首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Selective modification of proteins by ubiquitination is directed by diverse families of ubiquitin-protein ligases (or E3s). A large collection of E3s use Cullins (CULs) as scaffolds to form multisubunit E3 complexes in which the CUL binds a target recognition subcomplex and the RBX1 docking protein, which delivers the activated ubiquitin moiety. Arabidopsis and rice contain a large collection of CUL isoforms, indicating that multiple CUL-based E3s exist in plants. Here we show that Arabidopsis CUL3a and CUL3b associate with RBX1 and members of the broad complex/tramtrack/bric-a-brac (BTB) protein family to form BTB E3s. Eighty genes encoding BTB domain-containing proteins were identified in the Arabidopsis genome, indicating that a diverse array of BTB E3s is possible. In addition to the BTB domain, the encoded proteins also contain various other interaction motifs that likely serve as target recognition elements. DNA microarray analyses show that BTB genes are expressed widely in the plant and that tissue-specific and isoform-specific patterns exist. Arabidopsis defective in both CUL3a and CUL3b are embryo-lethal, indicating that BTB E3s are essential for plant development.  相似文献   

2.
The ubiquitin proteasome pathway in plants has been shown to be important for many developmental processes. The E3 ubiquitin-protein ligases facilitate transfer of the ubiquitin moiety to substrate proteins. Many E3 ligases contain cullin proteins as core subunits. Here, we show that Arabidopsis (Arabidopsis thaliana) AtCUL3 proteins interact in yeast two-hybrid and in vitro pull-down assays with proteins containing a BTB/POZ (broad complex, tramtrack, bric-a-brac/pox virus and zinc finger) motif. By changing specific amino acid residues within the proteins, critical parts of the cullin and BTB/POZ proteins are defined that are required for these kinds of interactions. In addition, we show that AtCUL3 proteins assemble with the RING-finger protein AtRBX1 and are targets for the RUB-conjugation pathway. The analysis of AtCUL3a and AtCUL3b expression as well as several BTB/POZ-MATH genes indicates that these genes are expressed in all parts of the plant. The results presented here provide strong evidence that AtCUL3a and AtCUL3b can assemble in Arabidopsis with BTB/POZ-MATH and AtRBX1 proteins to form functional E3 ligases.  相似文献   

3.
Cullin-based E3 ubiquitin ligases play important roles in the regulation of diverse developmental processes and environmental responses in eukaryotic organisms. Recently, it was shown in Schizosaccharomyces pombe, Caenorhabditis elegans, and mammals that Cullin3 (CUL3) directly associates with RBX1 and BTB domain proteins in vivo to form a new family of E3 ligases, with the BTB protein subunit functioning in substrate recognition. Here, we demonstrate that Arabidopsis thaliana has two redundant CUL3 (AtCUL3) genes that are essential for embryo development. Besides supporting anticipated specific AtCUL3 interactions with the RING protein AtRBX1 and representative Arabidopsis proteins containing a BTB domain in vitro, we show that AtCUL3 cofractionates and specifically associates with AtRBX1 and a representative BTB protein in vivo. Similar to the AtCUL1 subunit of the SKP1-CUL1-F-box protein-type E3 ligases, the AtCUL3 subunit of the BTB-containing E3 ligase complexes is subjected to modification and possible regulation by the ubiquitin-like protein Related to Ubiquitin in vivo. Together with the presence of large numbers of BTB proteins with diverse structural features and expression patterns, our data suggest that Arabidopsis has conserved AtCUL3-RBX1-BTB protein E3 ubiquitin ligases to target diverse protein substrates for degradation by the ubiquitin/proteasome pathway.  相似文献   

