首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Optimal conditions for amino acid incorporation into protein in vitro by isolated skeletal muscle mitochondria were established. Maximum incorporation rates were obtained when atractylate and glutamate were added to the incubation medium in the absence of any exogenous adenine nucleotides. Under these conditions, the rate of amino acid incorporation was more than 5-fold greater than that observed with glutamate and ADP and nearly 12-fold greater than that observed with ATP and an ATP-regenerating system consisting of phosphoenolpyruvate and pyruvate kinase. The optimal concentrations of adenine nucleotides, glutamate, cofactors and the substrate leucine were determined for all three energy-providing systems. The inhibitors of protein synthesis, puromycin and chloramphenicol, completely blocked amino acid incorporation by isolated skeletal muscle in mitochondria, while cycloheximide had no effect. Analysis of the labeled mitochondrial proteins by sodium dodecylsulfate polyacrylamide gel electrophoresis revealed five labeled bands of molecular weights ranging from 38,000 to 10,000.Amino acid incorporation by skeletal muscle mitochondria isolated from diabetic rats was decreased over 60% as compared to mitochondria from controls when measured in the presence of glutamate and atractylate, ADP and glutamate or the ATP regenerating system. By contrast, amino acid incorporation by liver mitochondria isolated from diabetic rats did not differ significantly from control values when measured with four different energy sources.  相似文献   

2.
Abstract: Age-dependent changes in the oxidative metabolism in nonsynaptic and synaptic mitochondria from brains of 3, 12, and 24-month-old rats were investigated. When pyruvate and malate were used in conjunction as substrates, a significant reduction in State 3 respiration was observed in both mitochondrial populations from 12-and 24-month-old rats compared with 3-month-old animals. A similar age-dependent reduction in the oxidation of [1-11C]pyruvate was also observed in nonsynaptic and synaptic mitochondria from senescent rats. Pyruvate dehydrogenase complex activity (both active and total) was, however, not decreased in the two mitochondrial populations from brains of 3, 12, and 24-month-old rats. When DL-3-hydroxybutyrate plus malate were used as substrates, a decrease in State 3 respiration was observed only in synaptic mitochondria from 24-month-old rats compared with 3- month-old animals. Similarly, an age-dependent reduction in the oxidation of 3-hydroxy[3-11C]butyrate was also observed only in synaptic mitochondria from 12-and 24-month-old rats. However, a significant reduction in the activities of ketone body-metabolizing enzymes, namely, 3-hydroxybutyrate dehydrogenase, 3-ketoacid CoA transferase, and acetoacetyl-CoA thiolase was observed in both mitochondrlal populations from 12- and 24-month-old rats compared with 3 month-old animals. These findings show that specific alterations in oxidative metabolism occur in nonsynaptic and synaptic mitochondria from aging rats. The data also suggest that in addition to alterations in enzyme activities, permeability of anions (e.g. pyruvate) across the inner mitochondrial membrane may be altered in nonsynaptic and synaptic mitochondria from senescent animals.  相似文献   

3.
Glycolytic ATP synthesis by synaptic vesicles provides an efficient mechanism for fueling vesicular loading of the neurotransmitter glutamate. This is achieved in part by vesicle-bound pyruvate kinase. However, we have found that vesicular glutamate uptake, in the presence of the pyruvate kinase substrates ADP and phosphoenolpyruvate (PEP), substantially exceeds that caused by exogenous ATP. We propose that this much enhanced uptake is in part due to extra ATP produced via a mechanism involving a novel enzyme, PEP-dependent ADP synthase. We discuss implications for this enzyme in energy homeostasis and pathophysiology, as well as in efficient synaptic glutamate transmission.  相似文献   

