首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mineral nutrient requirements of Pinus taeda cells were explored using quantitative cell culture growth measurements. An appraisal was thereby made of the critical features of a novel and successful medium which was developed specifically for this gymnosperm using chemical composition data for developing seeds, and characterized by generally high concentration of all micronutrients, high magnesium, and low calcium. The high magnesium concentration was found not to be detrimental and possibly beneficial whereas the calcium level bordered on a deficiency threshold. Within the microelements high iodide was found to be essential, as was a higher borate level than is present in media developed for angiosperms. High zinc concentrations were also beneficial, with normal levels permitting slower but nevertheless healthy growth. An improved medium was thereby formulated which was stress-free and exhibited broader genotype specificity. This new formulation has proved very successful in maintaining long-term growth of highly uniform and apparently meristematic suspension cultures of Pinus radiata.  相似文献   

2.
从离体再生途径、影响因素、遗传转化、存在问题等方面对火炬松组织培养研究和应用进展作了介绍和讨论,以期对同类树种相关研究的开展提供参考。  相似文献   

3.
The relative importance of stomatal and nonstomatal limitations to net photosynthesis (A) and possible signals responsible for stomatal limitations were investigated in unhardened Pinus taeda seedlings at low soil temperatures. After 2 days at soil temperatures between 13 and 7°C, A was reduced by 20 to 50%, respectively. The reduction in A at these moderate root-chilling conditions appeared to be the result of stomatal limitations, based on the decrease in intercellular CO2 concentrations (ci). This conclusion was supported by A versus ci analysis and measurements of O2 evolution at saturating CO2, which suggested increases in stomatal but not biochemical limitations at these soil temperatures. Nonuniform stomatal apertures, which were demonstrated with abscisic acid, were not apparent 2 days after root chilling, and results of our A versus ci analysis appear valid. Bulk shoot water potential (ψ) declined as soil temperature dropped below 16°C. When half the root system of seedlings was chilled, shoot ψ and gas-exchange rates did not decline. Thus, nonhydraulic root-shoot signals were not implicated in stomatal limitations. The initial decrease in leaf conductance to water vapor after root chilling appeared to precede any detectable decrease in bulk fascicle ψ, but may be in response to a decrease in turgor of epidermal cells. These reductions in leaf conductance to water vapor, which occurred within 30 minutes of root chilling, could be delayed and temporarily reversed by reducing the leaf-to-air vapor-pressure deficit, suggesting that hydraulic signals may be involved in initiating stomatal closure. By independently manipulating the leaf-to-air vapor-pressure deficit of individual fascicles, we could induce uptake of water vapor through stomata, suggesting that nonsaturated conditions occur in the intercellular airspaces. There was an anomaly in our results on seedlings maintained for 2 days at soil temperatures below 7°C. Lower A appeared primarily the result of nonstomatal limitations, based on large increases in calculated ci and A versus ci analysis. In contrast, measurements of O2 evolution at saturating CO2 concentrations implied nonstomatal limitations per se did not increase at these temperatures. One explanation for this paradox is that calculations of ci are unreliable at very low gas-exchange rates because of inadequate measurement resolution, and limitations of A are predominantly stomatal. An alternative interpretation is that increases in ci are real and the results from O2-evolution measurements are in error. The high CO2 concentration used in O2-evolution measurements (15%) may have overcome nonstomatal limitations by enzymes that were down-regulated by a feedback mechanism. In this scenario, carbohydrate feedback limitations may be responsible for nonstomatal reductions in A after 2 days at soil temperatures below 7°C.  相似文献   

