首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Skin temperature from three recording sites (web dorsum and two digital sites) on one hand were compared over a 30-minute period during which room temperature was raised from 66° to 80°F causing skin temperatures to range from 78.5° to 92.3°F. The web dorsum remained significantly warmer than either digital site at the lowest skin temperatures; no significant inter-site differences were seen as skin temperature gradually increased. These findings imply that none of the three sites is more advantageous than the others when recording hand temperature values around or above 85°F. However, at the lower levels of skin temperature, there is a floor below which the web dorsum is no longer a sensitive indicator. More generally, basic data of this type provide a necessary but often absent foundation for routine practice of clinical biofeedback.We gratefully acknowledge the assistance of Kelly Peters in the data collection and of Steve Krause and Rick Scott in the data analysis.  相似文献   

2.
Vision of the body, even when non-informative about stimulation, affects somatosensory processing. We investigated whether seeing the body also modulates autonomic control in the periphery by measuring skin temperature while manipulating vision. Using a mirror box, the skin temperature was measured from left hand dorsum while participants: (i) had the illusion of seeing their left hand, (ii) had the illusion of seeing an object at the same location or (iii) looked directly at their contralateral right hand. Skin temperature of the left hand increased when participants had the illusion of directly seeing that hand but not in the other two view conditions. In experiment 2, participants viewed directly their left or right hand, or the box while we recorded both hand dorsum temperatures. Temperature increased in the viewed hand but not the contralateral hand. These results show that seeing the body produces limb-specific modulation of thermal regulation.  相似文献   

3.
4.
Effects on skin blood perfusion of permanent ceramic magnets [0.1 T (1000 G) surface field], individually (disk shaped, 4 cm diameter x 1 cm thick) or in the form of a 11 x 7 in pad ( approximately 28 x 17.8 cm) with an array of 16 rectangular magnets (4.5 x 2.2 cm), were investigated in 16 female volunteers (27.4 +/- 1.7 years, range 21-48 years) using three separate protocols. In protocol A, a disk magnet was placed on the palmar surface of the hand in contact with the thenar eminence (n = 5). In protocol B, the magnet was placed on the hand dorsum overlying the thenar eminence (n = 5). In protocol C, the entire palm and fingers rested on the magnetic pad (n = 6). Magnets were in place for 36 min on one hand, and a sham was in place on the other hand. Blood perfusion was measured on the middle finger dorsum by laser Doppler flowmetry (LDF) and on the index finger by laser Doppler imaging (LDI). Perfusion measurements were simultaneously taken in sham and magnet exposed hands, before and during the entire magnet exposure interval. Magnetic field effects were tested by comparing skin blood perfusion sequences in magnet and sham exposed regions. Results showed no significant changes in either LDF or LDI perfusion at magnet or sham sites during exposure, nor were there any significant differences between sham and magnet sites for any protocol. Measurements of skin temperature at the LDF measurement sites also showed no significant change. It is concluded that in the healthy subjects studied with normal, unstressed circulation, magnets of the type and for the duration used, showed no detectible effect on skin blood perfusion in the anatomical area studied.  相似文献   

5.
Burn syndactyly.     
When the entire digital web space has been destroyed by burn scarring and there is a contracture of the volar aspect of the web as well as the dorsum, Z-plasties and skin grafts alone seldom produce a satisfactory web space. During the past 3 years, for the release of 46 contracted web spaces in 20 burned patients, we have turned a rectangular flap from the dorsal surface of the web through into an inverted-T incision in the palm. The adjacent sides of the defects have been skin grafted. In all these patients, we obtained satisfactory release of the contracture and restoration of the web space.  相似文献   

6.
The influence of clothing on skin temperature distributions of the torso was investigated during and after cold exposure. Volunteers were cooled for one hour at 5 degrees C while wearing clothing designed to have insulation which was intended to be relatively uniformly distributed. Three different thicknesses of clothing were used. Following thermistor measurements of skin temperatures during the cold exposures, clothing was quickly removed from the upper parts of the body to enable thermographic investigations of the temperature distributions of the front of the bare torso. The evolution of temperature distributions were then studied at different ambient temperatures (5 degrees C and 20 degrees C) as a function of the thickness of the insulation which had previously been worn. The patterns of the temperature distributions, and the range and standard deviation of torso temperatures were all found to be relatively constant in spite of the different thicknesses of clothing worn or in the time-variant mean torso temperatures which resulted. The front torso sites normally used for the determination of mean skin temperatures were found to be on portions of the torso which were cooler than the surrounding regions. It was concluded that a site midway between the umbilicus and a nipple yields a more accurate estimate of mean torso temperature in the conditions of the present study.  相似文献   

