首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
It has been found that high concentrations of exogenous hydrogen peroxide kill human neutrophils, the range of toxic concentrations being 100 times as high as that for human endothelial cells. Whereas the H2O2 doses of 30-100 mM induce a fast massive death of neutrophils, 10 mM hydrogen peroxide induces appreciable death only within several hours after treatment. H2O2 used at 30 mM decreases superoxide anion generation by neutrophils stimulated with PMA or FMLP. This decrease is commensurate in value with cell death, thus indicating a high functional resistance of survived cells. In the dose of 10 mM hydrogen peroxide potentiates FMLP (but not PMA-)-induced generation of superoxide anions. Augmentation of superoxide anion generation by H2O2-primed neutrophils in response to FMLP amounts to 200% of the control value. Hydrogen peroxide alone is incapable of inducing superoxide anion generation. It is concluded that exogenous oxidants can alter the functional activity of leukocytes freshly recruited in inflammatory and ischemic tissues.  相似文献   

2.
The stimuli, sn-1, 2-dioctanoylglycerol; (DG8) the calcium specific ionophore, ionomycin, and the chemotactic peptide formylmethionyl-leucyl-phenylalanine (FMLP) can interact with normal human neutrophils and activate their superoxide/hydrogen peroxide generating NADPH-oxidase. In response to the peptide as well as DG8, the neutrophils produced both superoxide (O2-) and hydrogen peroxide (H2O2). Since interaction between the cells and ionomycin was not associated with any notable superoxide production and hydrogen peroxide was induced only in the presence of azide, a potent inhibitor of the hydrogen peroxide-consuming enzymes catalase and myeloperoxidase, we conclude that this stimulus can generate oxygen metabolites intracellularly. Since the DG8-induced production of hydrogen peroxide was increased in the presence of azide, whereas the FMLP-induced response was largely unaffected, we concluded that the three stimuli differ in their capacity to generate oxygen metabolites intracellularly. The use of sn-1,2-didecanoylglycerol (DG10) as stimulating agent did not result in any detectable activation of the NADPH-oxidase. However, preincubation caused an increased (primed) response during stimulation with the chemotactic peptide FMLP. The response of primed neutrophils to FMLP proceeds with a time-course different from that seen in normal cells. From the results presented on FMLP-induced activity in the presence of azide, we conclude that FMLP causes normal cells to produce oxygen radicals which are released from the cells. However, the primed cells are also capable of generating oxygen metabolites that are retained inside the cells. In fact, measurement of the intracellularly generated metabolites discloses this to be the predominant part of the response.  相似文献   

3.
Ultraweak chemiluminescence (CL) from bilirubin occurs in the presence of triplet oxygen and is stimulated by the addition of aldehydes. Active oxygen species also enhance bilirubin CL, in the absence of aldehydes. An inhibitory effect of active oxygen scavengers on the CL indicated that active oxygens generated from the decomposition of added hydrogen peroxide or from the xanthine-xanthine oxidase reaction contributed to the CL from bilirubin molecules. However, the contribution of singlet oxygen to the CL disappeared in the presence of formaldehyde. This suggested that the scission of tetrapyrrole bonds via a dioxetane intermediate or the production of triplet carbonyls from the oxidation of aldehydes by singlet oxygen was not involved in the CL, at least in the presence of formaldehyde. The spectrum of CL induced by the generation of active oxygen was the same as that from the aldehyde-enhanced CL reaction. We propose that the formation of a hydroperoxide (and/or hydroxide) bilirubin intermediate, but not a dioxetane, may be involved in the excitation of bilirubin molecules for CL.  相似文献   

