首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The recently developed technique for cloning genomic DNA fragments of several hundred kilobases or more into yeast artificial chromosomes (YACs) makes it possible to isolate gene families while preserving their structural integrity. We have analyzed five independent yeast clones identified by PCR screening using oligonucleotides derived from the adult human beta-globin gene. Analysis of the five clones containing YACs by conventional and pulsed-field gel electrophoresis revealed that all of the clones include a YAC with sequences from the adult beta-globin gene as expected. One of the clones contains multiple, unstable YACs. Two other clones carry single YACs in which there are at least two unrelated human genomic inserts. The remaining two clones contain single YACs, 150 and 220 kb in size, that contain the entire beta-globin gene family and flanking regions in a single, structurally intact genomic fragment. These should prove useful in future studies of the regulation of expression of genes in the beta-globin gene cluster.  相似文献   

2.
The human β-globin locus contains the β-like globin genes (i.e. fetal γ-globin and adult β-globin), which heterotetramerize with α-globin subunits to form fetal or adult hemoglobin. Thalassemia is one of the commonest inherited disorders in the world, which results in quantitative defects of the globins, based on a number of genome variations found in the globin gene clusters. Hereditary persistence of fetal hemoglobin (HPFH) also caused by similar types of genomic alterations can compensate for the loss of adult hemoglobin. Understanding the regulation of the human γ-globin gene expression is a challenge for the treatment of thalassemia. A mouse model that facilitates high-throughput assays would simplify such studies. We have generated a transgenic dual reporter mouse model by tagging the γ- and β-globin genes with GFP and DsRed fluorescent proteins respectively in the endogenous human β-globin locus. Erythroid cell lines derived from this mouse model were tested for their capacity to reactivate the γ-globin gene. Here, we discuss the applications and limitations of this fluorescent reporter model to study the genetic basis of red blood cell disorders and the potential use of such model systems in high-throughput screens for hemoglobinopathies therapeutics.  相似文献   

3.
DNA of yeast artificial chromosomes (YACs) was prepared for microinjection by separation from most of the natural yeast chromosomes on a pulsed-field gel, treatment with agarase, and centrifugation. A salt concentration of 100 mM NaCl was necessary to protect the DNA from shear during these procedures. Injection of a 590-kb YAC, yGART2, into Chinese hamster ovary cells gave rise to cells expressing the 40-kb human GART gene carried on the YAC. Nine of 12 cell lines analyzed contained an intact stretch of at least 110 kb of YAC DNA surrounding the GART gene, and one cell line contained at least 480 kb, but not the entire 590 kb, intact. Mouse L A-9 cells were similarly injected with DNA of a 230-kb YAC containing the human β-globin gene cluster and a mammalian selectable marker. Seven of 10 of the resulting cell lines contained both YAC vector arms plus the intact 140-kb SfiI fragment spanning the β-globin gene. Three cell lines were analyzed by Rec A-assisted restriction endonuclease (RARE) cleavage and found to contain the entire intact 210-kb YAC insert. Introduction of similarly prepared DNA into mammalian cells by lipofection gave rise to cell lines with multiple YAC fragments that were generally shorter than the YAC fragments found in microinjected cell lines. The results show that microinjection of gel-purified YAC DNA into mammalian cells is an efficient method of transferring DNA fragments several hundred kilobase pairs in size into mammalian cells.  相似文献   

4.
Decades of research have established that the most effective treatment for sickle cell disease (SCD) is increased fetal hemoglobin (HbF). Identification of a drug specific for inducing γ-globin expression in pediatric and adult patients, with minimal off-target effects, continues to be an elusive goal. One hurdle has been an assay amenable to a high-throughput screen (HTS) of chemicals that displays a robust γ-globin off-on switch to identify potential lead compounds. Assay systems developed in our labs to understand the mechanisms underlying the γ- to β-globin gene expression switch during development has allowed us to generate a cell-based assay that was adapted for a HTS of 121,035 compounds. Using chemical inducer of dimerization (CID)-dependent bone marrow cells (BMCs) derived from human γ-globin promoter-firefly luciferase β-globin promoter-Renilla luciferase β-globin yeast artificial chromosome (γ-luc β-luc β-YAC) transgenic mice, we were able to identify 232 lead chemical compounds that induced γ-globin 2-fold or higher, with minimal or no β-globin induction, minimal cytotoxicity and that did not directly influence the luciferase enzyme. Secondary assays in CID-dependent wild-type β-YAC BMCs and human primary erythroid progenitor cells confirmed the induction profiles of seven of the 232 hits that were cherry-picked for further analysis.  相似文献   

