首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of a leaky tight junction in epithelia is examined by considering the flow of water and solute through a channel consisting of two sections representing the intercellular space and tight junction. Two cases are considered, flow through a channel with a circular cross-section and flow between parallel planes. Analytical solutions are obtained using the isotonic convection approximation. The flow is driven by active transport of solute and imposed concentration and pressure differences. Particular attention is paid to the flux of solute through the tight junction. It is shown that the shape of the channel cross-section is important.The theory is applied to the rat proximal tube epithelium. It is deduced that the emergent osmolarity is close to that predicted for a closed tight junction, but that transepithelial hydrostatic pressure differences are potentially important. The influence of transepithelial concentration differences appears to be unimportant in this model.  相似文献   

2.
The divalent cation ionophore A 23187 was used to evaluate the action of intracellular calcium on net transepithelial water movement across the isolated frog urinary bladder. Incubation with the ionophore increases the net basal water flux in a dose-dependent fashion but independent of the extracellular calcium concentration. Bladders pretreated with A 23187 and exposed thereafter to an increase in calcium concentration exhibit a water permeability that under certain conditions can be comparable to that achieved with antidiuretic hormone (ADH). Lowering the serosal calcium at the peak of the hydrosmotic responses to both ADH and A 23187 inhibited the maintenance of the net water flux. The action of a supramaximal dose of ADH is blunted in bladders pretreated with A 23187, while the hydrosmotic effects of a submaximal dose are enhanced when the ionophore is added together with the hormone. The results show that an increase in transepithelial water movement can be triggered by calcium and that serosal calcium is needed to sustain the response. This hydrosmotic response may be dependent upon the rate at which intracellular calcium concentrations change and on the absolute concentration attained. It is suggested that calcium is involved in the action of ADH on water permeability and may act as a modulator of the hydrosmotic response.  相似文献   

3.
Small GTPase Rho has been thought to be important for the formation and the maintenance of tight junction in epithelial cells, but the role of Rho in the regulation of barrier function of tight junction is not well understood. We here examined whether Rho was involved in the barrier function of tight junction in Madin-Darby canine kidney (MDCK) cells. The activation of prostaglandin EP3beta receptor, coupled to a Rho activation pathway, induced the increase in transepithelial electrical resistance (TER) but the increase in paracellular flux of mannitol in the preformed monolayer of the MDCK cells expressing the EP3beta receptor. This effect of the EP3 receptor was mimicked by the expression of constitutively active RhoA but not by active Rac1 in MDCK cells, using an isopropyl-beta-D-thiogalactoside-inducible expression system. On the other hand, the activation of EP3beta receptor suppressed the elevation of TER and the decrease in paracellular mannitol flux during Ca(2+) switch-induced tight junction formation, whereas the expression of active RhoA or Rac1 did not apparently affect the TER development in the Ca(2+) switch. These results demonstrate that the EP3 receptor and active RhoA regulate permeabilities of ionic and nonionic molecules in opposite directions in the preformed monolayer, and the EP3 receptor suppresses the elevation of TER during the tight junction formation.  相似文献   

4.
Claudins upregulation in human colorectal cancer   总被引:12,自引:0,他引:12  
In colorectal cancer tight junction molecular and morphological alterations are poorly understood. In this study, adenocarcinoma tissues and their paired normal mucosa (n = 12) were analyzed for tight junction alterations molecular. The expression of claudin-1, -3 and -4 was upregulated 5.7-, 1.5- and 2.4-fold, respectively, in colorectal tumor tissues in comparison to the normal ones. Although tight junction remains in the cancerous epithelium, its barrier function was altered. Despite claudins overexpression, paracellular permeability to ruthenium red was increased and a significant disorganization of tight junction strands was observed in freeze fracture replicas. Whereas the functional significance of claudin overexpression in colorectal cancer is unclear, these proteins can become potential markers and targets in colorectal cancer.  相似文献   

