首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herp is a stress-response protein localized in the endoplasmic reticulum (ER) membrane. Herp was proposed to improve ER-folding, decrease ER protein load, and participate in ER-associated degradation (ERAD). Intra-muscle-fiber ubiquitinated multiprotein-aggregates containing, among other proteins, either amyloid-beta (Abeta) or phosphorylated tau are characteristic of sporadic inclusion-body myositis (s-IBM). ER stress and proteasome inhibition appear to play a role in s-IBM pathogenesis. We have now studied Herp in s-IBM muscle fibers and in ER-stress-induced or proteasome-inhibited cultured human muscle fibers. In s-IBM muscle fibers: (i) Herp was strongly immunoreactive in the form of aggregates, which co-localized with Abeta, GRP78, and beta2 proteasome subunit; (ii) Herp mRNA and protein were increased. In ER-stress-induced cultured human muscle fibers: (i) Herp immunoreactivity was diffusely increased; (ii) Herp mRNA and protein were increased. In proteasome-inhibited cultured human muscle fibers: (i) Herp immunoreactivity was in the form of aggregates; (ii) Herp protein was increased, but its mRNA was not. Accordingly, in s-IBM muscle fibers: (i) increase of Herp might be due to both ER-stress and proteasome inhibition; (ii) co-localization of Herp with Abeta, proteasome, and ER-chaperone GRP78 could reflect its possible role in processing and degradation of cytotoxic proteins in ER.  相似文献   

2.
雌激素对淀粉样β蛋白代谢的调节和毒性缓解   总被引:2,自引:0,他引:2  
Zhang S  Yao T 《生理科学进展》2003,34(3):197-201
以淀粉样β蛋白为主的老年斑胞外沉积和神经元内神经原纤维缠结,是阿尔采末病(AD)特征性的病理学改变。近来,人们逐渐认可淀粉样蛋白假说,即认为淀粉样蛋白沉积是AD最初起因。研究人员正在寻找针对淀粉样β蛋白沉积的药物,雌激素是其中之一。初步的工作证明,雌激素能够调节淀粉样β蛋白前体代谢,减少淀粉样β蛋白生成,也能够减轻淀粉样B蛋白引起的免疫炎症反应、氧应激对细胞造成的损伤,和对抗细胞凋亡。  相似文献   

3.
Sporadic inclusion-body myositis (s-IBM) is the most common muscle disease of older persons. The muscle-fiber molecular phenotype exhibits similarities to both Alzheimer-disease (AD) and Parkinson-disease (PD) brains, including accumulations of amyloid-beta, phosphorylated tau, alpha-synuclein, and parkin, as well as evidence of oxidative stress and mitochondrial abnormalities. Early-onset autosomal-recessive PD can be caused by mutations in the DJ-1 gene, leading to its inactivation. DJ-1 has antioxidative and mitochondrial-protective properties. In AD and PD brains, DJ-1 is increased and oxidized. We studied DJ-1 in 17 s-IBM and 18 disease-control and normal muscle biopsies by: (1) immunoblots of muscle homogenates and mitochondrial fractions; (2) real-time PCR; (3) oxyblots evaluating DJ-1 oxidation; (4) light- and electron-microscopic immunocytochemistry. Compared to controls, in s-IBM muscle fibers DJ-1 was: (a) increased in the soluble fraction, monomer 2-fold (P = 0.01), and dimer 2.8-fold (P = 0.004); (b) increased in the mitochondrial fraction; (c) highly oxidized; and (d) aggregated in about 15% of the abnormal muscle fibers. DJ-1 mRNA was increased 3.5-fold (P = 0.034). Accordingly, DJ-1 might play a role in human muscle disease, and thus not be limited to human CNS degenerations. In s-IBM muscle fibers, DJ-1 could be protecting these fibers against oxidative stress, including protection of mitochondria.  相似文献   