4.
5.
Preparation and properties of mitochondria derived from synaptosomes.   总被引:33,自引:8,他引:25       下载免费PDF全文
A method has been developed whereby a fraction of rat brain mitochondria (synaptic mitochondria) was isolated from synaptosomes. This brain mitochondrial fraction was compared with the fraction of "free" brain mitochondria (non-synaptic) isolated by the method of Clark & Nicklas (1970). (J. Biol. Chem. 245, 4724-4731). Both mitochondrial fractions are shown to be relatively pure, metabolically active and well coupled. 2. The oxidation of a number of substrates by synaptic and non-synaptic mitochondria was studied and compared. Of the substrates studied, pyruvate plus malate was oxidized most rapidly by both mitochondrial populations. However, the non-synaptic mitochondria oxidized glutamate plus malate almost twice as rapidly as the synaptic mitochondria. 3. The activities of certain tricarboxylic acid-cycle and related enzymes in synaptic and non-synaptic mitochondria were determined. Citrate synthase (EC 4.1.3.7), isocitrate dehydrogenase (EC 1.1.1.41) and malate dehydrogenase (EC 1.1.1.37) activities were similar in both fractions, but pyruvate dehydrogenase (EC 1.2.4.1) activity in non-synaptic mitochondria was higher than in synaptic mitochondria and glutamate dehydrogenase (EC 1.4.1.3) activity in non-synaptic mitochondria was lower than that in synaptic mitochondria. 4. Comparison of synaptic and non-synaptic mitochondria by rate-zonal separation confirmed the distinct identity of the two mitochondrial populations. The non-synaptic mitochondria had higher buoyant density and evidence was obtained to suggest that the synaptic mitochondria might be heterogeneous. 5. The results are also discussed in the light of the suggested connection between the heterogeneity of brain mitochondria and metabolic compartmentation.  相似文献   

6.
The synthesis of glutamate from 2-oxoglutarate generated by the citric acid cycle and ammonium acetate has been studied in brain mitochondria of synaptic or non synaptic origin. Non synaptic brain mitochondria synthesise glutamate at twice the rate (1.3 nmol. min?1. mg protein?1) of synaptic mitochondria (0.65 nmol. min?1. mg protein?1) when pyruvate is the precursor for 2-oxoglutarate, but at a similar rate (0.9 and 0.7 nmol. min?1, mg protein?1) when 3 hydroxybutyrate is the precursor. Glutamate synthesis from ammonium acetate and extramitochondrially addcd 2-oxoglutarate (5 mM) by both synaptic and nonsynaptic mitochondria was 5-fold higher (5-6nmol. min?1. mg protein?1) than glutamate synthesis from endogenously produced 2-oxoglutarate. In the uncoupled state (or un-coupler + oligomycin) the rate was reduced by half. (2.5-3 nmol. min?1. mg protein?1) as compared to mitochondria synthesising glutamate in states 3 or 4 (± oligomycin). The changes in brain mitochondrial nicotinamide nucleotide redox state have been monitored by fluorimetric, spectrophotometric and enzymatic techniques during glutamate synthesis and compared with liver mitochondria under similar conditions. On the instigation of glutamate synthesis by NH+4 addition a significant NAD(P)H oxidation occurs with liver mitochondria but no detectable change occurs with brain mitochondria. Leucine (2 mM) causes a doubling of glutamate synthesis by both synaptic and non synaptic brain mitochondria with no detectable change in the NAD(P)H redox state. The results are discussed with respect to the control of glutamate synthesis by mitochondrial redox potential and the possible intramitochondrial compartmentation of this process.  相似文献   

7.
Mitochondria in nerve terminals are subjected to extensive Ca2+ fluxes and high energy demands, but the extent to which the synaptic mitochondria buffer Ca2+ is unclear. In this study, we identified a difference in the Ca2+ clearance ability of nonsynaptic versus synaptic mitochondrial populations enriched from rat cerebral cortex. Mitochondria were isolated using Percoll discontinuous gradients in combination with high pressure nitrogen cell disruption. Mitochondria in the nonsynaptic fraction originate from neurons and other cell types including glia, whereas mitochondria enriched from a synaptosomal fraction are predominantly neuronal and presynaptic in origin. There were no differences in respiration or initial Ca2+ loads between nonsynaptic and synaptic mitochondrial populations. Following both bolus and infusion Ca2+ addition, nonsynaptic mitochondria were able to accumulate significantly more exogenously added Ca2+ than the synaptic mitochondria before undergoing mitochondrial permeability transition, observed as a loss in mitochondrial membrane potential and decreased Ca2+ uptake. The limited ability of synaptic mitochondria to accumulate Ca2+ could result from several factors including a primary function of ATP production to support the high energy demand of presynaptic terminals, their relative isolation in comparison with the threads or clusters of mitochondria found in the soma of neurons and glia, or the older age and increased exposure to oxidative damage of synaptic versus nonsynaptic mitochondria. By more readily undergoing permeability transition, synaptic mitochondria may initiate neuron death in response to insults that elevate synaptic levels of intracellular Ca2+, consistent with the early degeneration of distal axon segments in neurodegenerative disorders.  相似文献   

