首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The SLC22 family includes organic anion transporters (OATs), organic cation transporters (OCTs) and organic carnitine and zwitterion transporters (OCTNs). These are often referred to as drug transporters even though they interact with many endogenous metabolites and signaling molecules (Nigam, S.K., Nature Reviews Drug Discovery, 14:29–44, 2015). Phylogenetic analysis of SLC22 supports the view that these transporters may have evolved over 450 million years ago. Many OAT members were found to appear after a major expansion of the SLC22 family in mammals, suggesting a physiological and/or toxicological role during the mammalian radiation. Putative SLC22 orthologs exist in worms, sea urchins, flies, and ciona. At least six groups of SLC22 exist. OATs and OCTs form two Major clades of SLC22, within which (apart from Oat and Oct subclades), there are also clear Oat-like, Octn, and Oct-related subclades, as well as a distantly related group we term “Oat-related” (which may have different functions). Based on available data, it is arguable whether SLC22A18, which is related to bacterial drug-proton antiporters, should be assigned to SLC22. Disease-causing mutations, single nucleotide polymorphisms (SNPs) and other functionally analyzed mutations in OAT1, OAT3, URAT1, OCT1, OCT2, OCTN1, and OCTN2 map to the first extracellular domain, the large central intracellular domain, and transmembrane domains 9 and 10. These regions are highly conserved within subclades, but not between subclades, and may be necessary for SLC22 transporter function and functional diversification. Our results not only link function to evolutionarily conserved motifs but indicate the need for a revised sub-classification of SLC22.  相似文献   

2.
Mammals express seven transporters from the SLC1 (solute carrier 1) gene family, including five acidic amino acid transporters (EAAT1–5) and two neutral amino acid transporters (ASCT1–2). In contrast, insects of the order Diptera possess only two SLC1 genes. In this work we show that in the mosquito Culex quinquefasciatus, a carrier of West Nile virus, one of its two SLC1 EAAT-like genes encodes a transporter that displays an unusual selectivity for dicarboxylic acids over acidic amino acids. In eukaryotes, dicarboxylic acid uptake has been previously thought to be mediated exclusively by transporters outside the SLC1 family. The dicarboxylate selectivity was found to be associated with two residues in transmembrane domain 8, near the presumed substrate binding site. These residues appear to be conserved in all eukaryotic SLC1 transporters (Asp444 and Thr448, human EAAT3 numbering) with the exception of this novel C. quinquefasciatus transporter and an ortholog from the yellow fever mosquito Aedes aegypti, in which they are changed to Asn and Ala. In the prokaryotic EAAT-like SLC1 transporter DctA, a dicarboxylate transporter which was lost in the lineage leading to eukaryotes, the corresponding TMD8 residues are Ser and Ala. Functional analysis of engineered mutant mosquito and human transporters expressed in Xenopus laevis oocytes provide support for a model defining interactions of charged and polar transporter residues in TMD8 with α-amino acids and ions. Together with the phylogenetic evidence, the functional data suggest that a novel route of dicarboxylic acid uptake evolved in these mosquitos by mutations in an ancestral glutamate transporter gene.  相似文献   

