首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The functional adjustments of winter-deciduous perennials to Mediterranean conditions have received little attention. The objectives of this study were: (i) to determine whether Amelanchier ovalis, a winter-deciduous shrub of Mediterranean and sub-Mediterranean regions, has nutritional and phenological traits in common with temperate zone deciduous trees and shrubs and (ii) to determine the constraints of Mediterranean environmental conditions on these traits. Over two years, phenology and nitrogen, and phosphorus concentrations were monitored monthly in the crown of A. ovalis. Leaf longevity, survival and nutrient resorption from senescing leaves were used to infer nutrient use efficiency and retention times of nutrients within the crown. In A. ovalis, bud burst was much earlier than in temperate deciduous trees and shrubs. Most vegetative and reproductive growth occurred in spring. Limited phenological development took place during the summer drought period. Unexpectedly, leaf shedding was very gradual, which might be related to water shortages in summer. Leaf longevity, nutrient resorption from senescing leaves, and maximum leaf nutrient concentrations indicated that nutrient retention times were short and nutrient use efficiency was low compared to that found in temperate deciduous plants and co-occurring Mediterranean evergreens. A. ovalis exhibited phenological development appropriate for a Mediterranean climate, although its limited ability to retain nutrients likely restricts the types of sites that it can occupy.  相似文献   

2.
To reveal the environmental and substrate quality effects on decomposition process and enzyme activities, litterbag experiments containing Nuphar and Carex leaves, Nuphar rhizome, and Ranunculus shoot, were carried in five-subalpine marshes in Lake Tahoe basin, USA. Alkaline phosphatase, β-glucosidase, and β-xylosidase activities were determined by a fluorogenic method using methyumbelliferyl substrates. Carex leaves, Nuphar rhizome and leaves, and Ranunculus shoots lost, respectively, 33, 67, 82 and 93% of original dry weight over 268 days. Decay rates were different among substrates but not among marshes. Nitrogen and carbon contents increased during the first 58 days and subsequently remained stable. Phosphorus content was stable during the experimental period except for a decrease in the first 16 days in Nuphar shoots. Enzyme activities in decomposing Carex and Nuphar leaves in four marshes were not significantly affected by environmental conditions. β-glucosidase and β-xylosidase activities in decomposing Carex leaves increased with time, but in other plant tissue these enzyme activities remained stable during experimental period. Enzyme activities were significantly different among decomposing substrates. Alkaline phosphatase activity was highest in Nuphar leaves (ca. 1286 μ-mole h−1 g DW −1) but lower and similar in other plant tissues (ca. 100 and 10 μ-mole h −1 g DW −1, respectively). This study showed differences in decay rates and enzyme activities rely on substrate and not the environment conditions of the study area. Decomposition rates in the early stage of decomposition were related to cumulative enzyme activities.  相似文献   

3.
Few studies have examined the effects of plant growth on nutrient remobilization in phenologically contrasting species. Here we evaluated the consequences of above-ground seasonality of growth and leaf shedding on the remobilization of nutrients from branches in eight evergreen Mediterranean phanaerophytes that differ widely in phenology. Vegetative growth, flower bud formation, flowering, fruiting, leaf shedding, and the variations in nitrogen (N), phosphorus (P) and potassium (K) pools in branches throughout the year were monitored in each species. Nitrogen and P remobilization occurred in summer, after vegetative growth and synchronously with leaf shedding. Despite the time-lag between growth and remobilization, the branches that invested more nutrients in vegetative growth also remobilized more nutrients from their old organs. Potassium remobilization peaked in the climatically harshest periods, and appears to be related to osmotic requirements. We conclude that N and P remobilization occurs mainly associated with leaf senescence, which might be triggered by factors such as the replenishment of nutrient reserves in woody organs, the hormonal relations between new and old leaves, or the constraints that summer drought poses on the amount of leaf area per branch in summer.  相似文献   