8.
Abstract: The enzyme complement of two different mitochondrial preparations from adult rat brain has been studied. One population of mitochondria (synaptic) is prepared by the lysis of synaptosomes, the other (nonsynaptic or free) by separation from homogenates. These populations have been prepared from distinct regions of the brain: cortex, striatum, and pons and medulla oblongata. The following enzymes have been measured: pyruvate dehydrogenase (EC 1.2.4.1), citrate synthase (EC 4.1.3.7), NAD-linked isocitrate dehydrogenase (EC 1.1.1.41), NADP-linked isocitrate dehydrogenase (EC 1.1.1.42), fumarase (EC 4.2.1.2), NAD-linked malate dehydrogenase (EC 1.1.1.37), D-3-hydroxybutyrate dehydrogenase (EC 1.1.1.30), and mitochondrially bound hexokinase (EC 2.7.1.1) and creatine kinase (EC 2.7.3.2). The nonsynaptic (free) mitochondria show higher enzyme specific activities in the regions studied than the corresponding values recorded for the synaptic mitochondria. The significance of these observations is discussed in the light of the different metabolic activities of the two populations of mitochondria and the compartmentation of the metabolic activities of the brain.  相似文献   

9.
1. Rat brain-cortex mitochondria were incubated in media containing 1, 5 or 100mm-K(+) in the presence of ADP, uncoupler (FCCP, carbonyl cyanide p-trifluoro-methoxyphenylhydrazone) or valinomycin while metabolizing pyruvate and malate, or acetylcarnitine and malate or glutamate and malate as substrates. Both the uptake of oxygen and disappearance of substrate were measured under these conditions. 2. With pyruvate and malate as substrate in the presence of both ADP and valinomycin, both the uptake of oxygen and disappearance of pyruvate increased markedly on increasing the K(+) content of the incubation medium from 5 to 100mm-K(+). However, in the presence of uncoupler (FCCP), although the oxygen uptake doubled little change was observed in the rate of disappearance of pyruvate on increasing the K(+) concentration. 3. Only small changes in uptake of substrate and oxygen were observed in the presence of ADP, uncoupler (FCCP) or valinomycin on increasing the K(+) concentration when acetylcarnitine+malate or glutamate+malate were used as substrates by brain mitochondria. 4. Further, increasing the K(+) concentration from 1 to 20mm when rat brain mitochondria were oxidizing a mixture of pyruvate and glutamate in the presence of malate and ADP caused a 30% increase in the respiration rate, 50% increase in the rate of disappearance of pyruvate and an 80% decrease in the rate of disappearance of glutamate. 5. Investigation of the redox state of the cytochromes and the nicotinamide nucleotides in various conditions with either pyruvate or acetylcarnitine as substrates suggested that the specific stimulation of metabolism of pyruvate by K(+) could not be explained by a general stimulation of the electron-transport system. 6. Low-amplitude high-energy swelling of rat brain mitochondria was investigated in both Na(+)- and K(+)-containing media. Swelling of brain mitochondria was much greater in the Na(+)-containing medium and in this medium, the addition of Mg(2+) caused a partial reversal of swelling together with an 85% decrease in the rate of utilization of pyruvate. However, in the K(+)-containing medium, the addition of Mg(2+), although also causing a reversal of swelling, did not affect the rate of disappearance of pyruvate. 7. Measurements of the ATP, NADH/NAD(+) and acetyl-CoA/CoA contents were made under various conditions and no evidence that K(+) concentrations affected these parameters was obtained. 8. The results are discussed in relationship to the physiological significance of the stimulation of pyruvate metabolism by K(+) in rat brain mitochondria. It is proposed that K(+) causes its effects by a direct stimulation of the pyruvate dehydrogenase complex.  相似文献   