4.
Catalase (EC 1.11.1.6) was purified to near homogeneity from isolated megagametophytes of germinated loblolly pine (Pinus taeda L.) seeds, and monospecific antibodies were elicited in rabbits. Following a procedure that involved acetone extraction, (NH4)2SO4 fractionation, and four chromatographic steps (i.e. DE-52 cellulose, Superdex-200, hydroxylapatite, and phenyl-Sepharose CL-4B), catalase was purified about 140-fold to a final specific activity of 2215 mmol min-1 mg-1 of protein. Cotton isocitrate lyase antibodies were used, and protein immunoblots revealed that the resolution on hydroxylapatite and phenyl-Sepharose allowed for the complete separation of catalase from contaminating isocitrate lyase. The molecular masses of the native enzyme and its subunit are 235 and 59 kD, respectively, indicating that the pine holoenzyme is a homotetramer. Loblolly pine catalase exists as multiple isoforms. When megagametophytes taken 7 d after imbibition at 30[deg]C were extracted, subjected to nondenaturing isoelectric focusing, and stained for catalase activity, at least four catalase isoforms were observed, including one dominant form with an isoelectric point of 6.87. Purified pine catalase is not a glycoprotein and has a ratio of absorbance at 208 nm to absorbance at 405 nm of 1.5. When probed with loblolly pine catalase antibodies, protein blots of cell-free extracts from megagametophytes of mature, stratified, and germinated loblolly pine seeds, the megagametophyte glyoxysomal fraction, and purified loblolly pine catalase all revealed one immunoreactive 59-kD polypeptide. This indicates that no detectable change in the enzyme's monomeric molecular mass occurs during seed stratification and germination, early seedling growth, and purification.  相似文献   

5.
6.
7.
A primary goal of evolutionary genetics is to discover and explain the genetic basis of fitness-related traits and how this genetic basis evolves within natural populations. Unprecedented technological advances have fueled the discovery of genetic variants associated with ecologically relevant phenotypes in many different life forms, as well as the ability to scan genomes for deviations from selectively neutral models of evolution. Theoretically, the degree of overlap between lists of genomic regions identified using each approach is related to the genetic architecture of fitness-related traits and the strength and type of natural selection molding variation at these traits within natural populations. Here we address for the first time in a plant the degree of overlap between these lists, using patterns of nucleotide diversity and divergence for >7000 unique amplicons described from the extensive expressed sequence tag libraries generated for loblolly pine (Pinus taeda L.) in combination with the >1000 published genetic associations. We show that loci associated with phenotypic traits are distinct with regard to neutral expectations. Phenotypes measured at the whole plant level (e.g., disease resistance) exhibit an approximately twofold increase in the proportion of adaptive nonsynonymous substitutions over the genome-wide average. As expected for polygenic traits, these signals were apparent only when loci were considered at the level of functional sets. The ramifications of this result are discussed in light of the continued efforts to dissect the genetic basis of quantitative traits.  相似文献   

8.
The largest genus in the conifer family Pinaceae is Pinus, with over 100 species. The size and complexity of their genomes (∼20–40 Gb, 2n = 24) have delayed the arrival of a well-annotated reference sequence. In this study, we present the annotation of the first whole-genome shotgun assembly of loblolly pine (Pinus taeda L.), which comprises 20.1 Gb of sequence. The MAKER-P annotation pipeline combined evidence-based alignments and ab initio predictions to generate 50,172 gene models, of which 15,653 are classified as high confidence. Clustering these gene models with 13 other plant species resulted in 20,646 gene families, of which 1554 are predicted to be unique to conifers. Among the conifer gene families, 159 are composed exclusively of loblolly pine members. The gene models for loblolly pine have the highest median and mean intron lengths of 24 fully sequenced plant genomes. Conifer genomes are full of repetitive DNA, with the most significant contributions from long-terminal-repeat retrotransposons. In depth analysis of the tandem and interspersed repetitive content yielded a combined estimate of 82%.  相似文献   