3.
Amphetamine (AMPH) and its derivatives are regularly used in the treatment of a wide array of disorders such as attention-deficit hyperactivity disorder (ADHD), obesity, traumatic brain injury, and narcolepsy (Prog Neurobiol 75:406–433, 2005; J Am Med Assoc 105:2051–2054, 1935; J Am Acad Child Adolesc Psychiatry 41:514–521, 2002; Neuron 43:261–269, 2004; Annu Rev Pharmacol Toxicol 47:681–698, 2007; Drugs Aging 21:67–79, 2004). Despite the important medicinal role for AMPH, it is more widely known for its psychostimulant and addictive properties as a drug of abuse. The primary molecular targets of AMPH are both the vesicular monoamine transporters (VMATs) and plasma membrane monoamine—dopamine (DA), norepinephrine (NE), and serotonin (5-HT)—transporters. The rewarding and addicting properties of AMPH rely on its ability to act as a substrate for these transporters and ultimately increase extracellular levels of monoamines. AMPH achieves this elevation in extracellular levels of neurotransmitter by inducing synaptic vesicle depletion, which increases intracellular monoamine levels, and also by promoting reverse transport (efflux) through plasma membrane monoamine transporters (J Biol Chem 237:2311–2317, 1962; Med Exp Int J Exp Med 6:47–53, 1962; Neuron 19:1271–1283, 1997; J Physiol 144:314–336, 1958; J Neurosci 18:1979–1986, 1998; Science 237:1219–1223, 1987; J Neurosc 15:4102–4108, 1995). This review will focus on two important aspects of AMPH-induced regulation of the plasma membrane monoamine transporters—transporter mediated monoamine efflux and transporter trafficking.  相似文献   

4.
Organic cation transporter 1 (OCT1, SLC22A1), like many solute carrier 22 (SLC22) family members, is important for the disposition of clinically important drugs, metabolites and signaling molecules. Several studies suggest that SLC22 family (eg. organic anion transporters or OATs and OCTs) bind and possibly transport prostaglandins with relatively high affinity (submicromolar). The affinities of OCT1 and OATs toward PGE2 and PGF2a reported in these cell-based transport studies are considerably greater than for xenobiotics and natural metabolite substrates—in many cases over 100-fold higher. This raises the possibility that prostaglandins are key endogenous substrates and/or that they act on the transporter in a manner different from other substrates such as xenobiotics and lower affinity metabolites. To further investigate OCT1—prostaglandin interactions, we designed biophysical studies using purified bovine OCT1 (Bos taurus, btOCT1/SLC22A1) with PGE2 analogs, in fluorescently labeled and label-free formats. Using fluorescence polarization (FP), we detected a binding of btOCT1 to the PGE2-Rhodamine conjugate at submicromolar affinity, consistent with affinity data for PGE2 from cells over-expressing the related human OCT1. Using purified native btOCT1 as analyte and biotinylated PGE2 analog as ligand, our data from surface plasmon resonance (SPR) revealed that btOCT1 specifically interacts to PGE2 with KD values in the hundred nanomolar range. BtOCT1 also demonstrated a slow association (ka) in the range of 103 M-1s-1 and an even slower dissociation rate (kd) in the range of 10−4 s-1 for PGE2, suggesting the possibility of a different mode of binding compared to other structurally unrelated transported substrates of low-affinity (eg. drugs, metabolites). Our results complement in vitro transport studies and provide direct evidence that OCT1—which is normally expressed in liver and other tissues—interacts with prostaglandin analogs. While it is not entirely clear from the published literature whether OCTs function as major prostaglandin transporters, the tight binding of the naturally occurring PGE2, as well as the slow dissociation rate, could conceivably affect the transport of lower affinity substrates such as drugs and metabolites by SLC22 transporters. More research is necessary to establish the extent to which individual SLC22 family members actually function as PG transporters in vitro and in vivo and to investigate whether PGs can, independent of being directly transported, alter the ability of SLC22 transporters to handle drugs and other substrates.  相似文献   

5.
Uric acid (urate) is the end product of purine metabolism in humans. Human kidneys reabsorb a large proportion of filtered urate. This extensive renal reabsorption, together with the fact that humans do not possess uricase that catalyzes the biotransformation of urate into allantoin, results in a higher plasma urate concentration in humans compared to other mammals. A major determinant of plasma urate concentration is renal excretion as a function of the balance between reabsorption and secretion. We previously identified that renal urate absorption in proximal tubular epithelial cells occurs mainly via apical urate/anion exchanger, URAT1/SLC22A12, and by facilitated diffusion along the trans-membrane potential gradient by the basolateral voltage-driven urate efflux transporter, URATv1/SLC2A9/GLUT9. In contrast, the molecular mechanism by which renal urate secretion occurs remains elusive. Recently, we reported a newly characterized human voltage-driven drug efflux transporter, hNPT4/SLC17A3, which functions as a urate exit pathway located at the apical side of renal proximal tubules. This transporter protein has been hypothesized to play an important role with regard to net urate efflux. An in vivo role of hNPT4 is supported by the fact that missense mutations in SLC17A3 present in hyperuricemia patients with urate underexcretion abolished urate efflux capacity in vitro. Herein, we report data demonstrating that loop diuretics and thiazide diuretics substantially interact with hNPT4. These data provide molecular evidence for loop and thiazide-diuretics-induced hyperuricemia. Thus, we propose that hNPT4 is an important transepithelial proximal tubular transporter that transports diuretic drugs and operates functionally with basolateral organic anion transporters 1/3 (OAT1/OAT3).  相似文献   