5.
Alveolar barrier function depends critically on the claudin family tight junction proteins. Of the major claudins expressed by alveolar epithelial cells, claudin (Cldn)-3 and Cldn-4 are the most closely related by amino acid homology, yet they differ dramatically in the pattern of expression. Previously published reports have shown that Cldn-3 is predominantly expressed by type II alveolar epithelial cells; Cldn-4 is expressed throughout the alveolar epithelium and is specifically upregulated in response to acute lung injury. Using primary rat alveolar epithelial cells transduced with yellow fluorescent protein-tagged claudin constructs, we have identified roles for Cldn-3 and Cldn-4 in alveolar epithelial barrier function. Surprisingly, increasing expression of Cldn-3 decreased alveolar epithelial barrier function, as assessed by transepithelial resistance and dye flux measurements. Conversely, increasing Cldn-4 expression improved alveolar epithelial transepithelial resistance compared with control cells. Other alveolar epithelial tight junction proteins were largely unaffected by increased expression of Cldn-3 and Cldn-4. Taken together, these results demonstrate that, in the context of the alveolar epithelium, Cldn-3 and Cldn-4 have different effects on paracellular permeability, despite significant homology in their extracellular loop domains.  相似文献   

6.
In this communication we report observations on the tight junctions of the frog choroid plexus obtained by thin section and freeze-fracture electron microscopy. It is shown that the choroid plexus epithelial tight junctions comprise a relatively high number (mean 5-6, range 3-10) of continuous, anastomosing strands. This is remarkable in relation to: (1) recent observations that the frog choroidal epithelium has a very low transepithelial resistance, and (2) current concepts of the proportional relationship between transepithelial resistance and number of tight junction strands. It is concluded that there exists a marked lack of correlation between tight junction structure and function in the frog choroid plexus epithelium.  相似文献   

7.
Migration of polymorphonuclear leukocytes across epithelia is a hallmark of many inflammatory disease states. Neutrophils traverse epithelia by migrating through the paracellular space and crossing intercellular tight junctions. We have previously shown (Nash, S., J. Stafford, and J.L. Madara. 1987. J. Clin. Invest. 80:1104-1113), that leukocyte migration across T84 monolayers, a model human intestinal epithelium, results in enhanced tight junction permeability--an effect quantitated by the use of a simple, standard electrical assay of transepithelial resistance. Here we show that detailed time course studies of the transmigration-elicited decline in resistance has two components, one of which is unrelated to junctional permeability. The initial decrease in resistance, maximal 5-13 min after initiation of transmigration, occurs despite inhibition of transmigration by an antibody to the common beta subunit of neutrophil beta 2 integrins, and is paralleled by an increase in transepithelial short-circuit current. Chloride ion substitution and inhibitor studies indicate that the early-phase resistance decline is not attributable to an increase in tight junction permeability but is due to decreased resistance across epithelial cells resulting from chloride secretion. Since T84 cells are accepted models for studies of the regulation of Cl- and water secretion, our results suggest that neutrophil transmigration across mucosal surfaces (for example, respiratory and intestinal tracts) may initially activate flushing of the surface by salt and water. Equally important, these studies, by providing a concrete example of sequential transcellular and paracellular effects on transepithelial resistance, highlight the fact that this widely used assay cannot simply be viewed as a direct functional probe of tight junction permeability.  相似文献   

8.
The tight junction forms a barrier that limits paracellular movement of water, ions, and macromolecules. The permeability properties of this barrier are regulated in response to both physiological and pathophysiological stimuli, and this regulation has been modeled by pharmacological agents. Although it is now known that vesicular traffic plays important roles in tight junction assembly, the molecular mechanisms by which vesicular traffic contributes to tight junction regulation remain to be defined. This review summarizes recent progress in understanding mechanisms and pathways of tight junction protein internalization and the relevance of these to tight junction regulation.  相似文献   