7.
Body composition and skin temperature variation   总被引:1,自引:0,他引:1  
Temperature variations near four common torso skin temperature sites were measured on 17 lightly clad subjects exposed to ambient temperatures of 28, 23, and 18 degrees C. Although variations in skin temperature exceeding 7 degrees C over a distance of 5 cm were observed on individuals, the mean magnitude of these variations was 2-3 degrees C under the coolest condition and less at the warmer temperatures. There was no correlation between the temperature variation and skinfold thickness at a site or with estimations of whole body fat content. These findings imply that errors in mean skin temperature measurement could arise from probe mislocation and/or subcutaneous fat distribution and that the problem becomes more acute with increasing cold stress. However, the magnitudes of these errors cannot be easily predicted from common anthropometric measurements.  相似文献   

8.
Six resting men were exposed to three temperatures (15.5, 21, 26.5 degrees C) for 120 min at three altitudes (sea level, 2,500 m, 5,000 m). A 60-min sea-level control at the scheduled temperature preceded the nine altitude episodes. Comparison of the base-line results at any one temperature showed no differences between rectal temperatures (Tre) or mean weighted skin temperatures (Tsk). After 120 min, Tre and Tsk not only depended on ambient temperature but also altitude. The initial rate of fall in Tre increased with altitude and equilibrium occurred earlier. At 15.5 degrees C, Tre was 0.3 degrees C lower at 5,000 m and 0.2 degrees C lower at 2,500 m than at sea level. Tsk was almost 2 degrees C higher at 15.5 degrees C at 5,000 m and 1 degrees C higher at 2,500 m than at sea level. Similar, smaller differences were observed at 21 degrees C. Mean weighted body temperature showed no change with altitude, but, since the gradient between core and shell was reduced, a shift of blood toward the periphery is implied.  相似文献   

9.
Effects of a high (33 degrees C) or thermoneutral (23 degrees C) temperature on body temperature and endocrine parameters were studied in weaned piglets. Rectal and skin temperatures were measured in four ad libitum fed animals per temperature during three weeks. After this acclimation period, 11 blood samples were withdrawn on a 24-h period. Over the acclimation period, rectal and skin temperatures were 0.6 and 2.9 degrees C higher, respectively, at 33 degrees C than at 23 degrees C (P < 0.01), this change occurring from the 1st day at 23 or 33 degrees C. A tendency of serum leptin concentrations to be lower after meals at 33 degrees C than at 23 degrees C was also displayed (P = 0.09). Plasmatic concentrations in Insulin-like growth factor I and thyroxine were decreased at 33 degrees C relative to 23 degrees C (P < 0.01 and P < 0.06, respectively), and triiodothyronine concentrations tended to be lower at 33 degrees C than at 23 degrees C (P = 0.1), which could account for the lower heat production and growth observed in pigs exposed to high temperatures.  相似文献   

10.
A simple analytical model has been developed to simulate the cooling of the hands due to touching various types of cold material. The model consisted of a slab of tissue, covered on both sides with skin. The only active mechanism was the skin blood flow. The blood flow was controlled by body core temperature, mean skin temperature, and local hand temperature. The blood flowed along the palm before returning via the back of the hand. The control function was adapted from an earlier study, dealing with feet, but enhanced with a cold induced vasodilatation term. The palm of the hand was touching materials that were specified by conductivity and heat capacity. The hand was initially at a steady-state in a neutral environment and then suddenly grabbed the material. The resulting cooling curves have been compared to data from an experiment including six materials (foam, wood, nylon, steel, aluminium and metal at a constant temperature), three temperatures (-10, 0, and 10 degrees C), two thermal states of the body (neutral and 0.4 degrees C raised), and with and without gloves. There was a fair general agreement between the model and the experiment but the model failed to predict three specific effects: the unequal effect of equal 10 degrees C steps in cold surface temperature on the temperature of the palm of the hand, the cooling effect of nylon, and the rapid drop in back of the hand temperature. Nevertheless the overall regression was 0.88 with a standard deviation between model and experiment of about 2.5 degrees C.  相似文献   