6.
Renal proximal tubules secrete diverse organic anions (OA) including widely prescribed anionic drugs. Here, we review the molecular properties of cloned transporters involved in uptake of OA from blood into proximal tubule cells and provide extensive lists of substrates handled by these transport systems. Where tested, transporters have been immunolocalized to the basolateral cell membrane. The sulfate anion transporter 1 (sat-1) cloned from human, rat and mouse, transported oxalate and sulfate. Drugs found earlier to interact with sulfate transport in vivo have not yet been tested with sat-1. The Na+-dicarboxylate cotransporter 3 (NaDC-3) was cloned from human, rat, mouse and flounder, and transported three Na+ with one divalent di- or tricarboxylate, such as citric acid cycle intermediates and the heavy metal chelator 2,3-dimercaptosuccinate (succimer). The organic anion transporter 1 (OAT1) cloned from several species was shown to exchange extracellular OA against intracellular α-ketoglutarate. OAT1 translocated, e.g., anti-inflammatory drugs, antiviral drugs, β-lactam antibiotics, loop diuretics, ochratoxin A, and p-aminohippurate. Several OA, including probenecid, inhibited OAT1. Human, rat and mouse OAT2 transported selected anti-inflammatory and antiviral drugs, methotrexate, ochratoxin A, and, with high affinities, prostaglandins E2 and F. OAT3 cloned from human, rat and mouse showed a substrate specificity overlapping with that of OAT1. In addition, OAT3 interacted with sulfated steroid hormones such as estrone-3-sulfate. The driving forces for OAT2 and OAT3, the relative contributions of all OA transporters to, and the impact of transporter regulation by protein kinases on renal drug excretion in vivo must be determined in future experiments. Electronic Publication  相似文献   

7.
The evolutionary loss of hepatic urate oxidase (uricase) has resulted in humans with elevated serum uric acid (urate). Uricase loss may have been beneficial to early primate survival. However, an elevated serum urate has predisposed man to hyperuricemia, a metabolic disturbance leading to gout, hypertension, and various cardiovascular diseases. Human serum urate levels are largely determined by urate reabsorption and secretion in the kidney. Renal urate reabsorption is controlled via two proximal tubular urate transporters: apical URAT1 (SLC22A12) and basolateral URATv1/GLUT9 (SLC2A9). In contrast, the molecular mechanism(s) for renal urate secretion remain unknown. In this report, we demonstrate that an orphan transporter hNPT4 (human sodium phosphate transporter 4; SLC17A3) was a multispecific organic anion efflux transporter expressed in the kidneys and liver. hNPT4 was localized at the apical side of renal tubules and functioned as a voltage-driven urate transporter. Furthermore, loop diuretics, such as furosemide and bumetanide, substantially interacted with hNPT4. Thus, this protein is likely to act as a common secretion route for both drugs and may play an important role in diuretics-induced hyperuricemia. The in vivo role of hNPT4 was suggested by two hyperuricemia patients with missense mutations in SLC17A3. These mutated versions of hNPT4 exhibited reduced urate efflux when they were expressed in Xenopus oocytes. Our findings will complete a model of urate secretion in the renal tubular cell, where intracellular urate taken up via OAT1 and/or OAT3 from the blood exits from the cell into the lumen via hNPT4.  相似文献   