4.
Although the genetic link between the epsilon 4 allele of apolipoprotein E (apoE) and Alzheimer's disease (AD) is well established, the apoE isoform-specific activity underlying this correlation remains unclear. We have recently characterized the interaction of the soluble the amyloid-beta peptide (A beta) with model membrane and demonstrated that non-fibrillar A beta peptide, including N-terminal truncated forms of A beta, induced apoptotic cell death in primary rat cortical neurones in vitro. To further investigate the potential interaction between apoE and A beta in the pathogenesis of AD, we have determined the effect of apoE isoforms on the neurotoxicity of non-fibrillar A beta peptides. We demonstrate here that the apoE2 and E3 isoforms protect cortical neurones against apoptotic cell death induced by a non-fibrillar form of the A beta(1-40), A beta(12-42), A beta(29-40) and A beta(29-42) peptides, whereas apoE4 had no effect. This effect involves the formation of stable complexes between apoE and the C-terminal domain (e.g. amino acids 29-40) of A beta(1-40). Interestingly, apoE had no effect on the toxicity induced by aggregated A beta peptides, suggesting a lack of interaction between apoE and amyloid fibrils. Our results provide evidence that interaction with the C-terminal domain of A beta, apoE2 and E3, but not apoE4, inhibits the interactions of the non-fibrillar A beta peptide with the plasma membrane of neurones, A beta peptide aggregation and subsequent neurotoxicity.  相似文献   

5.
6.
A growing body of evidence supports the notion that soluble oligomers of amyloid-beta (Abeta) peptide interact with the neuronal plasma membrane, leading to cell injury and inducing death-signalling pathways that could account for the increased neurodegeneration occurring in Alzheimer's disease (AD). Docosahexaenoic acid (DHA, C22:6, n-3) is an essential polyunsaturated fatty acid in the CNS and has been shown in several epidemiological and in vivo studies to have protective effects against AD and cognitive alterations. However, the molecular mechanisms involved remain unknown. We hypothesized that DHA enrichment of plasma membranes could protect neurones from apoptosis induced by soluble Abeta oligomers. DHA pre-treatment was observed to significantly increase neuronal survival upon Abeta treatment by preventing cytoskeleton perturbations, caspase activation and apoptosis, as well as by promoting extracellular signal-related kinase (ERK)-related survival pathways. These data suggest that DHA enrichment probably induces changes in neuronal membrane properties with functional outcomes, thereby increasing protection from soluble Abeta oligomers. Such neuroprotective effects could be of major interest in the prevention of AD and other neurodegenerative diseases.  相似文献   

7.
Adult mouse astrocytes degrade amyloid-beta in vitro and in situ   总被引:17,自引:0,他引:17  
Alzheimer disease (AD) is a progressive neurodegenerative disorder characterized by excessive deposition of amyloid-beta (Abeta) peptides in the brain. One of the earliest neuropathological changes in AD is the accumulation of astrocytes at sites of Abeta deposition, but the cause or significance of this cellular response is unclear. Here we show that cultured adult mouse astrocytes migrate in response to monocyte chemoattractant protein-1 (MCP-1), a chemokine present in AD lesions, and cease migration upon interaction with immobilized Abeta(1-42). We also show that astrocytes bind and degrade Abeta(1-42). Astrocytes plated on Abeta-laden brain sections from a mouse model of AD associate with the Abeta deposits and reduce overall Abeta levels in these sections. Our results suggest a novel mechanism for the accumulation of astrocytes around Abeta deposits, indicate a direct role for astrocytes in degradation of Abeta and implicate deficits in astroglial clearance of Abeta in the pathogenesis of AD. Treatments that increase removal of Abeta by astrocytes may therefore be a critical mechanism to reduce the neurodegeneration associated with AD.  相似文献   