5.
During development, changes occur in both the sites of erythropoiesis and the globin genes expressed at each developmental stage. Previous work has shown that high-level expression of human β-like globin genes in transgenic mice requires the presence of the locus control region (LCR). Models of hemoglobin switching propose that the LCR and/or stage-specific elements interact with globin gene sequences to activate specific genes in erythroid cells. To test these models, we generated transgenic mice which contain the human Aγ-globin gene linked to a 576-bp fragment containing the human β-spectrin promoter. In these mice, the β-spectrin Aγ-globin (βsp/Aγ) transgene was expressed at high levels in erythroid cells throughout development. Transgenic mice containing a 40-kb cosmid construct with the micro-LCR, βsp/Aγ-, ψβ-, δ-, and β-globin genes showed no developmental switching and expressed both human γ- and β-globin mRNAs in erythroid cells throughout development. Mice containing control cosmids with the Aγ-globin gene promoter showed developmental switching and expressed Aγ-globin mRNA in yolk sac and fetal liver erythroid cells and β-globin mRNA in fetal liver and adult erythroid cells. Our results suggest that replacement of the γ-globin promoter with the β-spectrin promoter allows the expression of the β-globin gene. We conclude that the γ-globin promoter is necessary and sufficient to suppress the expression of the β-globin gene in yolk sac erythroid cells.  相似文献   

6.
The DNaseI hypersensitive sites (HSs) of the human β-globin locus control region (LCR) may function as part of an LCR holocomplex within a larger active chromatin hub (ACH). Differential activation of the globin genes during development may be controlled in part by preferential interaction of each gene with specific individual HSs during globin gene switching, a change in conformation of the LCR holocomplex, or both. To distinguish between these possibilities, human β-globin locus yeast artificial chromosome (β-YAC) lines were produced in which the ε-globin gene was replaced with a second marked β-globin gene (βm), coupled to an intact LCR, a 5′HS3 complete deletion (5′ΔHS3) or a 5′HS3 core deletion (5′ΔHS3c). The 5′ΔHS3c mice expressed βm-globin throughout development; γ-globin was co-expressed in the embryonic yolk sac, but not in the fetal liver; and wild-type β-globin was co-expressed in adult mice. Although the 5′HS3 core was not required for βm-globin expression, previous work showed that the 5′HS3 core is necessary for ε-globin expression during embryonic erythropoiesis. A similar phenotype was observed in 5′HS complete deletion mice, except βm-globin expression was higher during primitive erythropoiesis and γ-globin expression continued into fetal definitive erythropoiesis. These data support a site specificity model of LCR HS-globin gene interaction.  相似文献   

7.
《Genomics》1995,29(3)
We have determined the cDNA and genomic structure of a gene (−14 gene) that lies adjacent to the human α-globin cluster. Although it is expressed in a wide range of cell lines and tissues, a previously described erythroid-specific regulatory element that controls expression of the α-globin genes lies within intron 5 of this gene. Analysis of the −14 gene promoter shows that it is GC rich and associated with a constitutively expressed DNase 1 hypersensitive site; unlike the α-globin promoter, it does not contain a TATA or CCAAT box. These and other differences in promoter structure may explain why the erythroid regulatory element interacts specifically with the α-globin promoters and not the −14 gene promoter, which lies between the α promoters and their regulatory element. Interspecies comparisons demonstrate that the sequence and location of the −14 gene adjacent to the α cluster have been maintained since the bird/mammal divergence, 270 million years ago.  相似文献   

8.
9.
We recently reported the isolation of human β-defensin-2 (hBD-2), a novel epithelia-derived peptide antibiotic belonging to the β-defensin family. hBD-2 is expressed in skin and epithelia of the airway system, where it is believed to contribute to its antimicrobial defense. By fluorescencein situhybridization using a hBD-2 genomic DNA probe and subsequent fluorescence R-banding, the hBD-2 gene (HGMW-approved symbol DEFB2) was assigned to human chromosome region 8p22–p23.1. PCR with a set of CEPH YAC clones spanning this chromosomal region revealed CEPH YACs 773G4, 920D12, and 820B4 to contain the hBD-2 gene. Relying on the preexisting physical maps of 8p22–p23.1, the hBD-2 gene was mapped in close proximity to D8S1993 (WI-9956) within the interval flanked by D8S552 and D8S1130 (CHLC.GATA25C10). The fact that all currently described genes encoding defensins map to chromosome 8p21–pter suggests that a gene cluster in this chromosomal region may play a major role in antimicrobial defense.  相似文献   