9.
A comparison of the distribution of septate junctions in invertebrate epithelia and tight junctions in vertebrate systems suggests that these structures may be functionally analogous. This proposition is supported by the internal design of each junction which constitutes a serial arrangement of structures crossing the intercellular space between cells to effectively provide resistance to the paracellular flow of water and small molecules. We have tested the validity of such an analogy by examining whether the osmotic sensitivity of the septate junctions of planarian epidermis follow the rather striking pattern observed for the junctions of very tight vertebrate epithelia (e.g. toad urinary bladder). It has been found that the septate junctions in this system respond in similar fashion to their vertebrate counterparts, blistering with accumulated fluid when the medium outside the epidermis is made hypertonic with small, water-soluble molecules. We conclude that the two types of junction probably are functionally analogous and that, in each case, this rectified structural response to transepithelial osmotic gradients may be indicative of the role of such structures in the transport function of epithelia.  相似文献   

10.
The tight junction forms a barrier that limits paracellular movement of water, ions, and macromolecules. The permeability properties of this barrier are regulated in response to both physiological and pathophysiological stimuli, and this regulation has been modeled by pharmacological agents. Although it is now known that vesicular traffic plays important roles in tight junction assembly, the molecular mechanisms by which vesicular traffic contributes to tight junction regulation remain to be defined. This review summarizes recent progress in understanding mechanisms and pathways of tight junction protein internalization and the relevance of these to tight junction regulation.  相似文献   

11.
The tight junction of the epithelial cell determines the characteristics of paracellular permeability across epithelium. Recent work points toward the claudin family of tight junction proteins as leading candidates for the molecular components that regulate paracellular permeability properties in epithelial tissues. Madin-Darby canine kidney (MDCK) strain I and II cells are models for the study of tight junctions and based on transepithelial electrical resistance (TER) contain "tight" and "leaky" tight junctions, respectively. Overexpression studies suggest that tight junction leakiness in these two strains of MDCK cells is conferred by expression of the tight junction protein claudin-2. Extracellular signal-regulated kinase (ERK) 1/2 activation by hepatocyte growth factor treatment of MDCK strain II cells inhibited claudin-2 expression and transiently increased TER. This process was blocked by the ERK 1/2 inhibitor U0126. Transfection of constitutively active mitogen-activated protein kinase/extracellular signal-regulated kinase kinase into MDCK strain II cells also inhibited claudin-2 expression and increased TER. MDCK strain I cells have higher levels of active ERK 1/2 than do MDCK strain II cells. U0126 treatment of MDCK strain I cells decreased active ERK 1/2 levels, induced expression of claudin-2 protein, and decreased TER by approximately 20-fold. U0126 treatment also induced claudin-2 expression and decreased TER in a high resistance mouse cortical collecting duct cell line (94D). These data show for the first time that the ERK 1/2 signaling pathway negatively controls claudin-2 expression in mammalian renal epithelial cells and provide evidence for regulation of tight junction paracellular transport by alterations in claudin composition within tight junction complexes.  相似文献   

12.
Inhalation of hyperosmotic solutions (salt, mannitol) has been used in the treatment of patients with cystic fibrosis or asthma, but the mechanism behind the effect of hyperosmotic solutions is unclear. The relation between osmolarity and permeability changes was examined in an airway cell line by the addition of NaCl, NaBr, LiCl, mannitol, or xylitol (295–700 mOsm). Transepithelial resistance was measured as an indicator of the tightness of the cultures. Cell-cell contacts and morphology were investigated by immunofluorescence and by transmission electron microscopy, with lanthanum nitrate added to the luminal side of the epithelium to investigate tight junction permeability. The electrolyte solutions caused a significant decrease in transepithelial resistance from 450 mOsm upwards, when the hyperosmolar exposure was gradually increased from 295 to 700 mOsm; whereas the nonelectrolyte solutions caused a decrease in transepithelial resistance from 700 mOsm upwards. Old cultures reacted in a more rigid way compared to young cultures. Immuno-fluorescence pictures showed weaker staining for the proteins ZO-1, claudin-4, and plakoglobin in treated samples compared to the control. The ultrastructure revealed an increased number of open tight junctions as well as a disturbed morphology with increasing osmolarity, and electrolyte solutions opened a larger proportion of tight junctions than nonelectrolyte solutions. This study shows that hyperosmotic solutions cause the opening of tight junctions, which may increase the permeability of the paracellular pathway and result in increased transepithelial water transport. This study was supported by the Swedish Asthma and Allergy Association and the Swedish Heart Lung Foundation.  相似文献   