4.
? Premise of the study: Viola hondoensis is a perennial herb that inhabits the understory of temperate, deciduous forests. It is an evergreen plant with a leaf life span that is shorter than a year. Its summer leaves are produced in spring and shed in autumn; winter leaves are produced in autumn and shed in spring. Here we asked why the plant sheds its winter leaves in spring, though climate conditions improve from spring to summer. We proposed four hypotheses for the cause of shedding: (1) changes in seasonal environment such as day length or air temperature, (2) shading by canopy deciduous trees, (3) self-shading by taller summer leaves, and (4) competition for nutrients between summer and winter leaves. ? Methods: To test these hypotheses, we manipulated the environment of winter leaves: (1) plants were transplanted to the open site where there was no shading by canopy trees. (2) Petioles of summer leaves were anchored to the soil surface to avoid shading of winter leaves. (3) Sink organs were removed to eliminate nutrient competition. ? Key results: Longevity of winter leaves was extended when shading by summer leaves was eliminated and when sink organs were removed, but not when plants were transplanted to the open site. ? Conclusion: We conclude that the relative difference in light availability between summer and winter leaves is a critical factor for regulation of leaf shedding, consistent with the theory of maximization of the whole-plant photosynthesis.  相似文献   

5.
Summary The sedgeEriophorum vaginatum in an interior Alaskan muskeg site produced leaves sequentially at about 1.5-month intervals. Each leaf remained active for two growing seasons. Young leaves (even those initiated late in the season) always had high concentrations of N, P, K and Mg and were low in Ca. Stems had high concentrations of nutrients, sugar, amino acid N and soluble organic P in autumn and spring but low concentrations in summer. Growth of leaves in spring was strongly supported by translocation from storage. Leaves approached their maximum nutrient pool before nutrient uptake began in late spring, one month before maximum biomass. Retranslocation of nutrients from aging leaves could support nutrient input into new, actively growing leaves as a consequence of the sequential leaf development. For instance retranslocation from aging leaves accounted for more than 90 and 85% of P and N input to new leaves appearing in early summer and 100% to leaves that appeared later. Leaching losses were negligible. Half time for decay of standing dead litter was 10 years. We suggest that sequential leaf development paired with highly efficient remobilization of nutrients from senescing leaves enables plants to recycle nutrients within the shoot and minimize dependence upon soil nutrients. This may be an important mechanism enablingEriophorum vaginatum to dominate nutrient-poor sites. This may also explain why graminoids with sequential leaf production cooccur with evergreen shrubs and dominate over forbs and deciduous shrubs in nutrient-poor sites in the boreal forest (e.g., in bogs) and at the northern limit of the tundra zone.  相似文献   

6.
Leaf senescence in winter deciduous species signals the transition from the active to the dormant stage. The purpose of leaf senescence is the recovery of nutrients before the leaves fall. Photoperiod and temperature are the main cues controlling leaf senescence in winter deciduous species, with water stress imposing an additional influence. Photoperiod exerts a strict control on leaf senescence at latitudes where winters are severe and temperature gains importance in the regulation as winters become less severe. On average, climatic warming will delay and drought will advance leaf senescence, but at varying degrees depending on the species. Warming and drought thus have opposite effects on the phenology of leaf senescence, and the impact of climate change will therefore depend on the relative importance of each factor in specific regions. Warming is not expected to have a strong impact on nutrient proficiency although a slower speed of leaf senescence induced by warming could facilitate a more efficient nutrient resorption. Nutrient resorption is less efficient when the leaves senesce prematurely as a consequence of water stress. The overall effects of climate change on nutrient resorption will depend on the contrasting effects of warming and drought. Changes in nutrient resorption and proficiency will impact production in the following year, at least in early spring, because the construction of new foliage relies almost exclusively on nutrients resorbed from foliage during the preceding leaf fall. Changes in the phenology of leaf senescence will thus impact carbon uptake, but also ecosystem nutrient cycling, especially if the changes are consequence of water stress.  相似文献   

7.
Leaves of Quercus coccinea, Q. alba, and Pinus rigida were collected at six dates during the growing season and analyzed for N, P, K, Ca, Mg, Fe, S, and Na. Leaf weights per unit of leaf area (or length) were determined for the same period. Quercus coccinea and Q. alba leaves increased in weight per unit area by about 30 % and 50 %, respectively. First-year pine leaves increased in weight per unit length by about 65 %. During the second year the weight of pine leaves changed little. Two broad patterns in the nutrient content of leaves were apparent when nutrient content was expressed on the basis of leaf area rather than leaf weight. N, P, and K concentrations increased to a peak in mid- or late summer and declined abruptly just prior to abscission. Concentrations of other elements tended to rise slowly throughout the life of the leaves in all three species. The differences among nutrients and among species support the hypothesis that differential partitioning of the nutrient pool occurs as a result of evolutionary adaptation. The changes in weight of leaves per unit area and in nutrient content during the growing season are important for studies of net primary production and in appraisals of the cycling of nutrients. Least distortion of nutrient relationships occurs when area or length of leaf is used as the basis for expression of nutrient content.  相似文献   