8.
Cellular uptake of di- and tripeptides has been characterized in numerous organisms, and various transporters have been identified. In contrast, structural information on peptide transporters is very sparse. Here, we have cloned, overexpressed, purified, and biochemically characterized DtpD (YbgH) from Escherichia coli, a prokaryotic member of the peptide transporter family. Its homologues in mammals, PEPT1 (SLC15A1) and PEPT2 (SLC15A2), not only transport peptides but also are of relevance for uptake of drugs as they accept a large spectrum of peptidomimetics such as β-lactam antibiotics, antivirals, peptidase inhibitors, and others as substrates. Uptake experiments indicated that DtpD functions as a canonical peptide transporter and is, therefore, a valid model for structural studies of this family of proteins. Blue native polyacrylamide gel electrophoresis, gel filtration, and transmission electron microscopy of single-DtpD particles suggest that the transporter exists in a monomeric form when solubilized in detergent. Two-dimensional crystallization of DtpD yielded first tubular crystals that allowed the determination of a projection structure at better than 19 Å resolution. This structure of DtpD represents the first structural view of a member of the peptide transporter family.  相似文献   

9.
We have cloned two new lepidopteran octopamine transporters (OATs), members of the solute-linked carrier family 6 (SLC6) of nutrient transporters, from the CNS of the European corn borer Ostrinia nubilalis and the cabbage white Pieris rapae. Comparison of these sequences with the previously cloned OAT from the cabbage looper Trichoplusia ni showed that the T. ni OAT sequence previously reported was truncated by 74 amino acids at the N-terminus. The cytoplasmic N-termini deduced here are considerably longer than the N-termini of other monoamine transporters in the SLC6 family and contain many more high-probability serine- and threonine-phosphorylation sites. Monoamine uptake and competitive inhibition studies on baculovirus-infected Sf9 cells expressing these three cloned OATs indicate that they are able to transport tyramine, octopamine and dopamine with high affinity (K(m) and K(i) range, 0.4 microM-2.7 microM) and capacity ((3)H-dopamine uptake by TrnOAT, 2.5 pmol/well/min). We aimed to examine the role of the N-terminus of OAT by comparing the properties of the full-length T. ni OAT with those of the previously reported N-truncated version. Results for the new full-length T. ni OAT showed no difference in the protein's affinity for octopamine or dopamine, although at low levels of viral infection it did show slightly higher transport activity ((3)H-dopamine uptake by truncated TrnOAT, 1.5 pmol/well/min). Treatment of Sf9 cells expressing full-length or truncated TrnOAT with a variety of protein kinase activators and inhibitors, however, did not change transporter activity. Neither an intact N-terminus, nor apparently a particular phosphorylation state of this extended N-terminus, is required for OAT to transport monoamines.  相似文献   

10.

Background

Zinc is an essential trace element in organisms, which serves as a cofactor for hundreds of enzymes that are involved in many pivotal biological processes including growth, development, reproduction and immunity. Therefore, the homeostasis of zinc in the cell is fundamental. The zinc transporter gene family is a large gene family that encodes proteins which regulate the movement of zinc across cellular and intracellular membranes. However, studies on teleost zinc transporters are mainly limited to model species.

Methodology/Principal Findings

We identified a set of 37 zinc transporters in common carp genome, including 17 from SLC30 family (ZnT), and 20 from SLC39 family (ZIP). Phylogenetic and syntenic analysis revealed that most of the zinc transporters are highly conserved, though recent gene duplication and gene losses do exist. Through examining the copy number of zinc transporter genes across several vertebrate genomes, thirteen zinc transporters in common carp are found to have undergone the gene duplications, including SLC30A1, SLC30A2, SLC30A5, SLC30A7, SLC30A9, SLC30A10, SLC39A1, SLC39A3, SLC39A4, SLC39A5, SLC39A6, SLC39A7 and SLC39A9. The expression patterns of all zinc transporters were established in various tissues, including blood, brain, gill, heart, intestine, liver, muscle, skin, spleen and kidney, and showed that most of the zinc transporters were ubiquitously expressed, indicating the critical role of zinc transporters in common carp.