11.
To examine the core-shell model of temperature distribution and the possible role of subcutaneous temperature in heat regulation, comprehensive temperature measurements were made on six nude resting men exposed for 2-3 h to comfort (27 degrees C), cold (15 degrees C) and heat (45 degrees C). Cold produced strong shivering and heat caused heavy sweating. Temperatures were recorded every 10 min from: esophagus, rectum and auditory canal; back muscle and thigh muscle at 20 mm and 40 mm depths; 6 subcutaneous sites; and 16 skin sites. Average temperatures at these 29 sites were tabulated at the ends of comfort, hot and cold and the onsets of sweating and shivering. Body temperature changes were slow to develop, the skin temperatures being fastest, and successively deeper tissues progressively slower. There was occasional after-drop and after-rise. The data were consistent with the core-shell concept. The temperature gradient from subcutaneous tissue to skin, which differed substantially with comfort, the onset of shivering and the onset of sweating, could serve as a regulatory signal. The data are now in computer format and may be of interest to biothermal modelers.  相似文献   

12.
The ability of human subjects to discriminate direction of tactile stimulus motion on the dorsum of the hand was determined (1) in the absence and (2) in the presence of a moving stimulus delivered to a second skin site on the ipsilateral or contralateral forelimb. When the two skin sites were simultaneously contacted by stimuli moving in the same direction, directional sensitivity was typically below that predicted for a hypothetical subject who could independently process the information provided at each of the two skin sites. Even when the stimulus delivered to a second site was deliberately ignored, it could still alter a subject's perception of stimulus direction on the dorsal hand. Moreover, its influence was greatest whenever it moved in a direction opposite to that of the attended stimulus. Whenever the two moving stimuli were delivered nonsimultaneously to two skin sites, directional sensitivity rarely matched the levels predicted for a hypothetical subject who could independently process the information provided at each site. This, in part, resulted from the subjects' utilization of "long-range" cues provided by the temporal order of stimulation. Subjects frequently failed to distinguish these cues from the sensation of stimulus direction provided at each skin site.  相似文献   

13.
The aim of this study was to evaluate the effect of temperature on growth and aerobic metabolism in clones of Daphnia magna from different thermal regimes. Growth rate (increment in size), somatic juvenile growth rate (increment in mass), and oxygen consumption were measured at 15 and 25 degrees C in 21 clones from one northern and two southern sites. There were no significant differences in body size and growth rate (increase in length) at both 15 and 25 degrees C among the three sites. Clones from southern site 2 had a higher mass increment than clones from the other two sites at both temperatures. Clone had a significant effect on growth (body length) and body size at both temperatures. As expected, age at maturity was lower at 25 degrees C (4.5 days) than at 15 degrees C, (11.6 days) and body sizes, after the release of the third clutch, were larger at 15 degrees C than at 25 degrees C. Northern clones had higher oxygen consumption rates and specific dynamic action (SDA) than southern clones at 15 degrees C. By contrast, southern clones from site 1 had a higher oxygen consumption and SDA than subarctic clones at 25 degrees C. Clones from southern site 2 had high oxygen consumption rates at both temperatures. Our results reveal important differences in metabolic rates among Daphnia from different thermal regimes, which were not always reflected in growth rate differences.  相似文献   