4.
We developed a highly sensitive chemiluminescent (CL) assay for hydrogen peroxide using 10‐methyl‐9‐(phenoxycarbonyl) acridinium fluorosulfonate (PMAC) that produced chemiluminescence under neutral conditions and applied it to an enzyme immunoassay (EIA). One picomole of hydrogen peroxide could be detected using the optimized PMAC‐CL method and 6.2 × 10‐20 mol β‐d ‐galactosidase (β‐gal) could be detected by combining an indoxyl derivative substrate and the proposed PMAC‐CL method. This highly sensitive CL β‐gal assay was applied to an EIA for thyroid‐stimulating hormone (TSH) using β‐gal as a label enzyme; 0.02–100.0 μU/mL TSH in human serum could be assayed directly and with high reproducibility. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Kinetics of spontaneous chemiluminescence (CL) and electrochemiluminescence (ECL) and resistance of blood serum and its protein, lipid and carbohydrate components under the effect of X-rays (3 to 1622 Gy) and the indirect effect of radiation initiated by the addition of hydrogen peroxide (1.5 X 10(-5)-1.5%) was studied to estimate the contribution of each of the serum components to cumulative changes in the kinetics of free radical oxidation initiated by the effect of radiation. There was a parametric dependence between the absorbed dose, the rate of ECL and the resistance of blood serum and its components. As the absorbed dose or hydrogen peroxide concentration increased ECL contribution to the cumulative luminescence signal regularly decreased. Changes in CL and ECL of blood serum induced by ionizing radiation and H2O2 were qualitatively similar. The kinetics of free radical oxidation of blood serum initiated by irradiation was determined integrally (according to CL and ECL parameters) by a complex of changes in its components.  相似文献   

6.
Hematoporphyrin derivative and light in the presence of cysteine or glutathione were found to convert oxygen to superoxide and hydrogen peroxide at pH less than approx. 6.5, while at pH greater than 6.5 no superoxide or hydrogen peroxide production was observed. However, at pH values greater than 6.5 the rate of oxygen consumption increased. This rate paralleled the acid dissociation curve of the cysteine thiol group and is consistent with the chemical quenching of 1O2 by cysteine. The superoxide and hydrogen peroxide formation observed below pH 6.5 appeared not to be related to the singlet oxygen production of hematoporphyrin derivative. In addition, superoxide and hydrogen peroxide production was observed with hematoporphyrin derivative and light in the presence of NADH, both above and below pH 6.5. Direct detection of singlet oxygen luminescence at 1268 nm in the hematoporphyrin derivative-light system (2H2O as solvent) revealed an apparent linear increase in the singlet oxygen emission intensity as the p2H was raised from 7.0 to 10.0. Azide efficiently quenched this observed emission. In addition, at p2H 7.4, 1 mM cysteine resulted in a 40% reduction of the singlet oxygen luminescence, while at p2H 9.4 the signal was quenched by over 95% (under the experimental conditions employed). In total, we interpret these results as consistent with the chemical quenching of 1O2 by the ionized thiol group of cysteine.  相似文献   

7.
Three newly discovered non-heme bromoperoxidases isolated from marine algae were found to catalyze the production of singlet oxygen in reactions composed of the bromoperoxidase, hydrogen peroxide, and bromide. The bromoperoxidases studied were vanadium bromoperoxidase (V-BrPO) from Ascophyllum nodosum, native non-heme bromoperoxidase from Corallina vancouveriensis (which contains vanadium and iron), and the vanadium-reconstituted bromoperoxidase derivative from C. vancouveriensis. These enzyme systems generated near infrared emission, characteristic of singlet oxygen. The emission had a peak intensity near 1268 nm, was greatly increased in 2H2O-containing buffers, and was greatly decreased by the singlet oxygen quenchers, histidine and azide. The yield of singlet oxygen was approximately 80% of the theoretical yield. A unique feature of the non-heme bromoperoxidases distinct from the iron heme haloperoxidases, was the remarkable stability of the non-heme enzymes in the presence of singlet oxygen and oxidized bromine species. V-BrPO turned over multiple aliquots of 2 mM hydrogen peroxide without losing efficiency. In contrast, iron heme lactoperoxidase was completely inactivated after turnover of the first aliquot of 2 mM hydrogen peroxide, and iron heme chloroperoxidase was 50% deactivated. The profile of singlet oxygen formation by V-BrPO and the near stoichiometric yield of singlet oxygen suggest that the mechanism of singlet oxygen formation is the same as the mechanism of dioxygen formation determined by oxygen probe measurements.  相似文献   