4.
5.
Li L  Cheng H  Gai J  Yu D 《Planta》2007,226(1):109-123
In plants, cytochrome P450 is a group of monooxygenases existing as a gene superfamily and plays important roles in metabolizing physiologically important compounds. However, to date only a limited number of P450s have been identified and characterized in legumes. In this study, data mining methods were used, and 151 putative P450 genes in the model legume Medicago truncatula were identified, including 135 novel sequences. These genes were classified into 9 clans and 44 families by sequence similarity, and among those 4 new clans and 21 new families not reported previously in legumes. By comparison of these genes with P450 genes in Arabidopsis and rice, it was found that most of the known P450 families in dicot species exist in M. truncatula. The representative protein sequences of putative P450s were aligned, and the secondary elements were assigned based on the known structure P450BM3. Putative substrate recognition sites (SRSs) and substrate binding sites were also identified in these sequences. In addition, the ESTs-derived expression profiles (digital Northern) of the putative P450 genes were analyzed, which was confirmed by semi-quantitative RT-PCR analyses of several selected P450 genes. These results will provide a base for catalogue information on P450 genes in M. truncatula and for further functional analysis of P450 superfamily genes in legumes.  相似文献   

6.
Rice, a monocot model crop, contains at least 48 putative E2 ubiquitin (Ub)-conjugating enzymes. Based on homology comparisons with 40 Arabidopsis E2 proteins and 35 human E2s, 48 rice E2s were classified into 15 different groups. Yeast two-hybrid analyses using the U-box-domain regions of armadillo (ARM)-U-box E3 Ub-ligases and the Ub-conjugating (UBC) domains of E2s showed that, among 40 rice E2s, 11 E2s accounted for 70% of the interactions with 17 ARM-U-box E3s. Thus, a single E2 could interact with multiple ARM-U-box E3s, suggesting the presence of E2 hubs for E2–E3 interactions in rice. Rice SPL11 ARM-U-box E3 displayed distinct self-ubiquitination patterns, including poly-ubiquitination, mono-ubiquitination, or no ubiquitination, depending on different E2 partners. This suggests that the mode of ubiquitination of SPL11 E3 is critically influenced by individual E2s.  相似文献   

7.
We have searched the Arabidopsis and rice (Oryza sativa) genomes for homologs of LRX1, an Arabidopsis gene encoding a novel type of cell wall protein containing a leucine-rich repeat (LRR) and an extensin domain. Eleven and eight LRX (LRR/EXTENSIN) genes have been identified in these two plant species, respectively. The LRX gene family encodes proteins characterized by a short N-terminal domain, a domain with 10 LRRs, a cysteine-rich motif, and a variable C-terminal extensin-like domain. Phylogenetic analysis performed on the conserved domains indicates the existence of two major clades of LRX proteins that arose before the eudicot/monocot divergence and then diversified independently in each lineage. In Arabidopsis, gene expression studies by northern hybridization and promoter::uidA fusions showed that the two phylogenetic clades represent a specialization into "reproductive" and "vegetative" LRXs. The four Arabidopsis genes of the "reproductive" clade are specifically expressed in pollen, whereas the seven "vegetative" genes are predominantly expressed in various sporophytic tissues. This separation into two expression classes is also supported by previous studies on maize (Zea mays) and tomato (Lycopersicon esculentum) LRX homologs and by information on available rice ESTs. The strong conservation of the amino acids responsible for the putative recognition specificity of the LRR domain throughout the family suggests that the LRX proteins interact with similar ligands.  相似文献   

8.
The multiprotein von Hippel-Lindau (VHL) tumor suppressor and Skp1-Cul1-F-box protein (SCF) complexes belong to families of structurally related E3 ubiquitin ligases. In the VHL ubiquitin ligase, the VHL protein serves as the substrate recognition subunit, which is linked by the adaptor protein Elongin C to a heterodimeric Cul2/Rbx1 module that activates ubiquitylation of target proteins by the E2 ubiquitin-conjugating enzyme Ubc5. In SCF ubiquitin ligases, F-box proteins serve as substrate recognition subunits, which are linked by the Elongin C-like adaptor protein Skp1 to a Cul1/Rbx1 module that activates ubiquitylation of target proteins, in most cases by the E2 Cdc34. In this report, we investigate the functions of the Elongin C and Skp1 proteins in reconstitution of VHL and SCF ubiquitin ligases. We identify Elongin C and Skp1 structural elements responsible for selective interaction with their cognate Cullin/Rbx1 modules. In addition, using altered specificity Elongin C and F-box protein mutants, we investigate models for the mechanism underlying E2 selection by VHL and SCF ubiquitin ligases. Our findings provide evidence that E2 selection by VHL and SCF ubiquitin ligases is determined not solely by the Cullin/Rbx1 module, the target protein, or the integrity of the substrate recognition subunit but by yet to be elucidated features of these macromolecular complexes.  相似文献   