8.
Considerable evidence indicates that the amyloid-beta (Abeta) peptide, a proteolytic fragment of the amyloid precursor protein, is the pathogenic agent in Alzheimer's disease (AD). A number of proteases have been reported as capable of degrading Abeta, among them: neprilysin, insulin-degrading enzyme, endothelin-converting enzyme-1 and -2, angiotensin-converting enzyme and plasmin. These proteases, originating from a variety of cell types, degrade Abeta of various conformational states and in different cellular locations. We report here the isolation of a serine protease from serum-free conditioned medium of human neuroblastoma cells. Tandem mass spectrometry (MS/MS)-based sequencing of the isolated protein identified acyl peptide hydrolase (APH; EC3.4.19.1) as the active peptidase. APH is one of four members of the prolyl oligopeptidase family of serine proteases expressed in a variety of cells and tissues, including erythrocytes, liver and brain, but its precise biological activity is unknown. Here, we describe the identification of APH as an Abeta-degrading enzyme, and we show that the degradation of Abeta by APH isolated from transfected cells is inhibited by APH-specific inhibitors, as well as by synthetic Abeta peptide. In addition, we cloned APH from human brain and from neuroblastoma cells. Most importantly, our results indicate that APH expression in AD brain is lower than in age-matched controls.  相似文献   

9.
Blood-based neurochemical diagnosis of vascular dementia: a pilot study   总被引:3,自引:0,他引:3  
Blood-based tests for the differential diagnosis of Alzheimer's disease (AD) are under intensive investigation and have shown promising results with regard to Abeta40 and Abeta42 peptide species in incipient AD. Moreover, plasma Abeta40 was suggested as an independent cerebrovascular risk factor candidate. These considerations prompted us to analyse a total of 72 plasma samples in vascular dementias (VAD, n = 15), AD with cerebrovascular disease (AD with CVD, n = 7), AD (n = 15), Parkinson's disease and Parkinson's disease dementia (PD/PDD, n = 20) and 15 patients with depression that served as controls (DC) for distinct plasma amyloid-beta (Abeta) peptide patterns. For the analysis of plasma we used immunoprecipitation followed by the quantitative Abeta-SDS-PAGE/immunoblot. For comparison, CSF tau and Abeta1-42 analyses were performed. The major outcome was an increase in Abeta1-40 in plasma of VAD paralleled by a decrease in the ratio of Abeta1-38/Abeta1-40. The ratio Abeta1-38/Abeta1-40 in plasma enabled contrasts of beyond 85% and 80% for discriminating VAD from DC and all other patients, respectively. In CSF, we confirmed the typical CSF biomarker constellation of increased tau and diminished Abeta1-42 levels for AD. The diagnostic accuracy of plasma Abeta1-38/Abeta1-40 for VAD resembled the accuracy of CSF biomarkers for AD. From the presented results, we consider the ratio of plasma Abeta1-38/Abeta1-40 peptides to be a blood-based biomarker candidate for VAD.  相似文献   

10.
Alzheimer's disease (AD) is characterized by massive neuron loss in distinct brain regions, extracellular accumulations of the amyloid precursor protein-fragment amyloid-beta (A beta) and intracellular tau fibrils containing hyperphosphorylated tau. Experimental evidence suggests a relation between presenilin (PS) mutations, A beta formation, and tau phosphorylation in triggering cell death; however, how A beta and PS affect tau-dependent degeneration is unknown. Using herpes simplex virus 1-mediated gene-transfer of fluorescent-tagged tau constructs in primary cortical neurons, we demonstrate that tau expression exerts a neurotoxic effect that is increased with a construct mimicking disease-like hyperphosphorylation [pseudohyperphosphorylated (PHP) tau]. Live imaging revealed that PHP tau expression is associated with increased perikarya suggesting the development of a 'ballooned' phenotype as a specific feature of tau-mediated cell death. Transgenic expression of PS1 suppressed tau-induced neurodegeneration. In contrast, A beta amplified degeneration in the presence of wt tau but not of PHP tau. The data indicate that PS1 and A beta inversely modulate tau-dependent neurodegeneration at distinct steps. They indicate that the mode by which PHP tau causes neurotoxicity is downstream of A beta and that tau phosphorylation is the limiting factor in A beta-induced cell death. Suppression of tau expression or inhibition of tau phosphorylation at disease-relevant sites may provide an effective therapeutic strategy to prevent neurodegeneration in Alzheimer's disease.  相似文献   