10.
Free radical production and leak of brain nonsynaptic mitochondria were higher with pyruvate/malate than with succinate in rats and pigeons. Rotenone, antimycin A, and myxothiazol maximally stimulated free radical production with pyruvate/malate but not with succinate. Simultaneous treatment with myxothiazol plus antimycin A did not decrease the stimulated rate of free radical production brought about independently by any of these two inhibitors with pyruvate/malate. Thenoyltrifluoroacetone did not increase free radical production with succinate. No free radical production was detected at Complex IV. Free radical production and leak with pyruvate/malate were higher in the rat (maximum longevity 4 years) than in the pigeon (maximum longevity 35 years). These differences between species disappeared in the presence of rotenone. The results localize the main free radical production site of nonsynaptic brain mitochondria at Complex I. They also suggest that the low free radical production of pigeon brain mitochondria is due to a low degree of reduction of Complex I in the steady state in this highly longevous species.  相似文献   

11.
Effects of multiple substrates on oxygen uptake and superoxide production by mitochondria isolated from the pericarp tissue of green bell pepper (Capsicum annuum L.) were studied. Mitochondria isolated from peppers stored at 4 °C for 5 and 6 days had higher rates of oxygen uptake and were less sensitive to cyanide than mitochondria isolated from freshly harvested peppers. Succinate enhanced state 2 and state 4 rates of oxygen uptake with exogenous NADH in the absence of cytochrome path inhibitors, but not state 3 rates by mitochondria isolated from either freshly harvested or cold-stored bell peppers. The sensitivity of NADH oxidation to cyanide was reduced by both malate and succinate in mitochondria from cold-stored bell peppers, whereas only succinate was effective in mitochondria from freshly harvested peppers.Mitochondria isolated from both freshly harvested peppers and those stored at 4 °C for 5 and 6 days produced superoxide in the absence of exogenous substrates. Superoxide production by mitochondria from freshly harvested bell peppers increased when the mitochondria were supplied with malate, succinate or NADH, but only NADH enhanced superoxide production by mitochondria from cold-stored peppers. Both succinate and malate reduced the production of superoxide by mitochondria isolated from cold-stored bell peppers. Succinate and malate as second substrates also reduced the production of superoxide with NADH by mitochondria from both freshly harvested and cold-stored bell peppers. Malonate, a competitive inhibitor of succinate dehydrogenase, was inhibitory to oxygen uptake and to superoxide production.Mitochondria isolated from cold-stored bell peppers converted succinate to pyruvate at 25 °C at considerably higher rates than those of mitochondria from freshly harvested bell peppers. Since pyruvate has been shown to activate the alternative oxidase and the presence of pyruvate is essential for continued alternative oxidase activity, we suggest that pyruvate limits superoxide production by enhancing the flow of electrons through the alternative path. A direct scavenging of superoxide by succinate, malate and pyruvate, however, cannot be ruled out.  相似文献   

12.
Glucose metabolism is essential for normal brain function and plays a vital role in synaptic transmission. Recent evidence suggests that ATP synthesized locally by glycolysis, particularly via glyceraldehyde 3-phosphate dehydrogenase/3-phosphoglycerate kinase, is critical for synaptic transmission. We present evidence that ATP generated by synaptic vesicle-associated pyruvate kinase is harnessed to transport glutamate into synaptic vesicles. Isolated synaptic vesicles incorporated [3H]glutamate in the presence of phosphoenolpyruvate (PEP) and ADP. Pyruvate kinase activators and inhibitors stimulated and reduced PEP/ADP-dependent glutamate uptake, respectively. Membrane potential was also formed in the presence of pyruvate kinase activators. “ATP-trapping” experiments using hexokinase and glucose suggest that ATP produced by vesicle-associated pyruvate kinase is more readily used than exogenously added ATP. Other neurotransmitters such as GABA, dopamine, and serotonin were also taken up into crude synaptic vesicles in a PEP/ADP-dependent manner. The possibility that ATP locally generated by glycolysis supports vesicular accumulation of neurotransmitters is discussed. Atsuhiko Ishida—On leave from the Department of Biochemistry, Asahikawa Medical College, Asahikawa, Japan.  相似文献   