8.
Plants are altering their life cycles in response to current climatic change around the globe. More than 200 000 records for six phenological events (leaf unfolding, flowering, fruit ripening, fruit harvesting, leaf falling and growing season) of 29 perennial species for the period 1943–2003 recorded throughout Spain provide the longest temporal and the broadest spatial assessment of plant phenology changes in the Mediterranean region. The overwhelming majority of the 118 studied phenophases shifted their dates in recent decades. Such changes differed among phenological events. Leaf unfolding, flowering and fruiting are markedly advancing (?0.48, ?0.59 and ?0.32 days yr?1, respectively), but only since the mid‐1970s. Anemophilous have advanced more days their flowering than entomophilous. However, some species have delayed and others have advanced their leaf falling dates and as a result only a weak shift was observed in this event for the whole of the studied species (+0.12 days yr?1). The growing season lengthened by 18 days, which implies an increase of 8% in the life of annual leaves. Such an increase was achieved mainly through the advance of leaf unfolding dates in the spring, one of the most productive times of year for vegetation in the Mediterranean. Shifts in the plant calendar were accompanied as well by long‐term changes in the range of onset dates in 39% of studied phenophases. Leaf unfolding, flowering and growing season tended to reduce spatial variability, reflecting a faster and more synchronized onset (or duration) of phenophases across the study area. Changes in spatial variability may aggravate calendar mismatching with other trophic levels resulting from changes in dates. Because temporal responses differed markedly among species, calendar guilds of plants have changed, which suggests alterations of interspecific relationships in plant communities from Mediterranean ecosystems.  相似文献   

9.
Leaf traits functional relationship is particularly important in plant ecological strategies, but few data are available from Mediterranean high-altitude environments. We analysed leaf general patterns and leaf trait relationships in 84 perennial species on the High Atlas, Morocco. We examined the correlation amongst leaf size, leaf width and length, plant height and seed size, analysed multi-trait relationships using Structural Equation Models and tested leaf size variation amongst growth forms (functional groups). Species spanned 103 range of leaf size (sub-lepto- to microphylls). Nanophylls (48.8%) were dominant and over-represented in half-shrubs. Tree and rosette herbs were more likely to have large leaf size (nano-micro- and microphylls), whereas shrubs have medium leaf size (nano-micro- and nanophylls) and cushion and half-shrubs have small (sub-lepto- to nanophylls) and narrow leaves. Small-leaved species synchronized their leaf phenological activity with the dry summer months (May–August), and large-leaved species extended throughout the spring until the end of summer following the similar patterns found in lowland Mediterranean environments. Regarding woody species, our results showed a positive and significant relationship between leaf size and plant height and a non-significant relationship between leaf size and seed size. Structural Equation Models showed that variation in leaf size was triggered chiefly by changes in leaf form (leaf width) and plant height, seed size being of no relevance. In our study area, large-seeded species have a relatively wide range of leaf size. The hypothesis that the combination of large seeds and small leaves is allometrically unlikely (except for leptophyll Conifers) was supported in this study.  相似文献   

10.
Silla F  Escudero A 《Oecologia》2003,136(1):28-36
Nitrogen uptake, nitrogen demand and internal nitrogen cycling were studied to address the question of the importance of nutrient storage in Quercus species with contrasting leaf longevities. We carried out this study at the whole-plant level with young trees (2-4 years old) of three Mediterranean Quercus species: the evergreen Q. ilex, the marcescent/evergreen Q. faginea, and the deciduous Q. pyrenaica. Seasonal dynamics of nitrogen in all compartments of the plant were followed for 3 years. Nitrogen losses were measured through litter production, herbivory and fine root shedding. Nitrogen uptake was estimated using increments of nitrogen plant content plus accumulative nitrogen losses. Nitrogen uptake was limited to a few months during late winter and spring. Before budbreak, acquired nitrogen was stored in old-leaf cohorts of evergreen and woody compartments. After budbreak, Quercus species relied first on soil uptake and second on nitrogen retranslocation to supply new growth requirements. However, in most cases we found a high asynchrony between nitrogen demand by growing tissues and soil supply, which determined a strong nitrogen retranslocation up to 88.4% of the nitrogen demand throughout leaf expansion. Except for the first year after planting, the above- and underground woody fractions provided more nitrogen to the new tissues than the old leaf cohorts. Differences in the benefit of nitrogen withdrawn from senescent and old leaves were not found between species. We conclude that sink/source interaction strength was determined by differences between nitrogen demand and uptake, regulating internal nutrient cycling at the whole plant level.  相似文献   