11.
Zeng Y  Han X 《Journal of neurochemistry》2008,106(3):1275-1286
Amyloid-β (Aβ) accumulation and fibril formation are key pathologic characteristics of Alzheimer's disease (AD). We have previously found that sulfatide depletion occurs at the earliest stages of AD. To further identify the role of sulfatides in the pathogenesis of AD as well as the interactions between apolipoprotein E (apoE), sulfatides, and Aβ peptides, we examined alterations in the clearance of apoE-mediated Aβ peptides after sulfatide supplementation to cell culture systems. We demonstrated that sulfatides markedly facilitate apoE-mediated clearance of Aβ peptides endogenously generated from H4-APPwt cells through an endocytotic pathway. Moreover, we found that the uptake of Aβ42 mediated by sulfatides was selective in comparison to that of Aβ40. We excluded the possibility that the supplementation of sulfatides and/or apoE altered the production of Aβ peptides from H4-APPwt cells through determination of the clearance of Aβ peptides from conditioned H4-APPwt cell media by neuroblastoma cells which do not appreciably generate Aβ peptides. Finally, we demonstrated that the sulfate galactose moiety of sulfatides is essential for the sulfatide-facilitated clearance of Aβ peptides. Collectively, the current study provides insight into a molecular mechanism leading to Aβ clearance/deposition, highlights the significance of sulfatide deficiency at the earliest clinically recognizable stage of AD, and identifies a potential new direction for therapeutic intervention for the disease.  相似文献   

12.
Amyloid-beta (A(beta)) deposits and neurofibrillary pathology are characteristic features of Alzheimer's disease (AD). The association of A(beta) with cerebral vessels is an intriguing feature of AD. While there is considerable evidence of altered activities of the major isoforms of protein kinase C (PKC) in the vasculature and neurons of AD brains, little is known about the relationship between the Abeta toxicity and the altered PKC levels in cerebral endothelial cells.In this study, cultured brain endothelial cells exposed to A(beta)1-40 revealed a translocation of PKC from the membrane fraction to the cytosol. The content of the isoform PKC(alpha), involved in the regulation of amyloid precursor protein (APP) secretion, was decreased in the membrane-bound fraction of rat endothelial cells and increased in the cytosol after A(beta)1-40 treatment. These data suggest that the accumulation of A(beta) peptide in the cerebral vasculature may play a significant role in the down-regulation of PKC seen in the AD cerebral vasculature.  相似文献   

13.
Brain plaque deposits of amyloid-beta peptide (Abeta) is a pathological hallmark of Alzheimer's disease (AD) and apolipoprotein E (apoE) is thought to be involved in its deposition. One hypothesis for the role of apoE in the pathogenesis of AD is that apoE may be involved in deposition or clearance of Abeta by direct protein-to-protein interaction. Lipidated apoE4 bound preferentially to an intermediate aggregated form of Abeta and formed two- to three-fold more binding complexes than isoforms apoE2 or apoE3. The interaction was detected by a sandwich ELISA with capture antibodies specific for the N-terminus of apoE, whereas the interaction was not recognized with a C-terminal antibody. The observations indicate that the C-terminus of apoE4 interacts with the intermediate form of Abeta. The differential risk of AD related to apoE genotype may be the result of an enhanced capacity of apoE4 binding to an intermediate aggregated form of Abeta.  相似文献   

14.
Alzheimer vaccine: amyloid-beta on trial   总被引:7,自引:0,他引:7  
A new therapeutic approach is being developed for the treatment of Alzheimer's disease (AD). This approach involves the deliberate induction of an autoimmune response to amyloid-beta (Abeta) peptide, the constituent of neuritic plaques that is thought to cause the neurodegeneration and dementia in AD. If this approach is to be effective, antibodies must be produced that can selectively target the toxic forms of Abeta, while leaving the functionally-relevant forms of Abeta and its precursor protein untouched. Furthermore, an approach needs to be found that avoids provoking an acute neuroinflammatory response. The situation is made even more challenging by uncertainty regarding which isoforms of Abeta contribute to the pathogenesis of AD.  相似文献   