8.
The ability of myeloperoxidase (MPO) and horseradish peroxidase (HRP) to induce chemiluminescence (CL) in Pholasin (Knight Scientific, Plymouth, UK), the photoprotein of the Common Piddock Pholas dactylus, was studied. The oxidation of Pholasin by compound I or II of HRP induced an intense light emission, whereas native HRP showed only a small effect. The luminescence observed upon incubation of Pholasin with native MPO was diminished by preincubation with catalase. Considering the high instability of diluted MPO, it is concluded that traces of hydrogen peroxide in water converted MPO to its active forms, compound I and/or II, which are able to oxidize Pholasin. Indeed, the addition of hydrogen peroxide to a mixture of MPO and Pholasin induced an intense burst of light. This emission was enhanced in degree and duration in the absence of chloride. Hypochlorous acid, the reaction product of Cl(-) and compound I of MPO, was itself able to elicit a luminescent response in Pholasin and this luminescence was strongly inhibited by methionine and taurine. However, both of these HOCl scavengers only slightly reduced the light emission induced by MPO/H(2)O(2) in both the presence or absence of chloride. Thus, hypochlorous acid produced by the MPO/H(2)O(2)/Cl(-) system, under the conditions described in this study, did not contribute to Pholasin luminescence. The Pholasin luminescence elicited by formyl-leucyl-methionyl-phenylalanine (fMLP)-stimulated neutrophils depends both on superoxide anion radicals and higher oxidation states of myeloperoxidase (but not on hypochlorous acid). This is shown by the inhibition of luminescence with superoxide dismutase and potassium cyanide, together with the lack of effect of both methionine and taurine. The luminescence response is about eight times greater in cells stimulated with fMLP/cytochalasin B than with fMLP alone.  相似文献   

9.
It has been reported that weak chemiluminescence (CL) from crude extracts of soybean seedlings is remarkably enhanced with the addition of various aldehydes (Biochim. Biophys. Acta 1058, 209-216). The reactivity of certain emitter(s) with oxygen species was examined in the autoclaved extracts of seedlings. When samples were reduced by the addition of hydrosulfite, two different types of reactivities in CL were defined. One type showed an initial rapid increase and a subsequent fast decay in CL upon mixing with oxygen. This rapid increase in CL intensity was independent of the presence of aldehydes, and was significantly suppressed by SOD. However, the subsequent slow decay phase in CL was dependent on the presence of aldehydes. In the sample reduced more moderately by borohydride, the same slow decay of CL appeared upon mixing with acetaldehyde and oxygen. This second type of CL was not inhibited by active oxygen scavengers. Hydrogen peroxide added to unreduced (oxidized) samples also elicited CL. Three types of primary emitters may be oxidized to form transient hydroperoxide, and excited for light emission by slightly different ways: two of them are excited by abstraction of one atomic oxygen from the hydroperoxy intermediate with aldehyde or hydrogen peroxide, leading to formation of an excited hydroxide intermediate. The third is excited directly on the binding of superoxide anion to the reduced primary emitter.  相似文献   

10.
Anionic sweet potato peroxidase (SPP; Ipomoea batatas) was shown to efficiently catalyse luminol oxidation by hydrogen peroxide, forming a long-term chemiluminescence (CL) signal. Like other anionic plant peroxidases, SPP is able to catalyse this enzymatic reaction efficiently in the absence of any enhancer. Maximum intensity produced in SPP-catalysed oxidation of luminol was detected at pH 7.8-7.9 to be lower than that characteristic of other peroxidases (8.4-8.6). Varying the concentrations of luminol, hydrogen peroxide and Tris buffer in the reaction medium, we determined favourable conditions for SPP catalysis (100 mmol/L Tris-HCl buffer, pH 7.8, containing 5 mmol/L hydrogen peroxide and 8 mmol/L luminol). The SPP detection limit in luminol oxidation was 1.0 x 10(-14) mol/L. High sensitivity in combination with the long-term CL signal and high stability is indicative of good promise for the application of SPP in CL enzyme immunoassay.  相似文献   