11.
The seasonal fluctuation of N, P, K, Ca and Mg in leaves, young stems and fruits of young and matureQuercus suber trees growing at the same site was studied. Nutrient dynamics within the tree appeared to be linked to phenological events. Leaves maximized their nutrient contents throughout summer whereas stems maintained rather constant values during most of the year. Before the spring growth flush they apparently acted as temporary reservoirs for some nutrients, translocated from leaves or other organs, so that such nutrients would be easily invested in the new tissues. A significant investment was made in sink organs like flowers and fruits. The tree probably relies not only on leaves but also on other nutrient reservoirs like older branches and roots for an adequate supply to those sinks and to the spring growth. The importance of the sampling dates and the basis of expression used for nutrient concentrations has also been emphasized. Nutrient contents and seasonal trends of the studied trees were similar to those of other evergreen oaks, although somewhat higher values for N, K, and Mg were found. Moreover, soil nutrient contents in the studied montado were much lower than in other Iberic oak stands. However the nutrient status and requirements of cork-oak suggest high (or at least adequate) nutrient availability to the trees. The mechanisms by which this could be achieved are discussed.  相似文献   

12.
Background and AimsCarbon reserves are a critical source of energy and substrates that allow trees to cope with periods of minimal carbon gain and/or high carbon demands, conditions which are prevalent in high-latitude forests. However, we have a poor understanding of carbon reserve dynamics at the whole-tree level in mature boreal trees. We therefore sought to quantify the seasonal changes in whole-tree and organ-level carbon reserve pools in mature boreal Betula papyrifera.MethodsNon-structural carbohydrate (NSC; soluble sugars and starch) tissue concentrations were measured at key phenological stages throughout a calendar year in the roots, stem (inner bark and xylem), branches and leaves, and scaled up to estimate changes in organ and whole-tree NSC pool sizes. Fine root and stem growth were also measured to compare the timing of growth processes with changes in NSC pools.Key ResultsThe whole-tree NSC pool increased from its spring minimum to its maximum at bud set, producing an average seasonal fluctuation of 0.96 kg per tree. This fluctuation represents a 72 % change in the whole-tree NSC pool, which greatly exceeds the relative change reported for more temperate conspecifics. At the organ level, branches accounted for roughly 48–60 % of the whole-tree NSC pool throughout the year, and their seasonal fluctuation was four to eight times greater than that observed in the stemwood, coarse roots and inner bark.ConclusionsBranches in boreal B. papyrifera were the largest and most dynamic storage pool, suggesting that storage changes at the branch level largely drive whole-tree storage dynamics in these trees. The greater whole-tree seasonal NSC fluctuation in boreal vs. temperate B. papyrifera may result from (1) higher soluble sugar concentration requirements in branches for frost protection, and/or (2) a larger reliance on reserves to fuel new leaf and shoot growth in the spring.  相似文献   

13.
Halimium atriplicifolium and Thymus vulgaris are two Mediterranean woody species, which differ in growth form and may co-occur under the same climatic constraints. Both possess distinct short (SS) and long shoots (LS). The aims of this work were: (1) to compare their phenological patterns, (2) to relate plant phenology with root depth and summer water potential, and (3) to compare the structure and phenology of SS and LS. Pre-dawn and mid-day shoot water potentials (Ψpd and Ψmd) were assessed at the beginning and at the end of the driest period. SS and LS growth, flowering and fruit setting was followed every month throughout the annual cycle. Leaf shedding was followed with litter traps and leaf demography were monitored separately in SS and LS. Ψpd and Ψmd exhibited a sharper drop in T. vulgaris than in H. atriplicifolium along the summer. Root depth of H. atriplicifolium was more than twice T. vulgaris. Phenophases of H. atriplicifolium occurred between spring and summer, while those of T. vulgaris concentrated in spring. The latter species shed many current-year leaves in September, probably in response to water shortage. In both species, LS growth occurred during a more rainy period than SS growth and during a warmer period in H. atriplicifolium. Leaf area and leaf mass per area were smaller for SS leaves than LS, probably due to water and carbon shortage at the time of SS growth. In conclusion, T. vulgaris suffered from more severe water stress than H. atriplicifilium due to its shallower root system and arrested phenological activity earlier in the summer. The different morphological and phenological traits of LS and SS suggest a specialisation in carbon gain along different time periods of the year.  相似文献   