13.
The effect of the uncoupler of oxidative phosphorylation, FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone), on the tight junction of Madin-Darby canine kidney cells was examined. FCCP induced an abrupt decrease in the transepithelial electrical resistance of the confluent monolayers over a period of 20 s. When FCCP was withdrawn from the incubation medium, the monolayer resistance recovered to close to the original level in less than 2 h. Staining of the tight junction-associated protein ZO-1 showed that the changes in transepithelial electrical resistance were accompanied by a diffusing of the protein away from cell peripheries and a reconcentration to the tight junction areas following resistance recovery. Intracellular pH was decreased by FCCP on a similar time-scale with no obvious changes in ATP levels over this time-course. These data suggest that the uncoupler FCCP has a profound effect on tight junction permeability and cellular distribution of the tight junction protein ZO-1 in the epithelial cells and that it probably acts by breaking down proton gradients and altering intracellular pH.  相似文献   

14.
Vectorial transport in the thyroid epithelium requires an efficient barrier against passive paracellular flux, a role which is principally performed by the tight junction (zonula occludens). There is increasing evidence that tight junction integrity is determined by integral and peripheral membrane proteins which interact with the cell cytoskeleton. Although the contribution of the actin cytoskeleton to tight junction physiology has been intensively studied, less is known about possible interactions with microtubules. In the present study we used electrophysiological and immunohistochemical approaches to investigate the contribution of microtubules to the paracellular barrier in cultured thyroid cell monolayers which displayed a high transepithelial electrical resistance (6000-9000 ohm · cm2). Colchicine (1 μM) caused a progressive fall in electrical resistance to <10% of baseline after 6 h and depolarization of the transepithelial electrical potential difference consistent with a significant increase in paracellular permeability. The effect of colchicine on TER was not affected by agents which inhibit the major apical conductances of thyroid cells but was reversed upon removal of the drug. Immunofluorescent staining for tubulin combined with confocal laser scanning microscopy demonstrated that thyroid cells possessed a dense microtubule network extending throughout the cytoplasm which was destroyed by colchicine. Colchicine also produced changes in the localization of the tight junction-associated protein, ZO-1: its normally continuous junctional distribution was disrupted by striking discontinuities and the appearance of many fine strands which extended into the cytoplasm. A similar disruption in E-cadherin staining was also observed, but colchicine did not affect the distribution of vinculin associated with adherens junctions nor the integrity of the perijunctional actin ring. We conclude that microtubules are necessary for the functional and structural integrity of tight junctions in this electrically tight, transporting epithelium.  相似文献   

15.
The development of a culture of the normal mammalian jejunum motivated this work. Isolated crypt cells of the dog jejunum were induced to form primary cultures on Snapwell filters. Up to seven subcultures were studied under the electron microscope and in Ussing chambers. Epithelial markers were identified by RT-PCR, Western blot, and immunofluorescent staining. Confluent monolayers exhibit a dense apical brush border, basolateral membrane infoldings, desmosomes, and tight junctions expressing zonula occludens-1, occludin-1, and claudin-3 and -4. In OptiMEM medium fortified with epidermal growth factor, hydrocortisone, and insulin, monolayer transepithelial voltage was -6.8 mV (apical side), transepithelial resistance was 1,050 Omega.cm(2), and short-circuit current (I(sc)) was 8.1 microA/cm(2). Transcellular and paracellular resistances were estimated as 14.8 and 1.1 kOmega.cm(2), respectively. Serosal ouabain reduced voltage and current toward zero, as did apical amiloride. The presence of mRNA of alpha-epithelial Na(+) channel (ENaC) was confirmed. Na-d-glucose cotransport was identified with an antibody to Na(+)-glucose cotransporter (SGLT) 1. The unidirectional mucosa-to-serosa Na(+) flux (19 nmol.min(-1).cm(-2)) was two times as large as the reverse flux, and net transepithelial Na(+) flux was nearly double the amiloride-sensitive I(sc). In plain Ringer solution, the amiloride-sensitive I(sc) went toward zero. Under these conditions plus mucosal amiloride, serosal dibutyryl-cAMP elicited a Cl(-)-dependent I(sc) consistent with the stimulation of transepithelial Cl(-) secretion. In conclusion, primary cultures and subcultures of the normal mammalian jejunum form polarized epithelial monolayers with 1) the properties of a leaky epithelium, 2) claudins specific to the jejunal tight junction, 3) transepithelial Na(+) absorption mediated in part by SGLT1 and ENaC, and 4) electrogenic Cl(-) secretion activated by cAMP.  相似文献   