9.
Ethylene biosynthesis is directed by a family of 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACS) that convert S -adenosyl- l -methionine to the immediate precursor ACC. Members of the type-2 ACS subfamily are strongly regulated by proteolysis with various signals stabilizing the proteins to increase ethylene production. In Arabidopsis, this turnover is mediated by the ubiquitin/26 S proteasome system, using a broad complex/tramtrack/bric-a-brac (BTB) E3 assembled with the ETHYLENE OVERPRODUCER 1 (ETO1) BTB protein for target recognition. Here, we show that two Arabidopsis BTB proteins closely related to ETO1, designated ETO1-like (EOL1) and EOL2, also negatively regulate ethylene synthesis via their ability to target ACSs for breakdown. Like ETO1, EOL1 interacts with type-2 ACSs (ACS4, ACS5 and ACS9), but not with type-1 or type-3 ACSs, or with type-2 ACS mutants that stabilize the corresponding proteins in planta . Whereas single and double mutants affecting EOL1 and EOL2 do not show an ethylene-related phenotype, they exaggerate the effects caused by inactivation of ETO1 , and further increase ethylene production and the accumulation of ACS5 in eto1 plants. The triple eto1 eol1 eol2 mutant phenotype can be effectively rescued by the ACS inhibitor aminoethoxyvinylglycine, and by silver, which antagonizes ethylene perception. Together with hypocotyl growth assays showing that the sensitivity and response kinetics to ethylene are normal, it appears that ethylene synthesis, but not signaling, is compromised in the triple mutant. Collectively, the data indicate that the Arabidopsis BTB E3s assembled with ETO1, EOL1 and EOL2 work together to negatively regulate ethylene synthesis by directing the degradation of type-2 ACS proteins.  相似文献   

10.
Cullin proteins, which belong to multigenic families in all eukaryotes, associate with other proteins to form ubiquitin protein ligases (E3s) that target substrates for proteolysis by the 26S proteasome. Here, we present the molecular and genetic characterization of a plant Cullin3. In contrast to fungi and animals, the genome of the model plant Arabidopsis thaliana contains two related CUL3 genes, called CUL3A and CUL3B. We found that CUL3A is ubiquitously expressed in plants and is able to interact with the ring-finger protein RBX1. A genomic search revealed the existence of at least 76 BTB-domain proteins in Arabidopsis belonging to 11 major families. Yeast two-hybrid experiments indicate that representative members of certain families are able to physically interact with both CUL3A and CUL3B, suggesting that Arabidopsis CUL3 forms E3 protein complexes with certain BTB domain proteins. In order to determine the function of CUL3A, we used a reverse genetic approach. The cul3a null mutant flowers slightly later than the control plants. Furthermore, this mutant exhibits a reduced sensitivity of the inhibition of hypocotyl growth in far-red light and miss-expresses COP1. The viability of the mutant plants suggests functional redundancy between the two CUL3 genes in Arabidopsis.  相似文献   