9.
Genetic resistance to disease incited by necrotrophic pathogens is not well understood in plants. Whereas resistance is often quantitative, there is limited information on the genes that underpin quantitative variation in disease resistance. We used a population genomic approach to identify genes in loblolly pine (Pinus taeda) that are associated with resistance to pitch canker, a disease incited by the necrotrophic pathogen Fusarium circinatum. A set of 498 largely unrelated, clonally propagated genotypes were inoculated with F. circinatum microconidia and lesion length, a measure of disease resistance, data were collected 4, 8, and 12 weeks after inoculation. Best linear unbiased prediction was used to adjust for imbalance in number of observations and to identify highly susceptible and highly resistant genotypes (“tails”). The tails were reinoculated to validate the results of the full population screen. Significant associations were detected in 10 single nucleotide polymorphisms (SNPs) (out of 3938 tested). As hypothesized for genes involved in quantitative resistance, the 10 SNPs had small effects and proposed roles in basal resistance, direct defense, and signal transduction. We also discovered associated genes with unknown function, which would have remained undetected in a candidate gene approach constrained by annotation for disease resistance or stress response.GENETIC interactions between host and pathogen populations result in abundant natural variation in the genes involved in host disease resistance. Most of the studies leading to identification and cloning of disease resistance genes are focused on major gene disease resistance (Johal and Briggs 1992; Dangl and Jones 2001; Jones and Dangl 2006). In cases where resistance is associated with single genes, genetic effects are large in magnitude and detection is straightforward. In contrast, quantitative disease resistance is typically conditioned by many genes with relatively small effects. Quantitative resistance is generally considered to be more durable but also more difficult to investigate relative to major gene resistance, since the effects of individual genes are small and phenotyping experiments must be performed with high levels of precision. As a consequence, the genes and mechanisms of quantitative disease resistance are poorly understood, in part due to the smaller effect of individual genes on the resistance phenotype. Interactions between plants and necrotrophic pathogens often exhibit quantitative resistance (Balint-Kurti et al. 2008; Poland et al. 2009).Pitch canker disease of loblolly pine and other pine species is incited by the necrotrophic pathogen Fusarium circinatum and is manifest as resinous lesions in stems and branches (Dwinell et al. 1985; Enebak and Stanosz 2003; Carey et al. 2005; Sakamoto and Gordon 2006). There is evidence for heritable resistance to pitch canker in loblolly pine (Kayihan et al. 2005) as well as other pine species (Hodge and Dvorak 2000, 2007). In this article we report the first population-wide phenotypic screen of a clonally propagated population of loblolly pine for association testing (Eckert et al. 2010). Clonal propagation of this population enabled precise phenotyping, which was required to obtain the resolution needed to identify candidates for quantitative disease resistance loci.Pine species in general exhibit high levels of nucleotide variation and low linkage disequilibrium (LD) (Brown et al. 2004). An association genetic approach relies on the premise that historical, unrecorded recombination events over many generations have reduced LD between markers and quantitative trait loci such that only those marker-trait pairs that are tightly linked remain detectable; this may enable “fine mapping” to identify genes underlying quantitative variation (Flint-Garcia et al. 2003; Neale and Savolainen 2004). Association-based approaches have been used to identify candidate genes underlying traits in plants (Zhao et al. 2007; Stich et al. 2008; Wang et al. 2008; Yahiaoui et al. 2008; Inostroza et al. 2009; Stracke et al. 2009), based in part on applications in humans (D''alfonso et al. 2002; McGuffin et al. 2003; Easton et al. 2007; Lee et al. 2007), livestock (Martinez et al. 2006; Charlier et al. 2008; Goddard and Hayes 2009), and Drosophila (Kennington et al. 2007; Norry et al. 2007; Jiang et al. 2009). Recent association studies in tree species have evaluated single candidate genes or a modest number of candidate genes for association (Thumma et al. 2005; Gonzalez-Martinez et al. 2007, 2008; Ingvarsson et al. 2008; Eckert et al. 2009a). Association mapping has been used to identify disease resistance genes in several crop species including sugarcane, maize, barley, and potato (Flint-Garcia et al. 2005; Wei et al. 2006; Yu and Buckler 2006; Malosetti et al. 2007; Stich et al. 2008; Inostroza et al. 2009; Murray et al. 2009). The population analyzed in this study was genotyped at 3938 SNP loci that were selected without regard to the functional annotation of ESTs from which they were derived. Thus, we reasoned that the status of any particular marker as a candidate disease resistance gene would be determined by association testing, as opposed to previous studies in which markers were typically evaluated on the basis of their presumed roles in disease resistance in other species.Several different, but not mutually exclusive hypotheses have been proposed regarding the genetic origins of quantitative resistance (Poland et al. 2009), providing a useful framework for understanding evolution of resistance to necrotrophic pathogens. These six hypotheses proposed by Poland et al. (2009) predict that quantitative disease resistance is conditioned by: (1) genes regulating morphological and developmental phenotypes; (2) mutations in genes involved in basal defense causing small, incremental levels of resistance; (3) components of chemical warfare, through the action of genes producing antibiotic or antifungal compounds; (4) genes involved in defense signal transduction pathways; (5) weak forms of defeated R genes; and/or (6) genes not yet known to be involved in disease resistance.In this study, our main objective was to evaluate the genetic architecture of pitch canker disease resistance: to quantify the extent to which genes contribute to variation in the disease phenotype, to evaluate the hypothesis that disease resistance was quantitative, and to identify candidate genes for resistance as well as quantify their magnitude of effect. In the process of identifying candidate genes for resistance we were also able to evaluate support for hypotheses recently put forth by Poland et al. (2009) regarding the biological roles and origins of quantitative resistance genes.  相似文献   