16.
Phospholipase C-gamma (PLC-gamma) is stimulated by epidermal growth factor via activation of the epidermal growth factor receptors. The PLC inhibitor, 3-nitrocoumarin (3-NC), selectively inhibited PLC-gamma in Madin-Darby canine kidney cells without affecting the activity of PLC-beta. In contrast, inhibitors of PLC-beta, hexadecylphosphocholine and, had no effect on the activity of PLC-gamma. Inhibition of PLC-gamma by 3-NC was associated with an increase in tight junction permeability across Madin-Darby canine kidney cell monolayers, as evidenced by 3-NC-induced decrease in transepithelial electrical resistance and increase in mannitol flux over a concentration range that was inhibitory to PLC-gamma. An analog of 3-NC, 7-hydroxy-3-NC (7-OH-3-NC), which was inactive as an inhibitor of PLC-gamma, also had no effect on tight junction permeability. Treatment with 3-NC caused punctate disruption in the cortical actin filaments. The PLC-gamma inhibitor, 3-NC, but not the inactive analog, 7-OH-3-NC, caused hyperphosphorylation of the tight junction proteins, occludin, ZO-1, and ZO-2. The serine/threonine kinase inhibitor, staurosporine (50-200 nm), significantly attenuated 3-NC-induced hyperphosphorylation of ZO-2. This corresponded with attenuation by staurosporine of 3-NC-induced increase in tight junction permeability, suggesting a relationship between ZO-2 phosphorylation and tight junction permeability.  相似文献   

17.
The effects of mucosal application of 1 mg% Alcian blue (a trivalent cationic phthalocyanine dye) on functional and ultrastructural parameters of the isolated rabbit gallbladder have been studied. Apart from minor changes in the shape of the group of central microvilli observed in thin-section electron microscopy and scanning electron microscopy, the major ultrastructural change induced by Alcian blue was an almost complete collapse of intercellular spaces in the region above the tight junctions up to the bases of the marginal microvilli as revealed by thin-section electron microscopy. Freeze-fracture electron microscopy demonstrated a complete disappearance of intramembrane particles of neighboring cell membranes corresponding to the region of interspace collapse. Transepithelial electrical resistance (RT) increased from 44.5 to 58.7 ohm . cm2 upon treatment with Alcian blue. This increase could be well accounted for by the observed structural changes in the paracellular pathway if this pathway determines the low resistance of the rabbit gallbladder epithelium. Despite the increase in RT, net mucosa-to-serosa fluid transport and the spontaneous mucosa- positive potential difference of 3 mV were unaltered by Alcian blue treatment, supporting the hypothesis that the transepithelial transport mechanism per se is electroneutral. A calculation of the maximal paracellular mucosa-to-serosa waterflow in response to a lateral intercellular space hypertonicity of 20 mosM demonstrates that in the Alcian blue-treated gallbladder the resulting figure is about three orders of magnitude too low to keep up with the unaltered spontaneous transepithelial net fluid transport. It is therefore concluded that the tight junction pathway in rabbit gallbladders does not serve as a route for net fluid transport.  相似文献   