11.
The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily (TC #2.A.66) consists of four previously recognized families: (a) the ubiquitous multi-drug and toxin extrusion (MATE) family; (b) the prokaryotic polysaccharide transporter (PST) family; (c) the eukaryotic oligosaccharidyl-lipid flippase (OLF) family and (d) the bacterial mouse virulence factor family (MVF). Of these four families, only members of the MATE family have been shown to function mechanistically as secondary carriers, and no member of the MVF family has been shown to function as a transporter. Establishment of a common origin for the MATE, PST, OLF and MVF families suggests a common mechanism of action as secondary carriers catalyzing substrate/cation antiport. Most protein members of these four families exhibit 12 putative transmembrane alpha-helical segments (TMSs), and several have been shown to have arisen by an internal gene duplication event; topological variation is observed for some members of the superfamily. The PST family is more closely related to the MATE, OLF and MVF families than any of these latter three families are related to each other. This fact leads to the suggestion that primordial proteins most closely related to the PST family were the evolutionary precursors of all members of the MOP superfamily. Here, phylogenetic trees and average hydropathy, similarity and amphipathicity plots for members of the four families are derived and provide detailed evolutionary and structural information about these proteins. We show that each family exhibits unique characteristics. For example, the MATE and PST families are characterized by numerous paralogues within a single organism (58 paralogues of the MATE family are present in Arabidopsis thaliana), while the OLF family consists exclusively of orthologues, and the MVF family consists primarily of orthologues. Only in the PST family has extensive lateral transfer of the encoding genes occurred, and in this family as well as the MVF family, topological variation is a characteristic feature. The results serve to define a large superfamily of transporters that we predict function to export substrates using a monovalent cation antiport mechanism.  相似文献   

12.
13.
14.
15.
The drug/metabolite transporter superfamily.   总被引:21,自引:0,他引:21  
Previous work defined several families of secondary active transporters, including the prokaryotic small multidrug resistance (SMR) and rhamnose transporter (RhaT) families as well as the eukaryotic organellar triose phosphate transporter (TPT) and nucleotide-sugar transporter (NST) families. We show that these families as well as several other previously unrecognized families of established or putative secondary active transporters comprise a large ubiquitous superfamily found in bacteria, archaea and eukaryotes. We have designated it the drug/metabolite transporter (DMT) superfamily (transporter classification number 2.A.7) and have shown that it consists of 14 phylogenetic families, five of which include no functionally well-characterized members. The largest family in the DMT superfamily, the drug/metabolite exporter (DME) family, consists of over 100 sequenced members, several of which have been implicated in metabolite export. Each DMT family consists of proteins with a distinctive topology: four, five, nine or 10 putative transmembrane alpha helical spanners (TMSs) per polypeptide chain. The five TMS proteins include an N-terminal TMS lacking the four TMS proteins. The full-length proteins of 10 putative TMSs apparently arose by intragenic duplication of an element encoding a primordial five-TMS polypeptide. Sequenced members of the 14 families are tabulated and phylogenetic trees for all the families are presented. Sequence and topological analyses allow structural and functional predictions.  相似文献   

16.
17.
PD-(D/E)XK nucleases, initially represented by only Type II restriction enzymes, now comprise a large and extremely diverse superfamily of proteins. They participate in many different nucleic acids transactions including DNA degradation, recombination, repair and RNA processing. Different PD-(D/E)XK families, although sharing a structurally conserved core, typically display little or no detectable sequence similarity except for the active site motifs. This makes the identification of new superfamily members using standard homology search techniques challenging. To tackle this problem, we developed a method for the detection of PD-(D/E)XK families based on the binary classification of profile-profile alignments using support vector machines (SVMs). Using a number of both superfamily-specific and general features, SVMs were trained to identify true positive alignments of PD-(D/E)XK representatives. With this method we identified several PFAM families of uncharacterized proteins as putative new members of the PD-(D/E)XK superfamily. In addition, we assigned several unclassified restriction enzymes to the PD-(D/E)XK type. Results show that the new method is able to make confident assignments even for alignments that have statistically insignificant scores. We also implemented the method as a freely accessible web server at http://www.ibt.lt/bioinformatics/software/pdexk/.  相似文献   

