首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Among the many mammalian secreted phospholipase A2 (sPLA2) enzymes, PLA2G3 (group III secreted phospholipase A2) is unique in that it possesses unusual N- and C-terminal domains and in that its central sPLA2 domain is homologous to bee venom PLA2 rather than to other mammalian sPLA2s. To elucidate the in vivo actions of this atypical sPLA2, we generated transgenic (Tg) mice overexpressing human PLA2G3. Despite marked increases in PLA2 activity and mature 18-kDa PLA2G3 protein in the circulation and tissues, PLA2G3 Tg mice displayed no apparent abnormality up to 9 months of age. However, alterations in plasma lipoproteins were observed in PLA2G3 Tg mice compared with control mice. In vitro incubation of low density (LDL) and high density (HDL) lipoproteins with several sPLA2s showed that phosphatidylcholine was efficiently converted to lysophosphatidylcholine by PLA2G3 as well as by PLA2G5 and PLA2G10, to a lesser extent by PLA2G2F, and only minimally by PLA2G2A and PLA2G2E. PLA2G3-modified LDL, like PLA2G5- or PLA2G10-treated LDL, facilitated the formation of foam cells from macrophages ex vivo. Accumulation of PLA2G3 was detected in the atherosclerotic lesions of humans and apoE-deficient mice. Furthermore, following an atherogenic diet, aortic atherosclerotic lesions were more severe in PLA2G3 Tg mice than in control mice on the apoE-null background, in combination with elevated plasma lysophosphatidylcholine and thromboxane A2 levels. These results collectively suggest a potential functional link between PLA2G3 and atherosclerosis, as has recently been proposed for PLA2G5 and PLA2G10.  相似文献   

3.
Cells in mature embryos and stationary phase (SP) root meristems of pea arrest in G1 and G2 of the cell cycle. The patterns of distribution of G2 nuclei in radicles and SP meristems, with and without G2 factor, were compared by using cytophotometric analysis of the relative amount of DNA/nucleus in sectioned material. Radicles and SP meristems were each divided into 5 zones and the ratio of G1 to G2 nuclei was determined for each zone. The G2 population in the radicle is restricted mainly to the embryonic cortex. A small part of the G2 population was located in the central cylinder and the root cap. In SP meristems without G2 factor, the pattern of distribution of G2 cells was similar to that in radicles. SP meristems with G2 factor contained G2 arrested nuclei in all regions of the root tip. In each region the percentage of G2 nuclei was higher than that in the same region of SP meristems without G2 factor. This indicates that the population of cells that responds to G2 factor is distributed throughout the root tip.  相似文献   

4.
目的探讨SHP-2D61G/+和SHP-2D61G/D61G激活突变对小鼠胚胎成纤维细胞(MEFs)粘附迁移及增殖能力的影响,并研究其发生的机制。方法雌雄小鼠合笼交配建立SHP-2D61G/+、SHP-2D61G/D61G激活突变的小鼠MEFs细胞,并以SV40T抗原进行永生化;细胞粘附实验检测SHP-2D61G/+、SHP-2D61G/D61G激活突变对MEFs细胞粘附能力的影响;Transwell体外迁移实验检测SHP-2D61G/+、SHP-2D61G/D61G激活突变对MEFs细胞的迁移能力的影响;MTT法检测SHP-2D61G/+、SHP-2D61G/D61G激活突变对MEFs细胞增殖能力的影响;Western Blot法检测p-ERK的表达水平。结果 (1)与对照组相比,SHP-2D61G/+、SHP-2D61G/D61G激活突变组小鼠MEFs细胞粘附的细胞数明显增多,差异具有统计学意义;(2)与对照组相比SHP-2D61G/+、SHP-2D61G/D61G激活突变组MEFs细胞迁移的细胞数增加,差异具有统计学意义;(3)MTT结果显示,SHP-2D61G/+、SHP-2D61G/D61G激活突变的小鼠MEFs细胞增殖能力较对照组强,差异具有统计学意义;(4)Western Blot结果显示与对照组相比,无论是刚刚贴壁还是贴壁后30 min和60 min SHP-2D61G/+、SHP-2D61G/D61G激活突变组其p-ERK的表达水平都增加。结论 SHP-2D61G/+、SHP-2D61G/D61G激活突变促进小鼠MEFs细胞粘附迁移及增殖能力,其发生机制主要与p-ERK的表达水平增加有关。  相似文献   

