首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
A variety of human disorders, e.g., ischemic heart disease, stroke, kidney disease, eventually share the deleterious consequences of a common, hypoxic and oxidative stress pathway. In this review, we utilize recent information on the cellular defense mechanisms against hypoxia and oxidative stress with the hope to propose new therapeutic tools. The hypoxia-inducible factor (HIF) is a key player as it activates a broad range of genes protecting cells against hypoxia. Its level is determined by its degradation rate by intracellular oxygen sensors prolyl hydroxylases (PHDs). There are three different PHD isoforms (PHD1-3). Small molecule PHD inhibitors improve hypoxic injury in experimental animals but, unfortunately, may induce adverse effects associated with PHD2 inhibition, e.g., angiogenesis. As yet, no inhibitor specific for a distinct PHD isoform is currently available. Still, the specific disruption of the PHD1 gene is known to induce hypoxic tolerance, without angiogenesis and erythrocytosis, by reprogramming basal oxygen metabolism with an attendant decreased oxidative stress in hypoxic mitochondria. A specific PHD1 inhibitor might therefore offer a novel therapy against hypoxia. The nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) regulates the basal and inducible expression of numerous antioxidant stress genes. Disruption of its gene exacerbates oxidative tissue injury. Nrf2 activity is modulated by Kelch-like ECH-associated protein 1 (Keap1), an intracellular sensor for oxidative stress. Inhibitors of Keap 1 may prove therapeutic against oxidative tissue injury.  相似文献   

5.
Bone is a dynamic environment where cells sense and adapt to changes in nutrient and oxygen availability. Conditions associated with hypoxia in bone are also associated with bone loss. In vitro hypoxia (2% oxygen) alters gene expression in osteoblasts and osteocytes and induces cellular changes including the upregulation of hypoxia inducible factor (HIF) levels. Our studies show that osteoblasts respond to hypoxia (2% oxygen) by enhancing expression of genes associated with adipocyte/lipogenesis phenotype (C/EBPbeta, PPARgamma2, and aP2) and by suppressing expression of genes associated with osteoblast differentiation (alkaline phosphatase, AP). Hypoxia increased HIF protein levels, hypoxic response element (HRE) binding, and HRE-reporter activity. We also demonstrate that prolyl-hydroxylases 2 and 3 (PHD2, PHD3), one of the major factors coordinating HIF degradation under normoxic but not hypoxic conditions, are induced in osteoblasts under hypoxic conditions. To further determine the contribution of PHDs and upregulated HIF activity in modulating osteoblast phenotype, we treated osteoblasts with a PHD inhibitor, dimethyloxaloylglycine (DMOG), and maintained cells under normoxic conditions. Similar to hypoxic conditions, HRE reporter activity was increased and adipogenic gene expression was increased while osteoblastic genes were suppressed. Taken together, our findings indicate a role for PHDs and HIFs in the regulation of osteoblast phenotype.  相似文献   

6.
Prolyl hydroxylation of hypoxible-inducible factor alpha (HIF-alpha) proteins is essential for their recognition by pVHL containing ubiquitin ligase complexes and subsequent degradation in oxygen (O(2))-replete cells. Therefore, HIF prolyl hydroxylase (PHD) enzymatic activity is critical for the regulation of cellular responses to O(2) deprivation (hypoxia). Using a fusion protein containing the human HIF-1alpha O(2)-dependent degradation domain (ODD), we monitored PHD activity both in vivo and in cell-free systems. This novel assay allows the simultaneous detection of both hydroxylated and nonhydroxylated PHD substrates in cells and during in vitro reactions. Importantly, the ODD fusion protein is regulated with kinetics identical to endogenous HIF-1alpha during cellular hypoxia and reoxygenation. Using in vitro assays, we demonstrated that the levels of iron (Fe), ascorbate, and various tricarboxylic acid (TCA) cycle intermediates affect PHD activity. The intracellular levels of these factors also modulate PHD function and HIF-1alpha accumulation in vivo. Furthermore, cells treated with mitochondrial inhibitors, such as rotenone and myxothiazol, provided direct evidence that PHDs remain active in hypoxic cells lacking functional mitochondria. Our results suggest that multiple mitochondrial products, including TCA cycle intermediates and reactive oxygen species, can coordinate PHD activity, HIF stabilization, and cellular responses to O(2) depletion.  相似文献   