14.
Infrared thermography has become a useful tool to assess surface temperatures of animals for thermoregulatory research. However, surface temperatures are an endpoint along the body's core-shell temperature gradient. Skin and fur are the peripheral tissues most exposed to ambient thermal conditions and are known to serve as thermosensors that initiate thermoregulatory responses. Yet relatively little is known about how surface temperatures of wild mammals measured by infrared thermography relate to subcutaneous temperatures. Moreover, this relationship may differ with the degree that fur covers the body. To assess the relationship between temperatures and temperature gradients in peripheral tissues between furred and bare areas, we collected data from wild mantled howling monkeys (Alouatta palliata) in Costa Rica. We used infrared thermography to measure surface temperatures of the furred dorsum and bare facial areas of the body, recorded concurrent subcutaneous temperatures in the dorsum, and measured ambient thermal conditions via a weather station. Temperature gradients through cutaneous tissues (subcutaneous-surface temperature) and surface temperature gradients (surface-ambient temperature) were calculated. Our results indicate that there are differences in temperatures and temperature gradients in furred versus bare areas of mantled howlers. Under natural thermal conditions experienced by wild animals, the bare facial areas were warmer than temperatures in the furred dorsum, and cutaneous temperature gradients in the face were more variable than the dorsum, consistent with these bare areas acting as thermal windows. Cutaneous temperature gradients in the dorsum were more closely linked to subcutaneous temperatures, while facial temperature gradients were more heavily influenced by ambient conditions. These findings indicate that despite the insulative properties of fur, for mantled howling monkeys surface temperatures of furred areas still demonstrate a relationship with subcutaneous temperatures. Given that most mammals possess dense fur, this provides insight for using infrared imaging in thermoregulatory studies of wild animals lacking bare skin.  相似文献   

15.
Three men exercised on a bicycle ergometer at 30, 50, asd 70 per cent of maximal aerobic power in ambient temperatures of 15, 25, and 35 degrees C with water vapor pressure less than 18 Torr. Exercies was used to vary internal temperature during as experiment, and different ambient temperatures were used to vary skin temperatures independently of internal temperature. Finger temperature was fixed at about 35.7 degrees C. Espohageal temperature (Tes) was measured with a thermocouple at the level of the left atrium, and mean skin temperature (Tsk) was calcualted from a weighted mean of thermocouple temperatures at eight skin sites. Finger blood flow (BF) was measured by electrocapacitance plethysmography. Although some subjects showed small and equivocal vasomotor effects of exercise, our data are well accounted for by an equation of the form BF equal to alTes + a2Tsk + b, independent of exercise intensity. For these subjects, the ratios a1/a2 (5.9, 8.6, 9.4) were similar to the ratios of the corresponding coefficients recently reported for thermaoregulatory sweating (8.6, 10.4) and for forearm blood flow (9.6).  相似文献   

16.
The normal skin blood flow in healthy subjects consisting of 28 males whose ages ranged from 20 to 72 years was measured by the xenon-133 clearance method at four different sites of the body to determine the presence of any age-related changes. The following results were obtained: Significant age-related changes were observed in the skin blood flow of the deltoid region, anterior chest, dorsum of the hand, and dorsum of the foot. Normal skin blood flow was demonstrated to be highly dependent on age and to significantly decrease with age. Average skin blood flow at these four regions of those 70 years of age decreased by 30 to 40 percent when compared to that of those 20 years of age. The skin blood flow at the deltoid region of healthy subjects was higher by 6.3 ml/100 gm per minute than that of patients in poor condition with cancer of the head and neck.  相似文献   

17.
To test for a diurnal difference in the vasoconstrictor control of the cutaneous circulation, we performed whole body skin cooling (water-perfused suits) at 0600 (AM) and 1600 (PM). After whole body skin temperature (T(sk)) was controlled at 35 degrees C for 10 min, it was progressively lowered to 32 degrees C over 18-20 min. Skin blood flow (SkBF) was monitored by laser-Doppler flowmetry at three control sites and at a site that had been pretreated with bretylium by iontophoresis to block noradrenergic vasoconstriction. After whole body skin cooling, maximal cutaneous vascular conductance (CVC) was measured by locally warming the sites of SkBF measurement to 42 degrees C for 30 min. Before whole body skin cooling, sublingual temperature (T(or)) in the PM was significantly higher than that in the AM (P < 0.05), but CVC, expressed as a percentage of maximal CVC (%CVC(max)), was not statistically different between AM and PM. During whole body skin cooling, %CVC(max) levels at bretylium-treated sites in AM or PM were not significantly reduced from baseline. In the PM, %CVC(max) at control sites fell significantly at T(sk) of 34.3 +/- 0.01 degrees C and lower (P < 0.05). In contrast, in the AM %CVC(max) at control sites was not significantly reduced from baseline until T(sk) reached 32.3 +/- 0.01 degrees C and lower (P < 0.05). Furthermore, the decrease in %CVC(max) in the PM was significantly greater than that in AM at T(sk) of 33.3 +/- 0.01 degrees C and lower (P < 0.05). Integrative analysis of the CVC response with respect to both T(or) and T(sk) showed that the cutaneous vasoconstrictor response was shifted to higher internal temperatures in the PM. These findings suggest that during whole body skin cooling the reflex control of the cutaneous vasoconstrictor system is shifted to a higher internal temperature in the PM. Furthermore, the slope of the relationship between CVC and T(sk) is steeper in the PM compared with that in the AM.  相似文献   