14.
The impact of climate change on the advancement of plant phenological events has been heavily studied in the last decade. Although the majority of spring plant phenological events have been trending earlier, this is not universally true. Recent work has suggested that species that are not advancing in their spring phenological behavior are responding more to lack of winter chill than increased spring heat. One way to test this hypothesis is by evaluating the behavior of a species known to have a moderate to high chilling requirement and examining how it is responding to increased warming. This study used a 60‐year data set for timing of leaf‐out and male flowering of walnut (Juglans regia) cultivar ‘Payne’ to examine this issue. The spring phenological behavior of ‘Payne’ walnut differed depending on bud type. The vegetative buds, which have a higher chilling requirement, trended toward earlier leaf‐out until about 1994, when they shifted to later leaf‐out. The date of male bud pollen shedding advanced over the course of the whole record. Our findings suggest that many species which have exhibited earlier bud break are responding to warmer spring temperatures, but may shift into responding more to winter temperatures (lack of adequate chilling) as warming continues.  相似文献   

15.
The monthly patterns of aboveground biomass allocation were studied in the branches of six Mediterranean sub-shrubs with different leaf phenology. Four of them were seasonally dimorphic species, and the remaining two were a winter deciduous and a cushion plant with photosynthetic stems. By the analysis of these species we aimed to identify different aboveground biomass allocation patterns within seasonally dimorphic species and to understand the role of seasonal dimorphism as a strategy to avoid the main stresses of mediterranean climate: summer drought and winter cold. The biomass allocation to the different living and photosynthetic fractions of 3-year-old branches was studied monthly for a minimum of 13 months per species. Leaf area (LA, mm2) and leaf mass per area (LMA, mg cm−2) measurements were used to characterize the diverse types of leaves of each species. Standing dead and senescent tissues accounted for a great percentage of the branch biomass of seasonally dimorphic species both during summer and winter. Different patterns of photosynthetic biomass allocation were found within the seasonally dimorphic species analysed. These patterns ranged from the moderate photosynthetic biomass oscillation of Salvia lavandulifolia to the almost deciduousness of Lepidium subulatum, and they were achieved by keeping alive, drying out or shedding different types of branches and leaves throughout the year. The formation of stress tolerant leaves and the reduction in the amount of photosynthetic biomass responded both to the occurrence of summer drought and winter cold. These results demonstrate that seasonal dimorphism is a flexible ecological strategy, as it comprises very different leaf phenologies and enables plants to escape both summer drought and winter cold.  相似文献   

16.
Seasonal dynamics in nitrogen and phosphorus content were examined for each component organ ofAucuba japonica, an evergreen understory shrub in the warmtemperate region of Japan. Evergreen foliage was the largest pool for each nutrient; nitrogen and phosphorus were accumulated and stored in autumn and then redistributed in the spring. For individual leaves, such seasonal accumulations and redistributions were repeated through two or three years and then at leaf fall, an additional amount was withdrawn. Rapid growth of new shoots and flowers during spring was supported by the massive redistribution of the nutrients from the old foliage. The redistribution accounted for 85% and 65% of the total nitrogen and phosphorus input to the new shoots, respectively. Such a high ratio of redistribution resulted in a conservative nutrient economy, and must be positively related to the photosynthetic production in the ligh-limited environment.  相似文献   

17.
In many plant species, herbivory is a major determinant of leaf mortality and it can cause a strong reduction in productive potential. Most predation occurs on young, expanding leaves. Thus, a rapid growth of the leaves can reduce the impact of predation. Furthermore, in cold Mediterranean climates the length of the growing season is constrained to a short period in spring and early summer owing both to low winter temperatures and drought stress in early summer. Therefore, a rapid deployment of leaf area and a high photosynthetic capacity during the spring and early summer might have important positive effects on the final carbon balance of the leaf population. Relative growth rates (RGR) of leaf biomass were measured in 19 woody species typical of Central Western Spain with deciduous and evergreen habits. Highly significant differences were detected in the leaf growth rate of the different species. The differences between species, however, did not correlate either with the mean leaf life-span of each of the species or with other leaf traits such as photosynthetic capacity, specific leaf area or nitrogen content. Leaf growth rate was positively correlated with time elapsed between leaf initiation and fruit maturation, so that species with fruit dispersal in spring and early summer in general had lower leaf growth rates than species with autumn fruit shedding. This relationship shows the effects of the concurrence between vegetative and reproductive organs for nutrients and other resources. Nitrogen concentration in the leaves was very high at the time of bud break, and declined during leaf expansion owing to the dilution associated with the increase in structural components. The rate of nitrogen dilution was, thus, positively related to the leaf growth rate. Relative growth rates calculated for nitrogen mass in leaves were very low compared to the growth in total mass. This suggests that most leaf nitrogen is translocated from the plant stores to the leaf biomass before the start of leaf expansion and that the contribution of root uptake during leaf expansion is comparatively low.  相似文献   