10.
11.
Cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1. 195) has been purified to homogeneity from differentiating xylem tissue and developing seeds of loblolly pine (Pinus taeda L.). The enzyme is a dimer with a native molecular weight of 82,000 and a subunit molecular weight of 44,000, and is the only form of CAD involved in lignification in differentiating xylem. High levels of loblolly pine CAD enzyme were found in nonlignifying seed tissue. Characterization of the enzyme from both seeds and xylem demonstrated that the enzyme is the same in both tissues. The enzyme has a high affinity for coniferaldehyde (Km = 1.7 micromolar) compared with sinapaldehyde (Km in excess of 100 micromolar). Kinetic data strongly suggest that coniferin is a noncompetitive inhibitor of CAD enzyme activity. Protein sequences were obtained for the N-terminus (28 amino acids) and for two other peptides. Degenerate oligonucleotide primers based on the protein sequences were used to amplify by polymerase chain reaction a 1050 base pair DNA fragment from xylem cDNA. Nucleotide sequence from the cloned DNA fragment coded for the N-terminal protein sequence and an internal peptide of CAD. The N-terminal protein sequence has little similarity with the λCAD4 clone isolated from bean (MH Walter, J Grima-Pettenati, C Grand, AM Boudet, CJ Lamb [1988] Proc Natl Acad Sci USA 86:5546-5550), which has homology with malic enzyme.  相似文献   

12.
This paper reports a method for extracting the antioxidant enzyme superoxide dismutase (SOD) from the needles of red spruce (Picea rubens Sarg.), loblolly pine (Pinus taeda L.), and scotch pine (Pinus sylvestris L.) with high efficiency and free from interfering compounds. The extraction employs phosphate buffer with polyvinylpolypyrrolidone and Triton X-100 followed by dialysis overnight. The isozymes of SOD in each species were separated electrophoretically and tested for their sensitivity to KCN and H2O2. An isozyme resistant to these inhibitors was found in the spruce but not the pine needles. The isozymes from the spruce needles were examined for individual responses to aging and H2O2 inhibition. Four of the five CuZn isozymes in spruce were found to have increased significantly but equally by October of their first year and two of those four isozymes were found to be more sensitive to H2O2. The response of the SOD isozymes in loblolly pine seedlings to O3 was also examined and the isozymes were found to be induced equally. Because the SOD activity in the young pine needles was too low to electrophorese, the SOD activity from the pines in the O3 experiment had to be partially purified using CHCl3 and ethanol, then concentrated.  相似文献   

13.
The ultrastructure of liquid suspension cultures of Pinus elliottiiwas studied, noting characteristics of dividing and senescentcells. The cultures were treated with 0.01, 0.1, 1.0, and 10.0mg l–1 paraquat, an herbicide which stimulates oleoresinsynthesis and resinosis in the xylem of treated pine trees.The ultrastructural effects of the toxin were studied at eachparaquat concentration over a period of 24 days. Destructiveeffects of paraquat on vacuolar and organelle membranes andcytoplasm are observable in one day in cells supplied with 10.0mg l–1. At 1.0 mg l–1 vacuolar membranes and cellorganelles are present at seven days, but the cultures continuallydecline until at 14 days they are dead. At concentrations of0.1 and 0.01 mg l–1 the effects of the toxin on fine structurecannot be separated from normal cell senescence. At low concentrationsof paraquat the amyloplastids accumulate large amounts of starch.No accumulation of oleoresin was detected. The ultrastructuralobservations are correlated with physiological studies in suspensionculture and in living trees. Pinus elliottii Engelm., slash pine, suspension culture, oleoresin, amyloplastids, membrane permeability, autolysis, vacuoles, senescence, tannin, paraquat  相似文献   