18.
The purpose of this study was to investigate the effects of a floor heating and air conditioning system on thermal responses of the elderly. Eight elderly men and eight university students sat for 90 minutes in a chair under the following 3 conditions: air conditioning system (A), floor heating system (F) and no heating system (C). The air temperature of sitting head height for condition A was 25 degrees C, and the maximum difference in vertical air temperature was 4 degrees C. The air and floor temperature for condition F were 21 and 29 degrees C, respectively. The air temperature for condition C was 15 degrees C. There were no significant differences in rectal temperature and mean skin temperature between condition A and F. Systolic blood pressure of the elderly men in condition C significantly increased compared to those in condition A and F. No significant differences in systolic blood pressure between condition A and F were found. The percentage of subjects who felt comfortable under condition F was higher than that of those under condition A in both age groups, though the differences between condition F and A was not significant. Relationships between thermal comfort and peripheral (e.g., instep, calf, hand) skin temperature, and the relationship between thermal comfort and leg thermal sensation were significant for both age groups. However, the back and chest skin temperature and back thermal sensation for the elderly, in contrast to that for the young, was not significantly related to thermal comfort. These findings suggested that thermal responses and physiological strain using the floor heating system did not significantly differ from that using the air conditioning system, regardless of the subject age and despite the fact that the air temperature with the floor heating system was lower. An increase in BP for elderly was observed under the condition in which the air temperature was 15 degrees C, and it was suggested that it was necessary for the elderly people to heat the room somehow in winter. Moreover, it is particularly important for elderly people to avoid a decrease in peripheral skin temperature, and maintain awareness of the warmth of peripheral areas, such as the leg, in order to ensure thermal comfort.  相似文献   