18.
The proteins of the MYB superfamily play central roles in developmental processes and defence responses in plants. Sixty unique wheat MYB genes that contain full-length cDNA sequences were isolated. These 60 genes were grouped into three categories, namely one R1R2R3-MYB, 22 R2R3-MYBs, and 37 MYB-related members. The sequence composition of the R2 and R3 repeats was conserved among the 22 wheat R2R3-MYB proteins. Phylogenetic comparison of the members of this superfamily among wheat, rice, and Arabidopsis revealed that the putative functions of some wheat MYB proteins were clustered into the Arabidopsis functional clades. Tissue-specific expression profiles showed that most of the wheat MYB genes were expressed in all of the tissues examined, suggesting that wheat MYB genes take part in multiple cellular processes. The expression analysis during abiotic stress identified a group of MYB genes that respond to one or more stress treatments. The overexpression of a salt-inducible gene, TaMYB32, enhanced the tolerance to salt stress in transgenic Arabidopsis. This study is the first comprehensive study of the MYB gene family in Triticeae.  相似文献   

19.
A subset of WD40 proteins that contain a DWD motif (for DDB1 binding WD40) is reported to act as substrate receptors for DDB1-CUL4-ROC1 (for Damaged DNA Binding 1-Cullin 4-Regulator of Cullins 1) based E3 ubiquitin ligases in humans. Here, we report 85 Arabidopsis thaliana and 78 rice (Oryza sativa) proteins containing the conserved 16-amino acid DWD motif. We show by yeast two-hybrid and in vivo coimmunoprecipitation that 11 Arabidopsis DWD proteins directly interact with DDB1 and thus may serve as substrate receptors for the DDB1-CUL4 machinery. We further examine whether the DWD protein PRL1 (for Pleiotropic Regulatory Locus 1) may act as part of a CUL4-based E3 ligase. PRL1 directly interacts with DDB1, and prl1 and cul4cs mutants exhibited similar phenotypes, including altered responses to a variety of stimuli. Moreover, AKIN10 (for Arabidopsis SNF1 Kinase Homolog 10) was degraded more slowly in cell extracts of prl1 and cul4cs than in cell extracts of the wild type. Thus, both genetic and biochemical analyses support the conclusion that PRL1 is the substrate receptor of a CUL4-ROC1-DDB1-PRL1 E3 ligase involved in the degradation of AKIN10. This work adds a large new family to the current portfolio of plant E3 ubiquitin ligases.  相似文献   

20.
Glutathione S-transferases (GSTs) comprise a large family of key defence enzymes against xenobiotic toxicity. Here we describe the comprehensive characterisation of this important multigene family in the model monocot species rice [Oryza sativa (L.)]. Furthermore, we investigate the molecular evolution of the family based on the analysis of (1) the patterns of within-genome duplication, and (2) the phylogenetic relationships and evolutionary divergence among rice, Arabidopsis, maize and soybean GSTs. By in-silico screening of the EST and genome divisions of the Genbank/EMBL/DDBJ database we have isolated 59 putative genes and two pseudogenes, making this the largest plant GST family characterised to date. Of these, 38 (62%) are represented by genomic and EST sequences and 23 (38%) are known only from their genomic sequences. A preliminary survey of EST collections shows a large degree of variability in gene expression between different tissues and environmental conditions, with a small number of genes (13) accounting for 80% of all ESTs. Rice GSTs are organised in four main phylogenetic classes, with 91% of all rice genes belonging to the two plant-specific classes Tau (40 genes) and Phi (16 genes). Pairwise identity scores range between 17 and 98% for proteins of the same class, and 7 and 21% for interclass comparisons. Rapid evolution by gene duplication is suggested by the discovery of two large clusters of 7 and 23 closely related genes on chromosomes 1 and 10, respectively. A comparison of the complete GST families in two monocot and two dicot species suggests a monophyletic origin for all Theta and Zeta GSTs, and no more than three common ancestors for all Phi and Tau genes.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by M.-A. Grandbastien  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号