15.
Amyloid-beta, a peptide derived from the precursor protein APP, accumulates in the brain and contributes to the neuropathology of Alzheimer's disease. Increased generation of amyloid-beta might be caused by axonal transport inhibition, via increased dwell time of APP vesicles and thereby higher probability of APP cleavage by secretase enzymes residing on the same vesicles. We tested this hypothesis using a neuronal cell culture model of inhibited axonal transport and by imaging vesicular transport of fluorescently tagged APP and beta-secretase (BACE1). Microtubule-associated tau protein blocks vesicle traffic by inhibiting the access of motor proteins to the microtubule tracks. In neurons co-transfected with CFP-tau, APP-YFP traffic into distal neurites was strongly reduced. However, this did not increase amyloid-beta levels. In singly transfected axons, APP-YFP was transported in large tubules and vesicles moving very fast (on average 3 microm/s) and with high fluxes in the anterograde direction (on average 8.4 vesicles/min). By contrast, BACE1-CFP movement was in smaller tubules and vesicles that were almost 2x slower (on average 1.6 microm/s) with approximately 18x lower fluxes (on average 0.5 vesicles/min). Two-colour microscopy of co-transfected axons confirmed that the two proteins were sorted into distinct carriers. The results do not support the above hypothesis. Instead, they indicate that APP is transported on vesicles distinct from the secretase components and that amyloid-beta is not generated in transit when transport is blocked by tau.  相似文献   

16.
Growing evidence supports the importance of ubiquitin ligases in the pathogenesis of muscular disorders, although underlying mechanisms remain largely elusive. Here we show that the expression of RNF5 (aka RMA1), an ER-anchored RING finger E3 ligase implicated in muscle organization and in recognition and processing of malfolded proteins, is elevated and mislocalized to cytoplasmic aggregates in biopsies from patients suffering from sporadic-Inclusion Body Myositis (sIBM). Consistent with these findings, an animal model for hereditary IBM (hIBM), but not their control littermates, revealed deregulated expression of RNF5. Further studies for the role of RNF5 in the pathogenesis of s-IBM and more generally in muscle physiology were performed using RNF5 transgenic and KO animals. Transgenic mice carrying inducible expression of RNF5, under control of beta-actin or muscle specific promoter, exhibit an early onset of muscle wasting, muscle degeneration and extensive fiber regeneration. Prolonged expression of RNF5 in the muscle also results in the formation of fibers containing congophilic material, blue-rimmed vacuoles and inclusion bodies. These phenotypes were associated with altered expression and activity of ER chaperones, characteristic of myodegenerative diseases such as s-IBM. Conversely, muscle regeneration and induction of ER stress markers were delayed in RNF5 KO mice subjected to cardiotoxin treatment. While supporting a role for RNF5 Tg mice as model for s-IBM, our study also establishes the importance of RNF5 in muscle physiology and its deregulation in ER stress associated muscular disorders.  相似文献   

17.
Muscle fiber degeneration in sporadic inclusion‐body myositis (s‐IBM) is characterized by accumulation of multiprotein aggregates, including aggregated amyloid‐β (Aβ)‐precursor protein 751 (AβPP751), Aβ, phosphorylated tau, and other ‘Alzheimer‐characteristic’ proteins. Proteasome inhibition is an important component of the s‐IBM pathogenesis. In brains of Alzheimer’s disease (AD) patients and AD transgenic‐mouse models, phosphorylation of neuronal AβPP695 (p‐AβPP) on Thr668 (equivalent to T724 of AβPP751) is considered detrimental because it increases generation of cytotoxic Aβ and induces tau phosphorylation. Activated glycogen synthase kinase3β (GSK3β) is involved in phosphorylation of both AβPP and tau. Lithium, an inhibitor of GSK3β, was reported to reduce levels of both the total AβPP and p‐AβPP in AD animal models. In relation to s‐IBM, we now show for the first time that (1) In AβPP‐overexpressing cultured human muscle fibers (human muscle culture IBM model: (a) proteasome inhibition significantly increases GSK3β activity and AβPP phosphorylation, (b) treatment with lithium decreases (i) phosphorylated‐AβPP, (ii) total amount of AβPP, (iii) Aβ oligomers, and (iv) GSK3β activity; and (c) lithium improves proteasome function. (2) In biopsied s‐IBM muscle fibers, GSK3β is significantly activated and AβPP is phosphorylated on Thr724. Accordingly, treatment with lithium, or other GSK3β inhibitors, might benefit s‐IBM patients.  相似文献   