19.
An integration-type laser-Doppler flowmeter, equipped with a temperature-load instrument, for measuring skin blood flow (ILD-T), and analytical parameters developed in a previous study were used to compare changes in the skin blood flow in the forehead and cheek in elderly subjects (in their 60s and 70s) with those in younger subjects (in their teens to 50s). Age-related differences in skin blood flow in the forehead and cheek in response to cooling were evaluated in 90 healthy women in their teens to 70s (mean age: 17.2 +/- 0.33 years for teenagers; 24.3 +/- 0.76 years for those aged 20-29 years; 34.8 +/- 1.12 years for those aged 30-39 years; 43.3 +/- 0.78 years for those aged 40-49 years; 53.8 +/- 1.13 years for those aged 50-59 years; 63.5 +/- 0.55 years for those aged 60-69 years; 72.2 +/- 0.70 years for those aged 70-79 years). The measurement was performed continuously for 5 min: for 1 min at a sensor temperature of 30 degrees C, for 2 min after the setting of the sensor temperature had been changed to 10 degrees C, and for 2 min after the temperature setting had been cancelled. The parameters analyzed were (1) skin temperature in a resting state before measurement ( T(rest)), (2) mean skin blood flow in 1 min at a sensor temperature of 30 degrees C ( F(30 degrees C)), (3) minimum skin blood flow at a sensor temperature of 10 degrees C ( F(min)), (4) slope of the blood flow plot during the period from the beginning of cooling at 10 degrees C to F(min) ( S(fall)), (5) time required for the sensor temperature to reach 10 degrees C (Delta t(s)), (6) maximum skin blood flow during the period from the end of cooling to the end of measurement ( F(max)), (7) slope of the blood flow plot during the period from F(min) to F(max) ( S(rise)), (8) rate of decrease of the skin blood flow during cooling: FDR = ( F(min)/ F(30 degrees C))x100, (9) recovery rate of the skin blood flow after the end of cooling: FRR = ( F(max)/ F(30 degrees C))x100. When correlations among the above nine parameters were evaluated by combining all age groups, significant correlations ( P < 0.01) were observed between F(30 degrees C) and F(min), F(30 degrees C) and F(max), F(30 degrees C) and S(fall), F(min) and F(max), and F(max) and S(rise) in the forehead. In the cheek, significant correlations ( P < 0.01) were observed in all these combinations except between F(max) and S(rise). When these analytical parameters were compared among the age groups, F(30 degrees C), T(rest), F(max), and S(rise) decreased significantly ( P < 0.02 for F(30 degrees C) and T(rest), P < 0.01 for F(max) and S(rise)) and S(fall) increased significantly ( P < 0.03) in the forehead with aging. However, no significant change with aging was observed in FDR, Delta t(s), F(min), and FRR. In the cheek, FDR increased significantly ( P < 0.03), and S(rise) decreased significantly ( P < 0.01) with aging. However, no significant change with aging was observed in F(30 degrees C), T(rest), F(max), S(fall), Delta t(s), F(min), and FRR. Thus, the decrease in the skin blood flow during cooling showed no marked quantitative change with age, but, with aging, the rate of this decrease was clearly reduced in the forehead. In the cheek, on the other hand, the skin blood flow decreased markedly with aging, but no clear change was observed in the rate of this decrease. By using ILD-T and examining various parameters obtained, the skin hemodynamics in the forehead and cheek during cooling from 30 degrees C to 10 degrees C could be analyzed, and differences in the hemodynamics between the forehead and cheek and between elderly and younger individuals were clarified. This instrument is expected to be clinically useful.  相似文献   

20.
The environmental physiology of three speciesof Collembola: Cryptopygus cisantarcticus, Isotoma klovstadi (Isotomidae) and Friesea grisea (Neanuridae) was investigated from November 2002 to February 2003 at Cape Hallett, North Victoria Land, Antarctica. All three species were freeze avoiding, and while supercooling points were variable on seasonal and daily scales in I. klovstadi and C. cisantarcticus, they remained largely static in F. grisea. LT50 (temperature where 50% of animals are killed by cold) was -13.6, -19.1 and -19.8 degrees C for C. cisantarcticus, I. klovstadi and F. grisea, respectively. Upper lethal temperature was 34, 34 and 38 degrees C for C. cisantarcticus, I. klovstadi and F. grisea. Critical thermal minimum onset (the temperature where individuals entered chill coma) was ca. -7, -12 and -8 degrees C for C. cisantarcticus, I. klovstadi and F. grisea, and 25% of I. klovstadi individuals froze without entering chill coma. Critical thermal maximum (the onset of spasms at high temperature) was 30, 33 and 34 degrees C for C. cisantarcticus, I. klovstadi and F. grisea. Haemolymph osmolality was approximately 720 mOsm for C. cisantarcticus and 680 mOsm for I. klovstadi, and both species showed a moderate degree of thermal hysteresis, which persisted through the season. Desiccation resistance was measured as survival above silica gel, and the species survived in the rank order of C. cisantarcticus< I. klovstadi = F. grisea. Desiccation resulted in an increase in haemolymph osmolality in I. klovstadi, and water was quickly regained by desiccation-stressed individuals that had access to liquid water, but not by individuals placed in high humidity, indicating that this species is unable to absorb atmospheric water vapour. SDS-PAGE did not suggest any strong patterns in protein synthesis either seasonally or in response to temperature or desiccation stress. Microclimate temperatures were measured at sites representative of collection sites for the three species. Microclimate temperatures were highly variable on a diurnal and weekly scale (the latter relating to weather patterns), but showed little overall variation across the summer season. Potentially lethal high and low temperatures were recorded at several sites, and it is suggested that these temperature extremes account for the observed restriction of the less-tolerant C. cisantarcticus at Cape Hallett. Together, these data significantly increase the current knowledge of the environmental physiology of Antarctic Collembola.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号