13.
Abstract: The amount of control exerted by respiratory chain complexes in isolated nonsynaptic mitochondria prepared from rat brain on the rate of oxygen consumption was assessed using inhibitor titrations. Rotenone, myxothiazol, and KCN were used to titrate the activities of NADH:ubiquinone oxidoreductase (EC 1.6.5.3; complex I), ubiquinol:ferrocytochrome c oxidoreductase (EC 1.10.2.2; complex III), and cytochrome c oxidase (EC 1.9.3.1; complex IV), respectively. Complexes I, III, and IV shared some of the control of the rate of oxygen consumption in nonsynaptic mitochondria, having flux control coefficients of 0.14, 0.15, and 0.24, respectively. Threshold effects in the control of oxidative phosphorylation were demonstrated for complexes I, III, and IV. It was found that complex I activity could be decreased by ∼72% before major changes in mitochondrial respiration and ATP synthesis took place. Similarly, complex III and IV activities could be decreased by ∼70 and 60%, respectively, before major changes in mitochondrial respiration and ATP synthesis occurred. These results indicate that previously observed decreases in respiratory chain complex activities in some neurological disorders need to be reassessed as these decreases might not affect the overall capability of nonsynaptic mitochondria to maintain energy homeostasis unless a certain threshold of decreased complex activity has been reached. Possible implications for synaptic mitochondria and neurodegenerative disorders are also discussed.  相似文献   

14.
RESPIRATION IN VITRO OF SYNAPTOSOMES FROM MAMMALIAN CEREBRAL CORTEX   总被引:26,自引:13,他引:13  
Abstract— —(1) The respiratory properties of synaptosomes and mitochondria from mammalian cerebral cortex are compared.
(2) Synaptosome showed high and linear respiration with glucose and pyruvate as substrates in Krebs-Ringer media. Mitochondria showed such respiration only with pyruvate as substrate in media lacking Na and high in K and phosphate.
(3) Exposure of synaptosomes to hypotonic media caused loss of lactate dehydrogenase (LDH) and protein, and respiration diminished and became non-linear.
(4) Both ATP and phosphocreatine were synthesised by synaptosomes with glucose as substrate. ATP was synthesised by mitochondria in the presence of pyruvate.
(5) Synaptosome but not mitochondria showed some capacity for active accumulation of potassium.
(6) Both mitochondria and synaptosomes respired with glutamate as substrate. Glutamate caused 80 per cent loss of ATP and phosphocreatine in synaptosomes but did not diminish the level of mitochondrial ATP.  相似文献   