5.
Initiation of headful packaging of SPP1 DNA concatemers involves the interaction of the terminase, G1P and G2P, and the portal protein, G6P. G1P, which specifically recognizes the non-adjacent pacL and pacR subsites and directs loading of G2P to pacC, interacts with G6P. G2P, which has endonuclease, DNA binding, and ATPase activities, interacts with G1P and does it transiently with G6P. The stoichiometry of G1P on the G1P.G2P complex promotes the transition from a G2P endonuclease to an ATPase. G6P does not alter the endonuclease activity of G2P. Both G1P and G6P, which do not have endogenous ATPase activity, synergistically enhance and modulate the ATPase activity of G2P. Based on these results, we propose a model in which the modulation of the ATPase and endonuclease activities of G2P accounts for the role of the terminase in headful packaging.  相似文献   

6.
We have investigated the oligomerization and intracellular transport of the membrane glycoproteins of Punta Toro virus, a member of the Phlebovirus genus of the family Bunyaviridae, which is assembled by budding in the Golgi complex. By using one- or two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis, chemical cross-linking, and sucrose gradient centrifugation, we found that the majority of the G1 and G2 glycoproteins are assembled into noncovalently linked G1-G2 heterodimers. At the same time, a fraction of the G2 protein, possibly produced independently of the G1 protein, is assembled into G2 homodimers. Kinetic analysis indicates that heterodimerization occurs between newly synthesized G1 and G2 within 3 min after protein synthesis, and that the G1 and G2 glycoproteins are associated as dimeric forms both during transport and after accumulation in the Golgi complex. Analysis of a G1-truncated G2 mutant, which is also targeted to the Golgi complex, showed that these molecules also assemble into dimeric forms, which are linked by disulfide bonds. Both the G1-G2 heterodimer and the G2 homodimer were found to be able to exit from the endoplasmic reticulum. Differences in transport kinetics observed for the G1 and G2 proteins may be due to the differences in the transport efficiency between the G1-G2 heterodimer and the G2 homodimer from the endoplasmic reticulum to the Golgi complex. These and previous results (S.-Y. Chen, Y. Matsuoka, and R.W. Compans, Virology 183:351-365, 1991) suggest that Golgi retention of the G2 homodimer occurs by association with the G1-G2 heterodimer, whereas the Golgi targeting of the G1-G2 heterodimer occurs by a specific retention mechanism.  相似文献   

7.
The heterotrimeric G protein, G2, from the eukaryotic organism Dictyostelium discoideum participates in signal transduction pathways which are essential to Dictyostelium's developmental life cycle. G2 is activated by cell surface cAMP receptors and in turn is required for the activation of a host of effectors, including adenylyl cyclase, guanylyl cyclase, and phospholipase C. Myristoylation of G protein alpha-subunits is known to affect alpha-subunit association with the beta gamma subunits and membrane localization. The putative site for N-terminal myristoylation of G alpha 2 was mutated from Gly to Ala (G2A) and expressed in the g alpha 2-null cell line, MYC2. Transformants expressing G alpha 2-G2A exhibit physiological and biochemical changes from wild-type cells. G alpha 2-G2A expressing cells fail to rescue the aggregation-minus phenotype of MYC2 cells on developmental agar plates. G alpha 2-G2A expressing cells are also not chemotactic to cAMP in a standard drop assay. G alpha 2-WT is found in both the pellet and supernatant fractions following lysis of the cells. G alpha 2-G2A however is found almost exclusively in the lysate supernatant. G alpha 2 is radiolabeled upon incubation of cells in [3H]myristate, while G alpha 2-G2A is not labeled. Examination of activation of the effectors adenylyl cyclase and guanylyl cyclase reveals that G alpha 2-G2A expressing cells partially activate adenylyl cyclase but show no cAMP-stimulation of guanylyl cyclase. The physiological deviations from wild-type can be explained by the variations in effector activation, possibly due to improper localization of the non-myristoylated G alpha 2-G2A to the cytosol.  相似文献   