10.
11.
A contig of YAC, PAC, and cosmid clones that spanned the human T-cell receptor α variable (AV) gene region on chromosome 14 was assembled. PCR primers corresponding to the members of 32 different subfamilies were used to map AV genes on the genomic clones. Nucleotide sequencing of PCR products derived from different genomic clones was used to discriminate between related AV gene segments that coamplified. The presence of individual AV gene segments on genomic clones was further confirmed by hybridization both to clones and to human genomic DNA from several unrelated individuals. These results suggest that the T-cell receptor α (TCRA) region in humans contains at least 46 distinct AV gene segments that can be grouped into 32 subfamilies based on nucleotide homology. Several subfamilies appear to contain additional members detectable by hybridization that do not map to chromosome 14.  相似文献   

12.
To understand better the organization and linkage of the interleukin genes, IL4 and IL5, we prepared long-range restriction maps of five yeast artificial chromosomes (YACs) containing IL5. We determined that IL4 and IL5 are within 100-170 kb, and that the regions surrounding these genes contain several GC-rich areas. Fluorescence in situ chromosomal analysis demonstrated that three of the five YAC clones contain non-contiguous genomic sequences originating from multiple human chromosomes.  相似文献   

13.
14.
15.
We have identified the first gene lying on the centromeric side of the α-globin gene cluster on human 16p13.3. The gene, called 16pHQG;16 (HGMW-approved symbol LUC7L), is widely transcribed and lies in the opposite orientation with respect to the α-globin genes. This gene may represent a mammalian heterochromatic gene, encoding a putative RNA-binding protein similar to the yeast Luc7p subunit of the U1 snRNP splicing complex that is normally required for 5′ splice site selection. To examine the role of the 16pHQG;16 gene in delimiting the extent of the α-globin regulatory domain, we mapped its mouse orthologue, which we found to lie on mouse chromosome 17, separated from the mouse α-cluster on chromosome 11. Establishing the full extent of the human 16pHQG;16 gene has allowed us to define the centromeric limit of the region of conserved synteny around the human α-globin cluster to within an 8-kb segment of chromosome 16.  相似文献   

16.
Large regions of human DNA can be cloned and mapped in yeast artificial chromosomes (YACs). Overlapping YAC clones can be used in order to reconstruct genomic segments in vivo by meiotic recombination. This is of importance for reconstruction of a long gene or a gene complex. In this work we have taken advantage of yeast protoplast fusion to generate isosexual diploids followed by mitotic crossing-over, and show that it can be an alternative simple strategy for recombining YACs. Integrative transformation of one of the parent strains with the construct pRAN4 (containing the ADE2 gene) is used to disrupt the URA3 gene contained within the pYAC4 vector arm, providing the markers required for forcing fusion and detecting recombination. All steps can be carried out within the commonly used AB1380 host strain without the requirement for micromanipulation. The method was applied to YAC clones from the human MHC and resulted in the reconstruction of a 650 kb long single clone containing 18 known genes from the MHC class II region.  相似文献   

17.
18.
Comparative evolutionary analyses of gene families among divergent lineages can provide information on the order and timing of major gene duplication events and evolution of gene function. Here we investigate the evolutionary history of the α-globin gene family in mammals by isolating and characterizing α-like globin genes from an Australian marsupial, the tammar wallaby, Macropus eugenii. Sequence and phylogenetic analyses indicate that the tammar α-globin family consists of at least four genes including a single adult-expressed gene (α), two embryonic/neonatally expressed genes (ζ and ζ′), and θ-globin, each orthologous to the respective α-, ζ-, and θ-globin genes of eutherian mammals. The results suggest that the θ-globin lineage arose by duplication of an ancestral adult α-globin gene and had already evolved an unusual promoter region, atypical of all known α-globin gene promoters, prior to the divergence of the marsupial and eutherian lineages. Evolutionary analyses, using a maximum likelihood approach, indicate that θ-globin, has evolved under strong selective constraints in both marsupials and the lineage leading to human θ-globin, suggesting a long-term functional status. Overall, our results indicate that at least a four-gene cluster consisting of three α-like and one β-like globin genes linked in the order 5′–ζ–α–θ–ω–3′ existed in the common ancestor of marsupials and eutherians. However, results are inconclusive as to whether the two tammar ζ-globin genes arose by duplication prior to the radiation of the marsupial and eutherian lineages, with maintenance of exon sequences by gene conversion, or more recently within marsupials.Reviewing Editor: Dr. John Oakeshott  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号