18.
Distinct O1 and O2 layers, representing annual litter fall, enabled the sequential loss of biomass and nutrients (phosphorus and nitrogen) to be reconstructed in undisturbed litter layers of Banksia ornata in the Dark Island heathland, South Australia. Apart from an initial loss in biomass and nitrogen, the dry weight and nutrient content of the O1 layer, exposed to the desiccating influence of the atmosphere, remained relatively constant until covered by the following year's leaf fall. Under the blanket of newly fallen leaves, biomass decomposition proceeded continuously through autumn, winter, spring, into the dry summer season. Even though the biomass of the decomposing leaf (O2) layer decreased continuously, its nutrient content remained relatively constant until the summer season was reached when total decomposition and nutrient loss occurred. During spring, fine rootlets invaded the decomposing litter layer (O2) and, together with decomposer fungi, bacteria and soil fauna, maintained the total nutrient content of the decomposing leaf at a constant level. By late spring-early summer shoot growth of the dominant heath species was initiated, inducing the mobilization of the nutrients stored in the decomposing litter layer.  相似文献   

19.
为系统掌握常春二乔玉兰春夏季开花物候节律,探讨其与营养物质的关系,本研究以6年生常春二乔玉兰为试验材料,观测其年生长发育节律、春夏季开花物候特性以及茎段营养物质的含量变化。结果表明:(1)每年12月始至翌年2月下旬为常春二乔玉兰休眠期。2月下旬花芽膨大生长,并于3月开始春季开花,花期持续约20 d。4月进行营养生长,5月完成花芽分化。5月底部分花芽膨大并于6月开始开花,夏季花期持续约20 d。7~9月为未膨大花芽的发育滞缓期。此外,少量夏季开放的花的基部侧芽再次分化形成花芽。10~12月随着落叶的开始,树体逐渐进入休眠期。(2)常春二乔玉兰营养生长后分化的花芽能够花开两季。春季开花为先花后叶,开花率为100%,开花同步率较高,雌、雄蕊发育正常,为可育花。夏季开花为花叶同放,开花率约为30%,且开花同步率较低,开放的花内雌、雄蕊发育异常,为不育花。(3)春季开花期间可溶性糖和可溶性蛋白呈下降趋势,淀粉含量于开花后期下降;夏季开花期间可溶性糖和淀粉总体呈先降后升趋势,而可溶性蛋白总体呈下降趋势。综上所述,常春二乔玉兰春、夏季开花期内开花模式存在一定差异,其显著节律特征与营养物质含量变化有关,推测低水平的可溶性糖及高水平的淀粉和可溶性蛋白有利于春季开花的启动,而低水平的可溶性蛋白及高水平的可溶性糖和淀粉含量则有利于夏季开花的实现。  相似文献   

20.
Seasonal changes in several forms of nitrogen were investigated in the evergreen chamaephyte Pachysandra terminalis Sieb. et Zucc. growing in temperate evergreen coniferous forest. After plants sprouted new shoots, nitrogen accumulated largely as proteins in the leaves from summer to late autumn and, additionally, during a short spring period in the following year. Proteins accumulated in the overwintered leaves decreased markedly in summer, indicating that they were used for new shoot growth. A similar change was found in Fraction 1 protein. This is consistent with the seasonal changes in photosynthetic capacity and carboxylation efficiency observed in previous studies. The allocation of nitrogen to Fraction 1 protein increased in the spring, presumably to utilize better the relatively high light intensity at the forest floor before leaf expansion of the understory deciduous plants. In contrast to protein nitrogen, soluble nitrogen was present largely in stems and rhizomes. Aspargine was the major component of the amino acid pool in all organs throughout the year, especially in stems in summer. Since asparagine has the highest N:C ratio (2N:4C), an amino acid pool dominated by asparagine is economic in the use of carbon and advantageous for the carbon-limited environment of the forest understory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号