8.
9.
Gene structure and chromosomal localization of mouse cyclin G2 (Ccng2)   总被引:18,自引:0,他引:18  
Cyclins are essential activators of cyclin-dependent kinases (Cdk) which, in turn, play pivotal roles in controlling transition through cell-cycle checkpoints. Cyclin G2 is a recently discovered second member of the G-type cyclins. The two members of the G-type cyclins, cyclin G1 and cyclin G2, share high structural similarity but their function remains to be defined. Here we characterize the structure of the mouse cyclin G2 gene by first cloning and sequencing the full-length mouse cyclin G2 cDNA. The cyclin G2 cDNA was used to isolate the cyclin G2 gene from a BAC library and to establish that the gene was transcribed from eight exons spanning a total of 8604 bp. The cyclin G2 gene was mapped by fluorescence in situ hybridization (FISH) to mouse chromosome 5E3.3.–F1.3. This region is syntenic to a region on human chromosome 4. The expression of cyclins G1 and G2 was examined in various tissues, but no correlation between expression patterns of the two genes was observed. However, during hepatic ontogenesis the cyclin G2 expression level decreased with age, whereas cyclin G1 expression increased. Transient expression of cyclin G2-green fluorescent protein (GFP) fusion protein in NIH3T3 cells showed that cyclin G2 is essentially a cytoplasmic protein, in contrast to the largely nuclear localization of cyclin G1. Our data suggest that, despite the close structural similarity between mouse cyclins G1 and G2, these proteins most likely perform distinct functions.  相似文献   

10.
The yeast cell cycle is regulated by a number of different cyclin-Cdc28 complexes, some of which orchestrate G1 events, and some of which orchestrate G2/M events. G1 cyclins lead to expression of G2 cyclins; the G2 cyclins then repress the G1 cyclins. G2 cyclin expression eventually leads to mitosis, which causes loss of the G2 cyclins, allowing derepression and reappearance of the G1 cyclins. These interactions between different classes of cyclins push the yeast cell cycle forward. Nutrients act through the G1 cyclins to stimulate division, while mating pheromones act through G1 cyclins to inhibit division.  相似文献   

11.
Interstitial collagen gives fetal membranes tensile strength, and membrane rupture has been attributed to collagen degradation. A polymorphism at -1607 in the matrix metalloproteinase-1 (MMP-1) promoter (an insertion of a guanine (G)) creates a core Ets binding site and increases promoter activity. We investigated whether this polymorphism is functionally significant for MMP-1 expression in amnion cells and whether it is associated with preterm premature rupture of the membranes (PPROM). The 2G promoter had >2-fold greater activity than the 1G allele in amnion mesenchymal cells and WISH amnion cells. Phorbol 12-myristate 13-acetate (PMA) increased mesenchymal cell nuclear protein binding with greater affinity to the 2G allele. Induction of MMP-1 mRNA by PMA was significantly greater in cells with a 1G/2G or 2G/2G genotype compared with cells homozygous for the 1G allele. When treated with PMA, the 1G/2G and 2G/2G cells produced greater amounts of MMP-1 protein than 1G/1G cells. A significant association was found between fetal carriage of a 2G allele and PPROM. We conclude that the 2G allele has stronger promoter activity in amnion cells, that it confers increased responsiveness of amnion cells to stimuli that induce MMP-1, and that this polymorphism contributes to the risk of PPROM.  相似文献   

12.
In vitro polypeptide synthesis using a combination of G1 membrane-bound polysomes and either G1 or G2 0.5M salt wash gave appreciable incorporation into light chain immunoglobulin. When G2 polysomes were used with G2 salt wash, light chain synthesis was much reduced, however, when G2 salt wash was replaced by that from G1 then the synthesis of light chain by G2 polysomes was stimulated. The results suggest that some factor present in the G1 phase was able to activate translation of light chain mRNA which is apparently quiescent in the G2 phase.  相似文献   

13.
Dopamine is the primary inhibitory regulator of lactotroph proliferation and prolactin (PRL) secretion in vivo, acting via dopamine D2 receptors (short D2S and long D2L forms). In GH4C1 pituitary cells transfected with D2S or D2L receptor cDNA, dopamine inhibits PRL secretion and DNA synthesis. These actions were blocked by pertussis toxin, implicating G(i)/G(o) proteins. To address roles of specific G(i)/G(o)4 proteins in these actions a series of GH4C1 cell lines specifically depleted of individual Galpha subunits was examined. D2S-mediated inhibition of BayK8644-stimulated PRL secretion was primarily dependent on G(o) over G(i), as observed for BayK8644-induced calcium influx. By contrast, inhibitory coupling of the D2S receptor to TRH-induced PRL secretion was partially impaired by depletion of any single G protein, but especially G(i)3. Inhibitory coupling of D2L receptors to PRL secretion required G(o), but not G(i)2, muscarinic receptor coupling was resistant to depletion of any G(i)/G(o) protein, whereas the 5-HT1A and somatostatin receptors required G(i)2 or G(i)3 for coupling. The various receptors also demonstrated distinct G protein requirements for inhibition of DNA synthesis: depletion of any G(i)/G(o) subunit completely uncoupled the D2S receptor, the D2L receptor was uncoupled by depletion of G(i)2, and muscarinic and somatostatin receptors were resistant to depletion of G(i)2 only. These results demonstrate distinct receptor-G protein preferences for inhibition of TRH-induced PRL secretion and DNA synthesis.  相似文献   