Conclusions

To some extent, examination of gene families with detailed phylogenetic or orthology analysis could verify the authenticity and accuracy of assembly and annotation of the recently published common carp whole genome sequences. The gene families are also considered as a unique source for evolutionary studies. Moreover, the whole set of common carp zinc transporters provides an important genomic resource for future biochemical, toxicological and physiological studies of zinc in teleost.  相似文献   

11.
Polyspecific organic cation and anion transporters of the SLC22 protein family are critically involved in absorption and excretion of drugs. To elucidate transport mechanisms, functional and biophysical characterization of purified transporters is required and tertiary structures must be determined. Here, we synthesized rat organic cation transporters OCT1 and OCT2 and rat organic anion transporter OAT1 in a cell free system in the absence of detergent. We solubilized the precipitates with 2% 1-myristoyl-2-hydroxy- sn-glycero-3-[phospho- rac-(1-glycerol)] (LMPG), purified the transporters in the presence of 1% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) or octyl glucoside, and reconstituted them into proteoliposomes. From 1 mL reaction vessels 0.13-0.36 mg of transporter proteins was purified. Thus, from five to ten 1 mL reaction vessels sufficient protein for crystallization was obtained. In the presence of 1% LMPG and 0.5% CHAPS, OCT1 and OAT1 formed homo-oligomers but no hetero-oligomers. After reconstitution of OCT1, OCT2, and OAT1 into proteoliposomes, similar Michaelis-Menten K m values were measured for uptake of 1-methyl-4-phenylpyridinium and p-aminohippurate (PAH (-)) by the organic cation and anion transporters, respectively, as after expression of the transporters in cells. Using the reconstituted system, evidence was obtained that OAT1 operates as obligatory and electroneutral PAH (-)/dicarboxylate antiporter and contains a low-affinity chloride binding site that stimulates turnover. PAH (-) uptake was observed only with alpha-ketoglutarate (KG (2-)) on the trans side, and trans-KG (2-) increased the PAH (-) concentration in voltage-clamped proteoliposomes transiently above equilibrium. The V max of PAH (-)/KG (2-) antiport was increased by Cl (-) in a manner independent of gradients, and PAH (-)/KG (2-) antiport was independent of membrane potential in the absence or presence of Cl (-).  相似文献   

12.
Many major facilitator superfamily (MFS) transporters have similar 12-transmembrane alpha-helical topologies with two six-helix halves connected by a long loop. In humans, these transporters participate in key physiological processes and are also, as in the case of members of the organic anion transporter (OAT) family, of pharmaceutical interest. Recently, crystal structures of two bacterial representatives of the MFS family--the glycerol-3-phosphate transporter (GlpT) and lac-permease (LacY)--have been solved and, because of assumptions regarding the high structural conservation of this family, there is hope that the results can be applied to mammalian transporters as well. Based on crystallography, it has been suggested that a major conformational "switching" mechanism accounts for ligand transport by MFS proteins. This conformational switch would then allow periodic changes in the overall transporter configuration, resulting in its cyclic opening to the periplasm or cytoplasm. Following this lead, we have modeled a possible "switch" mechanism in GlpT, using the concept of rotation of protein domains as in the DynDom program17 and membranephilic constraints predicted by the MAPAS program.(23) We found that the minima of energies of intersubunit interactions support two alternate positions consistent with their transport properties. Thus, for GlpT, a "tilt" of 9 degrees -10 degrees rotation had the most favorable energetics of electrostatic interaction between the two halves of the transporter; moreover, this confirmation was sufficient to suggest transport of the ligand across the membrane. We conducted steered molecular dynamics simulations of the GlpT-ligand system to explore how glycerol-3-phosphate would be handled by the "tilted" structure, and obtained results generally consistent with experimental mutagenesis data. While biochemical data remain most consistent with a single-site alternating access model, our results raise the possibility that, while the "rocker switch" may apply to certain MFS transporters, intermediate "tilted" states may exist under certain circumstances or as transitional structures. Although wet lab experimental confirmation is required, our results suggest that transport mechanisms in this transporter family should probably not be assumed to be conserved simply based on standard structural homology considerations. Furthermore, steered molecular dynamics elucidating energetic interactions of ligands with amino acid residues in an appropriately modeled transporter may have predictive value in understanding the impact of mutations and/or polymorphisms on transporter function.  相似文献   