7.
8.
9.
10.
11.
12.
13.
Hypoxia is an important physiological condition during embryonic development. Hypoxia-inducible factor (HIF) is the mediator of hypoxic response of cells. The prolyl hydroxylase (PHD) of HIF plays a key role in stabilizing of HIF and the oxygen homeostasis of organisms. In this study, we isolated two PHD proteins, PHD45 and PHD28, and characterized them during the embryonic development of Xenopus laevis, which is an excellent model for embryonic development because of the ease of embryonic manipulation and the feasibility of transgenesis. Based on amino acid sequences, Xenopus PHD45 and PHD28 were homologous with human PHD2 and PHD3, respectively. In embryonic development, PHD45 expression was complementary to that of PHD28. xHIF-1alpha protein level was at a maximum around stage 20 when expression of PHD45 disappeared, while expression of PHD28 reached a maximum at stage 20, suggesting that PHD28 is inducible by HIF-1alpha. Recently, Siah2 was found to be an ubiquitin ligase of PHD proteins and to regulate degradation of PHD proteins. Over-expression of xSiah2 decreased PHD45 but not PHD28 and caused the small-eye phenotype of Xenopus. Additional over-expression of PHD47 rescued the abnormality caused by xSiah2, suggesting that the level of expression or activity of PHD proteins is important to the maintenance of homeostasis in embryonic development.  相似文献   

14.
15.
The prolyl hydroxylase domain (PHD) enzymes regulate the stability of the hypoxia-inducible factor (HIF) in response to oxygen availability. During oxygen limitation, the inhibition of PHD permits the stabilization of HIF, allowing the cellular adaptation to hypoxia. This adaptation is especially important for solid tumors, which are often exposed to a hypoxic environment. However, and despite their original role as the oxygen sensors of the cell, PHD are currently known to display HIF-independent and hydroxylase-independent functions in the control of different cellular pathways, including mTOR pathway, NF-kB pathway, apoptosis and cellular metabolism. In this review, we summarize the recent advances in the regulation and functions of PHD in cancer signaling and cell metabolism.  相似文献   

16.
17.
18.
Hypoxia inducible factors (HIF) coordinate cellular responses towards hypoxia. HIFs are mainly regulated by a group of prolyl-hydroxylases (PHDs) that in the presence of oxygen, target the HIFα subunit for degradation. Herein, we studied the role of nitric oxide (NO) in regulating PHD activities under normoxic conditions. In the present study we show that different NO-donors initially inhibited endogenous PHD2 activity which led to accumulation of HIF-1α subsequently to enhance HIF-1 dependent increased PHD2 promoter activity. Consequently PHD2 abundance and activity were strongly induced which caused downregulation of HIF-1α. Interestingly, upregulation of endogenous PHD2 activity by NO was not found in cells that lack an intact pVHL dependent degradation pathway. Recovery of PHD activity required intact cells and was not observed in cell extracts or recombinant PHD2. In conclusion induction of endogenous PHD2 activity by NO is dependent on a feedback loop initiated despite normoxic conditions.  相似文献   

19.
20.
Hypoxia-inducible factor (HIF)-α subunits (HIF-1α,HIF-2α and HIF-3α),which play a pivotalrole during the development of hypoxia-induced pulmonary hypertension (HPH),are regulated through post-U'anslational hydroxylation by their three prolyl hydroxylase domain-containing proteins (PHD 1,PHD2 and PHD3).PHDs could also be regulated by HIF.But differential and reciprocal regulation between HIF-α and PHDs duringthe development of HPH remains unclear.To investigate this problem,a rat HPH model was established.Meanpulmonary arterial pressure increased significantly after 7 d of hypoxia.Pulmonary artery remodeling indexand right ventricular hypertrophy became evident after 14 d of hypoxia.HIF-1α and HIF-2α mRNA increasedslightly after 7 d of hypoxia,but HIF-3α increased significantly after 3 d of hypoxia.The protein expressionlevels of all three HIF-α were markedly upregulated after exposure to hypoxia.PHD2 mRNA and proteinexpression levels were upregulated after 3 d of hypoxia;PHD 1 protein declined after 14 d of hypoxia withoutsignificant mRNA changes.PHD3 mRNA and protein were markedly upregulated after 3 d of hypoxia,then themRNA remained at a high level,but the protein declined after 14 d of hypoxia.In hypoxic animals,HIF-lotproteins negatively correlated with PHD2 proteins,whereas HIF-2α and HIF-3α proteins showed negativecorrelations with PHD3 and PHD 1 proteins,respectively.All three HIF-α proteins were positively correlatedwith PHD2 and PHD3 mRNA.In the present study,HIF-α subunits and PHDs showed differential andreciprocal regulation,and this might play a key pathogenesis role in hypoxia-induced pulmonary hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号