initiated. The effects of massive cavitation on leaf water potential, transpiration, and stomatal behaviour were studied by feeding a surfactant into the transpiration stream of Scots pine (Pinus sylvestris) seedlings. The stomatal response to cavitation in connection with the capacitive effect was also studied. A major transient increase in leaf water potential was found due to cavitation in the seedlings. As cavitation was induced by lowering the surface tension, the two mechanisms could be uncoupled, as the usual relation between xylem water potential and the onset of cavitation did not hold. Our results indicate that the seedlings responded more to leaf water potential and less to cavitation itself, as stomatal closure was insufficient to prevent the seedlings from being driven to 'run-away' cavitation in a manner of hours.  相似文献   

15.
Effect of boundary layer conductance on the response of stomata to humidity   总被引:8,自引:8,他引:0  
Abstract. Leaf conductance responses to leaf to air water vapour partial pressure difference (VPD) have been measured at air speeds of 0.5 and 3.0 ms−1 in single attached leaves of three species in order to test the hypothesis that leaf conductance response to VPD is controlled by evaporation from the outer surface of the epidermis, rather than by evaporation through stomata. Total conductance decreased linearly with increassing VPD at both air speeds, but was decreased 1.6 3.0 times as much as by a given incrase in VPD at high than at low air speed. depending on species. In all species the relationship between leaf conductance and the gradient for evaporation from the epidermis was the same at both values of boundary layer conductance, supporting the hypothesis that direct epidermal evaporation controls stomatal guard cell behaviour in responses of stomata to VPD in these species.  相似文献   

16.
刘英  雷少刚  程林森  程伟  卞正富 《生态学报》2018,38(9):3069-3077
采煤塌陷引起的土壤环境因子的变化对矿区植物生长的影响越来越受到人们的关注,气孔导度、蒸腾与光合作用作为环境变化响应的敏感因子,研究植物气孔导度、蒸腾与光合作用的变化是揭示荒漠矿区自然环境变化及其规律的重要手段之一。研究采煤塌陷条件下植物光合生理的变化是探究煤炭开采对植物叶片水分蒸腾散失和CO_2同化速率影响的关键环节,是探讨采煤塌陷影响下植物能量与水分交换动态的基础,而采煤矿区植物叶片气孔导度、蒸腾与光合作用速率对采煤塌陷影响下土壤含水量变化的响应如何尚不清楚。选取神东煤田大柳塔矿区52302工作面为实验场地,以生态修复物种柠条为研究对象,对采煤塌陷区和对照区柠条叶片气孔导度、蒸腾和光合作用速率以及土壤体积含水量进行监测,分析了采煤塌陷条件下土壤含水量的变化以及其对柠条叶片气孔导度、蒸腾与光合作用速率的影响。结果显示:(1)煤炭井工开采在地表形成大量裂缝,破坏了土体结构,潜水位埋深降低,土壤含水量均低于沉陷初期,相对于对照区,硬梁和风沙塌陷区土壤含水量分别降低了18.61%、21.12%;(2)柠条叶片气孔导度、蒸腾和光合作用速率均与土壤含水量呈正相关关系;煤炭开采沉陷增加了地表水分散失,加剧了土壤水分胁迫程度,为了减少蒸腾导致的水分散失,柠条叶片气孔阻力增加,从而气孔导度降低,阻碍了光合作用CO_2的供应,从而导致柠条叶片光合作用速率的降低,蒸腾速率也显著降低。  相似文献   