13.
Diesel exhaust particles (DEPs) are common environmental air pollutants primarily affecting the lung. DEPs or chemicals adsorbed on DEPs also exert extra-pulmonary effects, including alteration of hepatic drug detoxifying enzyme expression. The present study was designed to determine whether organic DEP extract (DEPe) may target hepatic drug transporters that contribute in a major way to drug detoxification. Using primary human hepatocytes and transporter-overexpressing cells, DEPe was first shown to strongly inhibit activities of the sinusoidal solute carrier (SLC) uptake transporters organic anion-transporting polypeptides (OATP) 1B1, 1B3 and 2B1 and of the canalicular ATP-binding cassette (ABC) efflux pump multidrug resistance-associated protein 2, with IC50 values ranging from approximately 1 to 20 μg/mL and relevant to environmental exposure situations. By contrast, 25 μg/mL DEPe failed to alter activities of the SLC transporter organic cation transporter (OCT) 1 and of the ABC efflux pumps P-glycoprotein and bile salt export pump (BSEP), whereas it only moderately inhibited those of sodium taurocholate co-transporting polypeptide and of breast cancer resistance protein (BCRP). Treatment by 25 μg/mL DEPe was next demonstrated to induce expression of BCRP at both mRNA and protein level in cultured human hepatic cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B3, OATP2B1, OCT1 and BSEP. Such changes in transporter expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a reference activator of the aryl hydrocarbon receptor (AhR) pathway. This suggests that DEPe, which is enriched in known ligands of AhR like polycyclic aromatic hydrocarbons, alters drug transporter expression via activation of the AhR cascade. Taken together, these data established human hepatic transporters as targets of organic chemicals containing in DEPs, which may contribute to their systemic effects through impairing hepatic transport of endogenous compound or drug substrates of these transporters.  相似文献   

14.
The oligopeptide transporter (OPT) family of peptide and iron-siderophore transporters includes members from both prokaryotes and eukaryotes but with restricted distribution in the latter domain. Eukaryotic members were found only in fungi and plants with a single slime mold homologue clustering with the fungal proteins. All functionally characterized eukaryotic peptide transporters segregate from the known iron-siderophore transporters on a phylogenetic tree. Prokaryotic members are widespread, deriving from many different phyla. Although they belong only to the iron-siderophore subdivision, genome context analyses suggest that many of them are peptide transporters. OPT family proteins have 16 or occasionally 17 transmembrane-spanning α-helical segments (TMSs). We provide statistical evidence that the 16-TMS topology arose via three sequential duplication events followed by a gene-fusion event for proteins with a seventeenth TMS. The proposed pathway is as follows: 2 TMSs → 4 TMSs → 8 TMSs → 16 TMSs → 17 TMSs. The seventeenth C-terminal TMS, which probably arose just once, is found in just one phylogenetic group of these homologues. Analyses for orthology revealed that a few phylogenetic clusters consist exclusively of orthologues but most have undergone intermixing, suggestive of horizontal transfer. It appears that in this family horizontal gene transfer was frequent among prokaryotes, rare among eukaryotes and largely absent between prokaryotes and eukaryotes as well as between plants and fungi. These observations provide guides for future structural and functional analyses of OPT family members.  相似文献   