14.
15.
A chlorophyllous, photomixotrophic cell suspension culture oftobacco (Nicotiana tabacum L.) was established using mediumcontaining 30 g/liter of sucrose and 1.5 µM 2,4-D. The2,4-D-sustained photomixotrophic line was able to show rapidregreening in the light after bleaching in the dark and characterizedwith a much slower and longer growth cycle than a heterotrophicline derived from the same original callus (cell doubling timeof 100 h vs. 40 h and duration of logarithmic phase of 17 daysvs. 7 days). The photomixotrophic line took up sucrose morerapidly than the heterotrophic line and accumulated starch duringthe early logarithmic phase when it showed a maximum photosyntheticcapacity on a chlorophyll basis (6.3µmol O2/min/mg Chl).Chlorophyll content and photosynthetic capacity on a per cellbasis and on a cell fresh weight basis, on the other hand, decreasedduring this phase and reincreased later to reach maximum levels(310 µg Chl/g fr wt; 1.4 µmol O2/min/g fr wt) whenthe line exhibited the highest activities of dark respiration(1.0 µmol; O2/min/g fr wt) and cell division (mitoticindex of 3.0%). These characteristics of the photomixotrophicline were lost if it was grown in the dark to become non-chlorophyllous.Although net O2 evolution could not be detected in the photomixotrophicline throughout the growth cycle when assayed under suboptimumlight intensity, reaccumulation of starch and a marked increasein cell fresh weight upon addition of minerals, vitamins and2,4-D without sucrose at the late logarithmic phase indicatedthe development of photosynthetic activity under the cultureconditions. 1The investigations reported were included in the thesis submittedto the Graduate School, Faculty of Agriculture, Kobe University,in partial fulfillment of the requirement for M. Agr. degree. (Received May 30, 1988; Accepted October 5, 1988)  相似文献   

16.
土壤农杆菌转化的长春花冠瘿细胞培养   总被引:17,自引:0,他引:17  
以土壤农杆菌C58诱导的长春花冠瘿组织与从长春花茎、叶外植体诱导的愈伤组织进行比较,发现冠瘿组织在生长、总吲哚生物碱含量及药用成份阿吗碱含量等方面都优于愈伤组织。测定了光照、温度、蔗糖浓度及外加L-色氨酸前体等,对长春花冠瘿细胞的生长、总生物碱及阿吗碱含量的影响,为长春花冠瘿细胞培养生产吲哚生物碱的实际应用研究提供理论依据。  相似文献   

17.
莫迟  张海啸  张磊  侯丹  张含国 《植物研究》2017,37(5):700-708
为了解红松杂交子代种实性状变异规律,选育优良杂交组合,本文对44个不同杂交组合的红松种子的12个性状进行变异分析、相关分析、方差分析和主成分选择。结果表明:红松种实形态性状中种长变异系数最低,为10.65%,种子重变异系数最大,为36.35%。主要营养成分中油脂变异系数最低,为8.07%,多糖变异系数最高,为30.89%。相关分析表明种仁重、百粒重与种长呈正相关关系,通过选择种长较大的家系来提高种仁重与百粒重指标。44个不同杂交组合红松种实的形态性状与营养性状间均存在显著差异。通过主成分分析,选出3个综合性状优良的杂交组合,出仁率、种子重、百粒重、种仁重、油脂含量的现实增益分别达到7.52%、27.89%、13.14%、9.85%、10.08%,其中011×153出仁率、种子重、种仁重杂种优势最大,分别达到34.59%、95.75%和43.23%,156×161的百粒重与油脂含量杂交优势最大,为24.58%和24.87%。对具有相同亲本的杂交组合各性状进行杂种优势分析发现,以011为母本的杂交组合杂种优势较大,以174为父本的杂交组合杂种优势较大。红松不同杂交组合种实形态性状与营养成分存在丰富变异可供选择利用,为红松坚果林选育提供了理论与物质基础。  相似文献   