11.
Murine monoclonal antibody (mAb) NMS-1 was generated which binds to the surface of living human neutrophils. The antigens on neutrophil plasma membranes recognized by mAb NMS-1 were solubilized in Nonidet P-40 and immunopurified on matrix-bound mAb NMS-1. mAb NMS-1 binds to four periodate-sensitive structures of 70,000, 95,000, 140,000, and 170,000 Da on the plasma membrane surface of human neutrophils as was shown by Western blot analysis. Binding of mAb NMS-1 to human neutrophils induced a rapid transient rise in cytosolic free calcium (Quin 2 fluorescence) but no detectable generation of reactive oxygen metabolites. The oxidative burst of N-formyl peptide-treated neutrophils, however, increased in the presence of mAb NMS-1. The kinetics of N-formyl peptide (N-formyl-norleucyl-leucyl-phenylalanyl-norleucyl-tryrosyl-lysine; FNLPNTL)-mediated hydrogen peroxide formation (p-hydroxy phenyl acetate oxidation) in the presence of mAb NMS-1 was analyzed quantitatively. 1) When neutrophils were incubated with mAb NMS-1 before FNLPNTL addition, an increase in rate, magnitude, and duration of hydrogen peroxide formation was observed compared with controls which received no mAb NMS-1 treatment. After termination of the initial linear phase of response, a second transient linear phase of hydrogen peroxide formation was induced. This second phase of activation was not observed in neutrophils which received no mAb NMS-1 treatment. The onset of the response and latency before attainment of the initial linear rate of hydrogen peroxide formation was not changed by mAb NMS-1 pretreatment. 2) When neutrophils were stimulated with FNLPNTL, the addition of mAb NMS-1--after termination of the FNLPNTL-induced response--without delay induced a second transient burst of hydrogen peroxide formation. Persistent activation of hydrogen peroxide formation by mAb NMS-1 in FNLPNTL-stimulated neutrophils was not observed.  相似文献   

12.
Neutrophils contain a quinone that may function as an electron carrier during production of superoxide and hydrogen peroxide. First, addition of exogenous coenzyme Q-10, coenzyme Q-6, vitamin K1, benzoquinone or duroquinone to rat peritoneal neutrophils resulted in increased rates of oxygen consumption and increased rates of hydrogen peroxide and superoxide production. Duroquinone titration studies showed saturation kinetics at submillimolar concentrations for oxygen consumption and for hydrogen peroxide and superoxide production. Second, tropolone, 2-hydroxy-2,4,6-cycloheptatrienone, effectively inhibited oxygen metabolism in neutrophils perhaps because of its structural similarity to quinone. Dibromothymoquinone, a known inhibitor at the quinone level in chloroplasts and mitochondria, was also inhibitory in neutrophils.  相似文献   

13.
Two chemiluminescence approaches have been used for study of active oxygen species produced by the TiO2 photocatalytic reaction. One is based on flow injection analysis (FIA)-luminol chemiluminescence (CL); another is a time-resolved CL method. In the FIA-CL experiment, an UV-illuminated TiO2 suspension and water were passed into a mixing cell by two separate flow lines. Luminol solution was injected into the water flow line at different times. The injected luminol reacted with active oxygen species generated by the TiO2 photocatalytic reaction in a mixing coil and produced CL. It was found that the maximum CL was detected at the first injection of luminol. CL intensity decreased with time of injection. When the luminol was injected after 5 min, the CL intensity was almost unchanged. Addition of scavengers of active oxygen species indicated that the CL produced early in the 5 min was caused by O2- and H2O2, while CL after 5 min was only from H2O2. In the time-resolved CL, the third harmonic wavelength of Nd:YAG laser (355 nm) was used as a UV light source, and CL was detected by a PMT and recorded in a millisecond time scale using a digital oscilloscope. It was found that CL induced by the photocatalytic reaction increased with concentration of the TiO2 suspension. Scavengers of active oxygen species of *OH, O2- and H2O2 were added to study the involvement of the active oxygen species.  相似文献   