15.
The control of pyruvate dehydrogenase activity by inactivation and activation was studied in intact mitochondria isolated from rabbit heart. Pyruvate dehydrogenase could be completely inactivated by incubating mitochondria with ATP, oligomycin, and NaF. This loss in dehydrogenase activity was correlated with the incorporation of 32P from [gamma-32P]ATP into mitochondrial protein(s) and with a decrease in the mitochondrial oxidation of pyruvate. ATP may be supplied exogenously, generated from endogenous ADP during oxidative phosphorylation, or formed from exogenous ADP in carbonyl cyanid p-trifluoromethoxyphenylhydrazone-uncoupled mitochondria. With coupled mitochondria the concentration of added ATP required to half-inactivate the dehydrogenase was 0.24 mM. With uncoupled mitochondria the apparent Km was decreased to 60 muM ATP. Inactivation of pyruvate dehydrogenase by exogenous ATP was sensitive to atractyloside, suggesting that pyruvate dehydrogenase kinase acts internally to the atractyloside-sensitive barrier. The divalent cation ionophore, A23187, enhanced the loss of dehydrogenase activity. Pyruvate dehydrogenase activity is regulated additionally by pyruvate, inorganic phosphate, and ADP. Pyruvate, in the presence of rotenone, strongly inhibited inactivation. This suggests that pyruvate facilitates its own oxidation and that increases in pyruvate dehydrogenase activity by substrate may provide a modulating influence on the utilization of pyruvate via the tricarboxylate cycle. Inorganic phosphate protected the dehydrogenase from inactivation by ATP. ADP added to the incubation mixture together with ATP inhibited the inactivation of pyruvate dehydrogenase. This protection may result from a direct action on pyruvate dehydrogenase kinase, as ADP competes with ATP, and an indirect action, in that ADP competes with ATP for the translocase. It is suggested that the intramitochondrial [ATP]:[ADP] ratio effects the kinase activity directly, whereas the cytosolic [ATP]:[ADP] ratio acts indirectly. Mg2+ enhances the rate of reactivation of the inactivated pyruvate dehydrogenase presumably by accelerating the rate of dephosphorylation of the enzyme. Maximal activation is obtained with the addition of 0.5 mM Mg2+..  相似文献   

16.
The role of the creatine phosphate shuttle in the energetics of muscle protein synthesis in isolated polysomes, from rat hindlimb muscle, was studied. Triton X-100-treated polysomes, following their centrifugation through a 1 M sucrose gradient, contained 38 mU/mg RNA of bound creatine kinase. In the presence of pH 5 enzyme (obtained from rat liver), 0.5 mM ATP, and 1 microM GTP, amino acid (leucine) incorporation by polysomes in the presence of 8 mM creatine phosphate was twice that in the presence of an exogenous ATP regenerating system of 10 mM phospho(enol)pyruvate and 10 U/ml pyruvate kinase. Since added creatine kinase had no effect on incorporation supported by creatine phosphate it is clear that endogenous creatine kinase allows sufficient regeneration of ATP. These data also suggest that nucleoside diphosphokinase must have been associated with the polysome for phosphate was transferred to GTP from [33P]creatine phosphate, and the specific activities of ATP and GTP increased at equal rates, reaching the specific activity of creatine phosphate at 8 min. We conclude that skeletal muscle polysomes have bound creatine kinase activity and they act as terminals for the creatine phosphate energy shuttle. Creatine phosphate regenerates GTP, probably through an intermediate reaction catalyzed by nucleoside diphosphokinase. This provided an added support for the hypothesis of compartmentation of enzymes and substrates and that the transport form of energy between the mitochondria and energy utilizing sites in muscle is creatine phosphate rather than ATP, which extends the general role of the creatine phosphate energy shuttle.  相似文献   

17.
The synthesis of Mg-protoporphyrin-IX from exogenous protoporphyrin-IX, in a crude plastid pellet extracted from greening cucumber cotyledons was found to require l-glutamate as a cofactor. It has now been shown that glutamate acts in the presence of contaminating mitochondria to provide an ATP regenerating system. With purified plastids, Mg chelatase is not stimulated by glutamate; instead, it requires a high concentration of ATP and is greatly stimulated by added phosphoenolpyruvate and pyruvate kinase. GTP, UTP, CTP, and ITP will not substitute for ATP. ADP in the absence of an ATP generating system is completely ineffective, whereas it is slightly inhibitory in the presence of 10 mm ATP. AMP is strongly inhibitory in the reaction; 50% inhibition is obtained at approximately 3.5 mm AMP in the presence of 10 mm ATP.  相似文献   