15.
The ASCTs (alanine, serine, and cysteine transporters) belong to the solute carrier family 1 (SLC1), which also includes the human glutamate transporters (excitatory amino acid transporters, EAATs) and the prokaryotic aspartate transporter GltPh. Despite the high degree of amino acid sequence identity between family members, ASCTs function quite differently from the EAATs and GltPh. The aim of this study was to mutate ASCT1 to generate a transporter with functional properties of the EAATs and GltPh, to further our understanding of the structural basis for the different transport mechanisms of the SLC1 family. We have identified three key residues involved in determining differences between ASCT1, the EAATs and GltPh. ASCT1 transporters containing the mutations A382T, T459R, and Q386E were expressed in Xenopus laevis oocytes, and their transport and anion channel functions were investigated. A382T and T459R altered the substrate selectivity of ASCT1 to allow the transport of acidic amino acids, particularly l-aspartate. The combination of A382T and T459R within ASCT1 generates a transporter with a similar profile to that of GltPh, with preference for l-aspartate over l-glutamate. Interestingly, the amplitude of the anion conductance activated by the acidic amino acids does not correlate with rates of transport, highlighting the distinction between these two processes. Q386E impaired the ability of ASCT1 to bind acidic amino acids at pH 5.5; however, this was reversed by the additional mutation A382T. We propose that these residues differences in TM7 and TM8 combine to determine differences in substrate selectivity between members of the SLC1 family.  相似文献   

16.
OAT (organic anion transporter) 2 [human gene symbol SLC22A7 (SLC is solute carrier)] is a member of the SLC22 family of transport proteins. In the rat, the principal site of expression of OAT2 is the sinusoidal membrane domain of hepatocytes. The particular physiological function of OAT2 in liver has been unresolved so far. In the present paper, we have used the strategy of LC (liquid chromatography)-MS difference shading to search for specific and cross-species substrates of OAT2. Heterologous expression of human and rat OAT2 in HEK (human embryonic kidney)-293 cells stimulated accumulation of the zwitterion trigonelline; subsequently, orotic acid was identified as an excellent and specific substrate of OAT2 from the rat (clearance=106 μl·min?1·mg of protein?1) and human (46 μl·min?1·mg of protein?1). The force driving uptake of orotic acid was identified as glutamate antiport. Efficient transport of glutamate by OAT2 was directly demonstrated by uptake of [3H]glutamate. However, because of high intracellular glutamate, OAT2 operates as glutamate efflux transporter. Thus expression of OAT2 markedly increased the release of glutamate (measured by LC-MS) from cells, even without extracellular exchange substrate. Orotic acid strongly trans-stimulated efflux of glutamate. We thus propose that OAT2 physiologically functions as glutamate efflux transporter. OAT2 mRNA was detected, after laser capture microdissection of rat liver slices, equally in periportal and pericentral regions; previous reports of hepatic release of glutamate into blood can now be explained by OAT2 activity. A specific OAT2 inhibitor could, by lowering plasma glutamate and thus promoting brain-to-blood efflux of glutamate, alleviate glutamate exotoxicity in acute brain conditions.  相似文献   