18.
Development of a comprehensive therapeutic treatment for the neurodegenerative Alzheimer's disease (AD) is limited by our understanding of the underlying biochemical mechanisms that drive neuronal failure. Numerous dysfunctional mechanisms have been described in AD, ranging from protein aggregation and oxidative stress to biometal dyshomeostasis and mitochondrial failure. In this review we discuss the critical role of amyloid-beta (A beta) in some of these potential mechanisms of neurodegeneration. The 39-43 amino acid A beta peptide has attracted intense research focus since it was identified as a major constituent of the amyloid deposits that characterise the AD brain, and it is now widely recognised as central to the development of AD. Familial forms of AD involve mutations that lead directly to altered A beta production from the amyloid-beta A4 precursor protein, and the degree of AD severity correlates with specific pools of A beta within the brain. A beta contributes directly to oxidative stress, mitochondrial dysfunction, impaired synaptic transmission, the disruption of membrane integrity, and impaired axonal transport. Further study of the mechanisms of A beta mediated neurodegeneration will considerably improve our understanding of AD, and may provide fundamental insights needed for the development of more effective therapeutic strategies.  相似文献   

19.
Amyloid-beta (Abeta) protofibrils are known intermediates of the in vitro Abeta aggregation process and the protofibrillogenic Arctic mutation (APPE693G) provides clinical support for a pathogenic role of Abeta protofibrils in Alzheimer's disease (AD). To verify their in vivo relevance and to establish a quantitative Abeta protofibril immunoassay, Abeta conformation dependent monoclonal antibodies were generated. One of these antibodies, mAb158 (IgG2a), was used in a sandwich ELISA to specifically detect picomolar concentrations of Abeta protofibrils without interference from Abeta monomers or the amyloid precursor protein (APP). The specificity and biological significance of this ELISA was demonstrated using cell cultures and transgenic mouse models expressing human APP containing the Swedish mutation (APPKN670/671ML), or the Swedish and Arctic mutation in combination. The mAb158 sandwich ELISA analysis revealed presence of Abeta protofibrils in both cell and animal models, proving that Abeta protofibrils are formed not only in vitro, but also in vivo. Furthermore, elevated Abeta protofibril levels in the Arctic-Swedish samples emphasize the usefulness of the Arctic mutation as a model of enhanced protofibril formation. This assay provides a novel tool for investigating the role of Abeta protofibrils in AD and has the potential of becoming an important diagnostic assay.  相似文献   

20.
Sporadic-inclusion body myositis (s-IBM) is the most common skeletal muscle disorder to afflict the elderly, and is clinically characterized by skeletal muscle degeneration. Its progressive course leads to muscle weakness and wasting, resulting in severe disability. The exact pathogenesis of this disease is unknown and no effective treatment has yet been found. An intriguing aspect of s-IBM is that it shares several molecular abnormalities with Alzheimer's disease, including the accumulation of amyloid-β-peptide (Aβ). Both disorders affect homeostasis of the cytotoxic fragment Aβ(1-42) during aging, but they are clinically distinct diseases. The use of animals that mimic some characteristics of a disease has become important in the search to elucidate the molecular mechanisms underlying the pathogenesis. With the aim of analyzing Aβ-induced pathology and evaluating the consequences of modulating Aβ aggregation, we used Caenorhabditis elegans that express the Aβ human peptide in muscle cells as a model of s-IBM. Previous studies indicate that copper treatment increases the number and size of amyloid deposits in muscle cells, and is able to ameliorate the motility impairments in Aβ transgenic C. elegans. Our recent studies show that neuromuscular synaptic transmission is defective in animals that express the Aβ-peptide and suggest a specific defect at the nicotine acetylcholine receptors level. Biochemical analyses show that copper treatment increases the number of amyloid deposits but decreases Aβ-oligomers. Copper treatment improves motility, synaptic structure and function. Our results suggest that Aβ-oligomers are the toxic Aβ species that trigger neuromuscular junction dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号