14.
Glucose 6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) in Deinococcus radiophilus, an extraordinarily UV-resistant bacterium, was investigated to gain insight into its resistance as it was shown to be involved in a scavenging system of superoxide (O2-1) and peroxide (O2-2) generated by UV and oxidative stresses. D. radiophilus possesses two G6PDH isoforms: G6PDH-1 and G6PDH-2, both showing dual coenzyme specificity for NAD and NADP. Both enzymes were detected throughout the growth phase; however, the substantial increase in G6PDH-1 observed at stationary phase or as the results of external oxidative stress indicates that this enzyme is inducible under stressful environmental conditions. The G6PDH-1 and G6PDH-2 were purified 122- and 44-fold (using NADP as cofactor), respectively. The purified G6PDH-1 and G6PDH-2 had the specific activity of 2,890 and 1,033 U/mg protein (using NADP as cofactor) and 3,078 and 1,076 U/mg protein (using NAD as cofactor), respectively. The isoforms also evidenced distinct structures; G6PDH-1 was a tetramer of 35 kDa subunits, whereas G6PDH-2 was a dimer of 60 kDa subunits. The pIs of G6PDH-1 and G6PDH-2 were 6.4 and 5.7, respectively. Both G6PDH-1 and G6PDH-2 were inhibited by both ATP and oleic acid, but G6PDH-1 was found to be more susceptible to oleic acid than G6PDH-2. The profound inhibition of both enzymes by beta-naphthoquinone-4-sulfonic acid suggests the involvement of lysine at their active sites. Cu2+ was a potent inhibitor to G6PDH-2, but a lesser degree to G6PDH-1. Both G6PDH-1 and G6PDH-2 showed an optimum activity at pH 8.0 and 30 degrees .  相似文献   

15.
The G3BP (ras-GTPase-Activating Protein SH3-Domain-Binding Protein) family of proteins has been implicated in both signal transduction and RNA-metabolism. We have previously identified human G3BP-1, G3BP-2, and mouse G3BP-2. Here, we report the cloning of mouse G3BP-1, the discovery of two alternatively spliced isoforms of mouse, and human G3BP-2 (G3BP-2a and G3BP-2b), and the chromosomal localisation of human G3BP-1 and G3BP-2, which map to 5q14.2-5q33.3 and 4q12-4q24 respectively. We mapped the rasGAP(120) interactive region of the G3BP-2 isoforms and show that both G3BP-2a and G3BP-2b use an N-terminal NTF2-like domain for rasGAP(120) binding rather than several available proline-rich (PxxP) motifs found in members of the G3BPs. Furthermore, we have characterized the protein expression of both G3BP-1 and G3BP-2a/b in adult mouse tissues, and show them to be both tissue and isoform specific.  相似文献   

16.
17.
Cyclins are essential activators of cyclin-dependent kinases (Cdk) which, in turn, play pivotal roles in controlling transition through cell-cycle checkpoints. Cyclin G2 is a recently discovered second member of the G-type cyclins. The two members of the G-type cyclins, cyclin G1 and cyclin G2, share high structural similarity but their function remains to be defined. Here we characterize the structure of the mouse cyclin G2 gene by first cloning and sequencing the full-length mouse cyclin G2 cDNA. The cyclin G2 cDNA was used to isolate the cyclin G2 gene from a BAC library and to establish that the gene was transcribed from eight exons spanning a total of 8604 bp. The cyclin G2 gene was mapped by fluorescence in situ hybridization (FISH) to mouse chromosome 5E3.3.–F1.3. This region is syntenic to a region on human chromosome 4. The expression of cyclins G1 and G2 was examined in various tissues, but no correlation between expression patterns of the two genes was observed. However, during hepatic ontogenesis the cyclin G2 expression level decreased with age, whereas cyclin G1 expression increased. Transient expression of cyclin G2-green fluorescent protein (GFP) fusion protein in NIH3T3 cells showed that cyclin G2 is essentially a cytoplasmic protein, in contrast to the largely nuclear localization of cyclin G1. Our data suggest that, despite the close structural similarity between mouse cyclins G1 and G2, these proteins most likely perform distinct functions.  相似文献   