17.
Role of glycosylation in the organic anion transporter OAT1   总被引:1,自引:0,他引:1  
Organic anion transporters (OAT) play essential roles in the body disposition of clinically important anionic drugs, including antiviral drugs, antitumor drugs, antibiotics, antihypertensives, and anti-inflammatories. We reported previously (Kuze, K., Graves, P., Leahy, A., Wilson, P., Stuhlmann, H., and You, G. (1999) J. Biol. Chem. 274, 1519-1524) that tunicamycin, an inhibitor of asparagine-linked glycosylation, significantly inhibited organic anion transport in COS-7 cells expressing a mouse organic anion transporter (mOAT1), suggesting an important role of glycosylation in mOAT1 function. In the present study, we investigated the effect of disrupting putative glycosylation sites in mOAT1 as well as its human counterpart, hOAT1, by mutating asparagine to glutamine and assessing mutant transporters in HeLa cells. We showed that the putative glycosylation site Asp-39 in mOAT1 was not glycosylated but the corresponding site (Asp-39) in hOAT1 was glycosylated. Disrupting Asp-39 resulted in a complete loss of transport activity in both mOAT1 and hOAT1 without affecting their cell surface expression, suggesting that the loss of function is not because of deglycosylation of Asp-39 per se but rather is likely because of the change of this important amino acid critically involved in the substrate binding. Single replacement of asparagines at other sites had no effect on transport activity indicating that glycosylation at individual sites is not essential for OAT function. In contrast, a simultaneous replacement of all asparagines in both mOAT1 and hOAT1 impaired the trafficking of the transporters to the plasma membrane. In summary, we provided the evidence that 1) Asp-39 is crucially involved in substrate recognition of OAT1, 2) glycosylation at individual sites is not required for OAT1 function, and 3) glycosylation plays an important role in the targeting of OAT1 onto the plasma membrane. This study is the first molecular identification and characterization of glycosylation of OAT1 and may provide important insights into the structure-function relationships of the organic anion transporter family.  相似文献   

18.
The molecular basis of the transport of organic ions (which include such medically important compounds as drugs, toxins, and metabolites) has been intensively studied ever since the identification of the prototypical anion and cation transporters, OAT1 (originally cloned by us as NKT) and OCT1. Here we report the cloning of two novel putative organic ion transporters with 12 predicted membrane spanning segments that are most homologous to mammalian OCTNs (carnitine transporters) and to the Drosophila putative transporter, Orct, an intriguing correspondence that led us to name our sequences Fly-like putative transporters (Flipts). Another transporter we cloned has recently been identified as OAT5. Inclusion of Flipts reveals that the organic ion transporter family tree has trifurcated into three branches, one bearing Flipts, OCTNs, and fly transporters, and the other two bearing OATs and OCTs. Flipts are widely expressed in adult kidney, brain, muscle, and other tissues; in contrast, OAT1 is largely in kidney, and OAT5, in liver. In the embryo as well, Flipts are broadly distributed, whereas OAT5 was found only in fetal liver. Flipt expression patterns resemble those of the phylogenetically related OCTNs, suggesting that Flipts might also participate in carnitine transport, particularly in brain, which has relatively high Flipt expression, including EST matches from amygdala, hippocampus, and hypothalamus.  相似文献   

19.
The "classical" organic anion secretory pathway of the renal proximal tubule is critical for the renal excretion of the prototypic organic anion, para-aminohippurate, as well as of a large number of commonly prescribed drugs among other significant substrates. Organic anion transporter 1 (OAT1), originally identified as NKT (Lopez-Nieto, C. E., You, G., Bush, K. T., Barros, E. J. G., Beier, D. R., and Nigam, S. K. (1997) J. Biol. Chem. 272, 6471-6478), has physiological properties consistent with a role in this pathway. However, several other transporters (e.g. OAT2, OAT3, and MRP1) have also been proposed as important PAH transporters on the basis of in vitro studies; therefore, the relative contribution of OAT1 has remained unclear. We have now generated a colony of OAT1 knock-out mice, permitting elucidation of the role of OAT1 in the context of these other potentially functionally redundant transporters. We find that the knock-out mice manifest a profound loss of organic anion transport (e.g. para-aminohippurate) both ex vivo (in isolated renal slices) as well as in vivo (as indicated by loss of renal secretion). In the case of the organic anion, furosemide, loss of renal secretion in the knock-out results in impaired diuretic responsiveness to this drug. These results indicate a critical role for OAT1 in the functioning of the classical pathway. In addition, we have determined the levels of approximately 60 endogenous organic anions in the plasma and urine of wild-type and knock-out mice. This has led to identification of several compounds with significantly higher plasma concentrations and/or lower urinary concentrations in knock-out mice, suggesting the involvement of OAT1 in their renal secretion. We have also demonstrated in xenopus oocytes that some of these compounds interact with OAT1 in vitro. Thus, these latter compounds might represent physiological substrates of OAT1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号