14.
Vitreoscilla becomes resistant to killing by hydrogen peroxide and heat shock when pretreated with nonlethal levels of hydrogen peroxide. The pretreated Vitreoscilla cells (60 microM hydrogen peroxide for 120 min) significantly increased survival of the lethal dose of 20 mM hydrogen peroxide or heat shock (22 degrees C --> 37 degrees C). This indicates the existence of an adaptive response to oxidative stress. However, cells pretreated with 60 microM hydrogen peroxide became nonresistant to a lethal dose of a menadione. This result shows that hydrogen peroxide does not induce cross-resistance to menadione in Vitreoscilla. Furthermore, Vitreoscilla treated with hydrogen peroxide, heat shock, and menadione showed a change in the protein composition, as monitored by a two-dimensional gel analysis. During adaptation to hydrogen peroxide, 12 proteins were induced. Also, 18 new proteins synthesized in response to heat shock were detected by a 2-D gel analysis. The redox-cycling agents also elicited the synthesis of 6 other proteins that were unseen with hydrogen peroxide.  相似文献   

15.
The effect of oxygen free radicals generated by xanthine-xanthine oxidase system and hydrogen peroxide were investigated on cardiac muscarinic cholinergic receptors. We have used highly enriched sarcolemmal preparations isolated from canine myocardium. Exposure of the sarcolemma to oxygen free radicals by xanthine-xanthine oxidase system resulted in a significant (P less than 0.05) decrease of Bmax of (3H)-QNB (4.66 +/- 0.51 to 2.68 +/- 0.22 pmoles/mg protein). Addition of superoxide dismutase (SOD) and catalase (10 micrograms/ml) resulted in a significant reversal of Bmax value to 3.72 +/- 0.39 pmoles per mg protein (p less than 0.05). However, the affinity constants of dissociation (KD) were not altered appreciably with the exposure to oxygen free radicals with or without scavengers. Hydrogen peroxide significantly depressed 3H-QNB binding to the receptors in a dose-dependent manner in a concentration range between 4.41 mM -441 mM. This depression was completely inhibited by 10 micrograms/ml catalase. The study demonstrates that the oxygen free radical species are capable of disrupting (3H)-QNB binding to the cardiac muscarinic receptors.  相似文献   

16.
17.
The formation of hydrogen peroxide during the oxidation of NADH by purified preparations of cytochrome o has been demonstrated by employing three independent methods: polarographic, colorimetric, and fluorometric. The first two methods were used to assay for the accumulation of hydrogen peroxide and showed that hydrogen peroxide did accumulate as a product, but only about 30% of the oxygen consumed or 15 to 20% of the NADH oxidized was recoverable as hydrogen peroxide. This lack of 1:1 stoichiometry was not due to residual catalase activity in these preparations which could be eliminated by freeze-thawing. Thus, hydrogen peroxide may not be the sole or primary product of the NADH-cytochrome o oxidase reaction. The fluorometric assay could be coupled directly to the NADH-cytochrome o oxidase reaction in one medium, and this method showed that hydrogen peroxide was generated continuously from the beginning of the reaction in a 1:1 stoichiometry, hydrogen peroxide generated to NADH oxidized. This result suggests that hydrogen peroxide is an intermediate that can be trapped efficiently under the conditions of the fluorometric assay, whereas under the conditions of the first two assays most of the hydrogen peroxide generated undergoes further reaction. Exogenously added FAD or FMN increased the percentage of hydrogen peroxide that accumulated in the NADHcytochrome o oxidase reaction. Flavin is believed to act on the reductase side of cytochrome o so the increased percentage of hydrogen peroxide is not likely to result from the direct reaction of reduced flavin with oxygen.  相似文献   