18.
1. The conversion of inactive (phosphorylated) pyruvate dehydrogenase complex into active (dephosphorylated) complex by pyruvate dehydrogenase phosphate phosphatase is inhibited in heart mitochondria prepared from alloxan-diabetic or 48h-starved rats, in mitochondria prepared from acetate-perfused rat hearts and in mitochondria prepared from normal rat hearts incubated with respiratory substrates for 6 min (as compared with 1 min). 2. This conclusion is based on experiments with isolated intact mitochondria in which the pyruvate dehydrogenase kinase reaction was inhibited by pyruvate or ATP depletion (by using oligomycin and carbonyl cyanide m-chlorophenylhydrazone), and in experiments in which the rate of conversion of inactive complex into active complex by the phosphatase was measured in extracts of mitochondria. The inhibition of the phosphatase reaction was seen with constant concentrations of Ca2+ and Mg2+ (activators of the phosphatase). The phosphatase reaction in these mitochondrial extracts was not inhibited when an excess of exogenous pig heart pyruvate dehydrogenase phosphate was used as substrate. It is concluded that this inhibition is due to some factor(s) associated with the substrate (pyruvate dehydrogenase phosphate complex) and not to inhibition of the phosphatase as such. 3. This conclusion was verified by isolating pyruvate dehydrogenase phosphate complex, free of phosphatase, from hearts of control and diabetic rats an from heart mitochondria incubed for 1min (control) or 6min with respiratory substrates. The rates of re-activation of the inactive complexes were then measured with preparations of ox heart or rat heart phosphatase. The rates were lower (relative to controls) with inactive complex from hearts of diabetic rats or from heart mitochondria incubated for 6min with respiratory substrates. 4. The incorporation of 32Pi into inactive complex took 6min to complete in rat heart mitocondria. The extent of incorporation was consistent with three or four sites of phosphorylation in rat heart pyruvate dehydrogenase complex. 5. It is suggested that phosphorylation of sites additional to an inactivating site may inhibit the conversion of inactive complex into active complex by the phosphatase in heart mitochondria from alloxan-diabetic or 48h-starved rats or in mitochondria incubated for 6min with respiratory substrates.  相似文献   

19.
Summary The pathway of gluconeogenesis from pyruvate, lactate and alanine was investigated in isolated liver cells of the eel. Amino-oxyacetate, a transaminase inhibitor, inhibited gluconeogenesis not only from lactate, but also from pyruvate by 60%.d-Malate did not inhibit gluconeogenesis from either of the substrates (Table 1 A).The effects of various amino acids on gluconeogenesis were investigated. Leucine accelerated gluconeogenesis from pyruvate or alanine (Table 2). Leucine promoted the incorporation of14C-pyruvate into glutamate and aspartate, and increased the glutamate content. The specific activity of14C-aspartate was increased markedly by leucine (Table 5).From the investigation of subcellular distribution of enzymes unique to gluconeogenesis, it was found that pyruvate carboxylase was located almost exclusively in the mitochondrial fraction, and that phophoenolpyruvate carboxykinase and aspartate transaminase were located in both the mitochondrial and the cytosolic fractions (Table 7).From these results it is concluded that the oxaloacetate-aspartate pathway is a major route in gluconeogenesis from any of the substrates in the eel liver.Abbreviations AOA amino-oxyacetate - PEP phosphoenolpyruvate  相似文献   

20.
1. Rat liver mitochondria make hippurate at up to 4 nmol/min per mg of protein. The rate of synthesis supported by oxidation of glutamate with exogenous Pi present is identical with that supported by ATP plus oligomycin. Lower rates were obtained with other respiratory substrates, and when glutamate was used without Pi. 2. A matrix localization for hippurate synthesis is indicated by the latency of benzoyl-CoA synthetase and glycine N-acyltransferase to their extramitochondrial substrates, failure of exogenous benzoyl-CoA to inhibit incorporation of [14C]hippurate and inhibition of hippurate synthesis supported by ATP, but not glutamate, by carboxyatractyloside. 3. The relative activities of the individual enzymes and the mitochondrial content of benzoyl-CoA in the presence and absence of glycine suggest that hippurate synthesis is rate-limited by formation of benzoyl-CoA. 4. The increases in rates of ATP hydrolysis and of O2 consumption on the addition of benzoate and glycine were in good agreement with those required to support hippurate synthesis. The increase in respiration indicates that State-4 respiration [Chance & Williams (1957) Adv. Enzymol 17, 65-134] is not used, with these conditions, for ATP synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号