18.
胀果甘草悬浮培养细胞合成甘草总黄酮   总被引:1,自引:0,他引:1  
比较了胀果甘草(Glycyrrhiza inflata)悬浮细胞在逐级放大摇瓶中的生长、黄酮产量以及营养消耗过程,以便了解其放大规律。结果表明,在250和500mL摇瓶中,细胞的最大生物量、黄酮产量以及最大比生长速率没有显著性差异,但是在1L的摇瓶中,这三种参数都显著地降低,分别比250mL摇瓶中降低了27%,30%和27%。在逐级放大的摇瓶中,氮、磷、铵浓度都随着培养时间延长而逐渐降低,尽管在1L的摇瓶中磷消耗得最慢,但三种摇瓶中磷在细胞生长对数期基本都被消耗尽了。此外,硝态氮在第18天时基本被消耗完,而铵态氮在细胞收获时仍能维持在100mg/L。因此在反应器中培养时,主要的培养条件还需进一步优化。  相似文献   

19.
婺源绿茶嫩叶用MS培养基(加IBA 2mg/L,6-BA 4mg/L)进行茶叶愈伤组织悬浮培养,研究了不同培养条件对茶叶细胞悬浮培养过程中细胞生长与茶氨酸合成的影响。结果显示,NH4^+/NO3^- 1.0/60.0mmol/L、K^+ 100.0mmol/L、Mg^2+ 3.0mmol/L、H2PO4^- 3.0mmol/L、蔗糖30.0g/L、水解酪蛋白2.0g/L条件下,茶叶细胞生长量和茶氨酸积累量均达到最高值;提高培养基中蔗糖和水解酪蛋白浓度可使细胞对数生长期和稳定期得到延长,从而有利于茶氮酸积累;H2PO4^-浓度主要影响细胞生长速率和茶氨酸积累速率的同步性,低H2PO4^-浓度环境中茶氨酸积累速率峰值滞后于细胞增长速率峰值,高H2PO4^-浓度环境中早于细胞生长速率峰值出现时间;K^+和Mg^2+对细胞生长的影响不明显,但影响细胞茶氨酸合成酶活性,维持适量的K^+和Mg^2+有利于茶氨酸积累。添加盐酸乙胺可大幅度提高茶氨酸积累量,并且先加入一定量盐酸乙胺再每天进行少量补充,茶氨酸合成量比一次性加入的效果要好。茶叶细胞生长和茶氨酸积累高峰期在整个培养过程的第19~22天出现,从生产效率考虑,培养周期以19~22天为宜。  相似文献   

20.
婺源绿茶嫩叶用MS 培养基( 加IBA 2 mgPL, 6-BA 4 mgPL) 进行茶叶愈伤组织悬浮培养, 研究了不同培养条件对茶叶细胞悬浮培养过程中细胞生长与茶氨酸合成的影响。结果显示, NH4+PNO3- 110P6010 mmolPL、K+ 10010 mmolPL、Mg2+ 310mmolPL、H2PO4- 310 mmolPL、蔗糖3010 gPL、水解酪蛋白210 gPL 条件下, 茶叶细胞生长量和茶氨酸积累量均达到最高值; 提高培养基中蔗糖和水解酪蛋白浓度可使细胞对数生长期和稳定期得到延长, 从而有利于茶氨酸积累; H2 PO4- 浓度主要影响细胞生长速率和茶氨酸积累速率的同步性, 低H2 PO4- 浓度环境中茶氨酸积累速率峰值滞后于细胞增长速率峰值, 高H2PO4- 浓度环境中早于细胞生长速率峰值出现时间; K+ 和Mg2+ 对细胞生长的影响不明显, 但影响细胞茶氨酸合成酶活性, 维持适量的K+和Mg2+ 有利于茶氨酸积累。添加盐酸乙胺可大幅度提高茶氨酸积累量, 并且先加入一定量盐酸乙胺再每天进行少量补充, 茶氨酸合成量比一次性加入的效果要好。茶叶细胞生长和茶氨酸积累高峰期在整个培养过程的第19~ 22 天出现, 从生产效率考虑, 培养周期以19~ 22 天为宜。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号