18.
《Mutation Research Letters》1993,301(4):243-248
The effect of histidine on damage induced by oxygen radicals was studied in peripheral blood lymphocytes treated with free oxygen radical-inducing agents: hydrogen peroxide, xanthine oxidase plus hypoxanthine, bleumycin and γ-rays. l-Histidine, at a concentration of 1 mM, was found to potentiate both cell killing and inhibition of PHA-stimulated cell division brought about by hydrogen peroxide or xanthine oxidase plus hypoxanthine. In contrast, l-histidine did not affect γ-ray- or bleomycin-induced cell killing and inhibition of PHA-stimulated cell division. We suggest that l-histidine potentiation of cell damage is mainly mediated by interaction of the amino acid with hydrogen peroxide and/or iron rather than with other reactive oxygen species. In addition, these results also indicate that hydrogen peroxide produced by γ-radiation- or bleomycin-treated cells plays no role in the toxic effects elicited by these agents.  相似文献   

19.
The hypothesis that neuroepithelial endocrine (NEE) cells control spontaneous tone in isolated guinea pig tracheal preparations was examined. Epithelium-denuded preparations were unable to develop a normal oscillating tone in 12% oxygen (corresponding to systemic arterial oxygen levels) and, instead, developed a strong, smooth tone, similar to the "classic" tone in 94% oxygen. Inhibition of the hydrogen peroxide-producing NADPH oxidase in the NEE cells by 20 microM diphenyleneiodonium chloride transformed, in intact preparations in 94% oxygen, the tone from a strong, smooth type to an oscillating tone of considerably less force. Similar experiments in denuded preparations showed no change of tone and no oscillations. After pretreatment with the catalase inhibitor 3-amino-1,2, 4-triazole (1 mM), addition of 2 mM hydrogen peroxide to intact preparations displaying the oscillating tone caused a transformation to a strong, smooth type. These findings support the hypothesis that the spontaneous tone in this preparation is largely controlled by the oxygen-sensing NEE cells. For the first time, previous findings on isolated cells can be linked to effects in intact tissue preparations. The results also suggest that the regulation by the NEE cells involves the release of powerful relaxing and contracting factors from the epithelium.  相似文献   

20.
Human insulin is a hormone well-known to regulate the blood glucose level. Recombinant preproinsulin, a precursor of authentic insulin, is typically produced in E. coli as an inactive inclusion body, the solubilization of which needs the addition of reducing agents such as beta-mercaptoethanol. To make authentic insulin, recombinant preproinsulin is modified enzymatically by trypsin and carboxypeptidase B. The effects of beta-mercaptoethanol on the formation of human insulin derivatives were investigated in the enzymatic modification by using commercially available human proinsulin as a substrate. Addition of 1 mM beta-mercaptoethanol induced the formation of various insulin derivatives. Among them, the second major one, impurity 3, was found to be identical to the insulin B chain fragment from Phe1 to Glu21. Minimization of the formation of insulin derivatives and concomitant improvement of the production yield of human insulin were achieved by the addition of hydrogen peroxide. Hydrogen peroxide bound with beta-mercaptoethanol and thereby reduced the negative effects of beta-mercaptoethanol considerably. Elimination of the impurity 3 and other derivatives by the addition of over 10 mM hydrogen peroxide in the presence of beta-mercaptoethanol led to a 1.3-fold increase in the recovery efficiency of insulin, compared with those for the case without hydrogen peroxide. The positive effects of hydrogen peroxide were also confirmed with recombinant human preproinsulin expressed in recombinant E. coli as an inclusion body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号