18.
The D(2) dopamine receptor has been expressed in Sf21 insect cells together with the G proteins G(o) and G(i2), using the baculovirus system. Expression levels of receptor and G protein (alpha, beta, and gamma subunits) in the two preparations were similar as shown by binding of [(3)H]spiperone and quantitative Western blot, respectively. For several agonists, binding data were fitted best by a two-binding site model in either preparation, showing interaction of expressed receptor and G protein. For some agonists, binding to the higher affinity site was of higher affinity in D(2)/G(o) than in the D(2)/G(i2) preparation. Some agonists exhibited binding data that were best fitted by a two-binding site model in D(2)/G(o) and a one-binding site model in D(2)/G(i2). Therefore, receptor/G protein interaction seemed to be stronger in the D(2)/G(o) preparation. Agonist stimulation of [(35)S]GTP gamma S (guanosine 5'-3-O-(thio)triphosphate) binding in the two preparations also gave evidence for higher affinity D(2)/G(o) interaction. In the D(2)/G(o) preparation, agonist stimulation of [(35)S]GTP gamma S binding occurred at higher potency for several agonists, and a higher stimulation (relative to dopamine) was achieved in D(2)/G(o) compared with D(2)/G(i2). Some agonists were able to stimulate [(35)S]GTP gamma S binding in the D(2)/G(o) preparation but not in D(2)/G(i2). The extent of D(2) receptor selectivity for G(o) over G(i2) is therefore dependent on the agonist used, and thus agonists may stabilize different conformations of the receptor with different abilities to couple to and activate G proteins.  相似文献   

19.
Male Zucker rats were exposed to 2 G for 8 wk to test the hypothesis that the leptin regulatory pathway contributes to recovery from effects of 2 G on feeding, growth, and nutrient partitioning. After initial hypophagia, body mass-independent food intake of the lean rats exposed to 2 G surpassed that of the lean rats maintained at 1 G, but food intake of the obese rats exposed to 2 G remained low. After 8 wk at 2 G, body mass and carcass fat were less in both genotypes. Leptin and percent fat were lower in lean rats exposed to 2 G vs. 1 G but did not differ in obese rats exposed to 2 G vs. 1 G. Although exposure to 2 G did not alter uncoupling protein-1 levels, it did elicit white fat pad-specific changes in lipoprotein lipase activity in obese but not lean rats. We conclude that 2 G affects both genotypes but that the lean Zucker rats recover their food intake and growth rate and retain "normal" lipoprotein lipase activity to a greater degree than do the obese rats, emphasizing the importance of a functional leptin regulatory pathway in this acclimation.  相似文献   

20.
The membrane glycoproteins G1 and G2 of the members of the Bunyaviridae family are synthesized as a precursor from a single open reading frame. Here, we have analyzed the processing and membrane insertion of G1 and G2 of a member of the Phlebovirus genus, Uukuniemi virus. By expressing C-terminally truncated forms of the p10 precursor containing the whole of G1 and decreasing portions of G2, we found that processing in BHK21 cells occurred with an efficiency of about 50% if G1 was followed by 50 residues of G2, while complete processing occurred if 98, 150, or 200 residues of G2 were present. Surprisingly, processing of all truncated G2 forms was less efficient in HeLa cells. Proteinase K treatment of microsomes isolated from infected cells indicated that the C terminus of G1 is exposed on the cytoplasmic face. Using G1 tail peptide antisera, the tail was likewise found by immunofluorescence to be exposed on the cytoplasmic face in streptolysin O-permeabilized cells. By introducing stop codons at various positions of the G1 tail and at the natural cleavage site between G1 and G2 and expressing these mutants in BHK cells, we found that no further processing of the G1 C terminus occurred following cleavage of G2 by the signal peptidase. This was also supported by the finding that an antiserum raised against a peptide corresponding to the region immediately upstream from the G2 signal sequence reacted in immunoblotting with G1 from virions. Finally, we show that both G1 and G2 are palmitylated. Taken together, these results show that processing of p10 of Uukuniemi virus occurs cotranslationally at only one site, i.e., downstream of the internal G2 signal sequence. G1 and G2 are inserted as type I proteins into the lipid bilayer, leaving the G1 tail exposed on the cytoplasmic face of the membrane. Since the G2 tail is only 5 residues long, the G1 tail is likely to be responsible for the interaction with the nucleoproteins during the budding process, in addition to harboring a Golgi localization signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号