17.
Here we investigate the extent to which infrared heating used to warm plant canopies in climate manipulation experiments increases transpiration. Concerns regarding the impact of the infrared heater technique on the water balance have been raised before, but a quantification is lacking. We calculate transpiration rates under infrared heaters and compare these with air warming at constant relative humidity. As infrared heating primarily warms the leaves and not the air, this method increases both the gradient and the conductance for water vapour. Stomatal conductance is determined both independently of vapour pressure differences and as a function thereof, while boundary layer conductance is calculated using several approaches. We argue that none of these approaches is fully accurate, and opt to present results as an interval in which the actual water loss is likely to be found. For typical conditions in a temperate climate, our results suggest a 12–15% increase in transpiration under infrared heaters for a 1 °C warming. This effect decreases when stomatal conductance is allowed to vary with the vapour pressure difference. Importantly, the artefact is less of a concern when simulating heat waves. The higher atmospheric water demand underneath the heaters reflects naturally occurring increases of potential evapotranspiration during heat waves resulting from atmospheric feedback. While air warming encompasses no increases in transpiration, this fully depends on the ability to keep humidity constant, which in the case of greenhouses requires the presence of an air humidification system. As various artefacts have been associated with chamber experiments, we argue that manipulating climate in the field should be prioritized, while striving to limit confounding factors. The excess water loss underneath infrared heaters reported upon here could be compensated by increasing irrigation or applying newly developed techniques for increasing air humidity in the field.  相似文献   

18.
A model of stomatal conductance was developed to relate plant transpiration rate to photosynthetic active radiation (PAR), vapour pressure deficit and soil water potential. Parameters of the model include sensitivity of osmotic potential of guard cells to photosynthetic active radiation, elastic modulus of guard cell structure, soil‐to‐leaf conductance and osmotic potential of guard cells at zero PAR. The model was applied to field observations on three functional types that include 11 species in subtropical southern China. Non‐linear statistical regression was used to obtain parameters of the model. The result indicated that the model was capable of predicting stomatal conductance of all the 11 species and three functional types under wide ranges of environmental conditions. Major conclusions included that coniferous trees and shrubs were more tolerant for and resistant to soil water stress than broad‐leaf trees due to their lower osmotic potential, lignified guard cell walls, and sunken and suspended guard cell structure under subsidiary epidermal cells. Mid‐day depression in transpiration and photosynthesis of pines may be explained by decreased stomatal conductance under a large vapour pressure deficit. Stomatal conductance of pine trees was more strongly affected by vapour pressure deficit than that of other species because of their small soil‐to‐leaf conductance, which is explainable in terms of xylem tracheids in conifer trees. Tracheids transport water by means of small pit‐pairs in their side walls, and are much less efficient than the end‐perforated vessel members in broad‐leaf xylem systems. These conclusions remain hypothetical until direct measurements of these parameters are available.  相似文献   

19.
Stomatal behavior and water relations of waterlogged tomato plants   总被引:10,自引:5,他引:5       下载免费PDF全文
The effects of waterlogging the soil on leaf water potential, leaf epidermal conductance, transpiration, root conductance to water flow, and petiole epinasty have been examined in the tomato (Lycopersicon esculentum Mill.). Stomatal conductance and transpiration are reduced by 30% to 40% after approximately 24 hours of soil flooding. This is not due to a transient water deficit, as leaf water potential is unchanged, even though root conductance is decreased by the stress. The stomatal response apparently prevents any reduction in leaf water potential. Experiments with varied time of flooding, root excision, and stem girdling provide indirect evidence for an influence of roots in maintaining stomatal opening potential. This root-effect cannot be entirely accounted for by alterations in source-sink relationships. Although 1-aminocyclopropane-1-carboxylic acid, the immediate precursor of ethylene, is transported from the roots to the shoots of waterlogged tomato plants, it has no direct effect on stomatal conductance. Ethylene-induced petiole epinasty develops coincident with partial stomatal closure in waterlogged plants. Leaf epinasty may have beneficial effects on plant water balance by reducing light interception.  相似文献   

20.
几个气孔模型在自然条件下的适用性   总被引:3,自引:0,他引:3  
在自然条件下,用气孔下腔与叶面间的水汽压差(VPDs)取代原有气孔模型中的大气湿度因子,可以明显提高气孔模型在自然条件下的适用性。理论分析指出,在气孔模型中,用VPDs表达气孔导度对湿度的响应与用蒸腾速率表达气孔导度对蒸腾失水的响应是等价的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号