18.
Oxidative stress compromises the tight junction, but the mechanisms underlying its recovery remain unclear. We developed a model in which oxidative stress reversibly disrupts the tight junction. Exposure of Madin-Darby canine kidney cells to hydrogen peroxide markedly reduced transepithelial resistance and disrupted the staining patterns of the tight junction proteins ZO-1 and occludin. These changes were reversed by catalase. The short-term reassembly of tight junctions was not dependent on new protein synthesis, suggesting that recovery occurs through re-utilization of existing proteins. Although ATP levels were reduced, the reduction was insufficient to explain the observed changes, since a comparable reduction of ATP levels (with 2-deoxy-D-glucose) did not induce these changes. The intracellular hydrogen peroxide scavenger pyruvate protected Madin-Darby canine kidney cells from loss of transepithelial resistance as did the heavy metal scavenger N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine. Of a wide variety of agents examined, only tyrosine kinase inhibitors and protein kinase C inhibitors markedly inhibited tight junction reassembly. During reassembly, tyrosine phosphorylation in or near the lateral membrane, was detected by immunofluorescence. The tyrosine kinase inhibitors genistein and PP-2 inhibited the recovery of transepithelial resistance and perturbed the relocalization of ZO-1 and occludin to the tight junction, indicating that tyrosine kinases, possibly members of the Src family, are critical for reassembly after oxidative stress.  相似文献   

19.
The features of the paracellular pathway, an important route for the transfer of ions and molecules in epithelia, are in insects still poorly investigated and it has not yet been elucidated how the septate junction (SJ) acts as a transepithelial barrier. In this study, some properties of the paracellular pathway of Bombyx mori larval midgut, isolated in Ussing chambers, were determined and the modulation of SJ permeability by intracellular events disclosed. Diffusion potentials evoked by transepithelial gradients of different salts indicated that the junction bore weak negative charges and that the paracellular pathway was selective with respect to ion charge and size. In standard conditions, the transepithelial resistance was 28.2+/-2.1 Omega cm(2), a value indicating that the midgut is a low resistance epithelium. The modulation of midgut SJ by typical enhancers of mammalian tight junction permeability known to act on the cytoskeleton was studied by measuring the shunt resistance and the lumen-to-haemolymph flux of sucrose. An increase of the intracellular level of cAMP and Ca(2+) caused a significant decrease of the shunt resistance and an increase of SJ permeability. The attenuation of Ca(2+) effect in the presence of the calcium channel blocker nifedipine indicated that the influx of external Ca(2+) into the cytoplasm was important for the opening of the SJ, as well as the release of Ca(2+) from the intracellular stores.  相似文献   

20.
Defective intestinal epithelial tight junction (TJ) barrier has been shown to be an important pathogenic factor contributing to the development of intestinal inflammation. The expression of occludin is markedly decreased in intestinal permeability disorders, including in Crohn's disease, ulcerative colitis, and celiac disease, suggesting that the decrease in occludin expression may play a role in the increase in intestinal permeability. The purpose of this study was to delineate the involvement of occludin in intestinal epithelial TJ barrier by selective knock down of occludin in in vitro (filter-grown Caco-2 monolayers) and in vivo (recycling perfusion of mouse intestine) intestinal epithelial models. Our results indicated that occludin small-interfering RNA (siRNA) transfection causes an increase in transepithelial flux of various-sized probes, including urea, mannitol, inulin, and dextran, across the Caco-2 monolayers, without affecting the transepithelial resistance. The increase in relative flux rate was progressively greater for larger-sized probes, indicating that occludin depletion has the greatest effect on the flux of large macromolecules. siRNA-induced knock down of occludin in mouse intestine in vivo also caused an increase in intestinal permeability to dextran but did not affect intestinal tissue transepithelial resistance. In conclusion, these results show for the first time that occludin depletion in intestinal epithelial cells in vitro and in vivo leads to a selective or preferential increase in macromolecule flux, suggesting that occludin plays a crucial role in the maintenance of TJ barrier through the large-channel TJ pathway, the pathway responsible for the macromolecule flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号