首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The specification of the dorsoventral axis in naturally polyspermic eggs of the Japanese newt, Cynops pyrrhogaster , was first examined by studies on the spatial relationship between the dorsal midline of the future body plan and the sperm entrance points (SEPs 1 ). On local insemination, the dorsal blastopore lip was usually found to be formed opposite the SEPs, as in anuran monospermic eggs. Next the movements of the subcortical layer and the cortex were analyzed. "Subcortical rotation" was observed, similar to that of Xenopus laevis eggs with respect to its timing and extent, and its direction was shown to predict the embryonic axis of the eggs. Thus, the dorsoventral axis was concluded to be determined by essentially the same mechanism in the newt as in Xenopus .
Owing to their large size and long first cell cycle, newt eggs appear to be suitable material for study of subcortical rotation, but their behavior is unique in that subcortical rotation occurs in only the vegetal hemisphere so that the subcortical layer stretches in the future dorsal side. Studies on the movement of Nile blue spots suggested that the cytoplasm under the cortex in newt eggs consists of two layers.  相似文献   

3.
Anti-tubulin antibodies and confocal immunofluorescence microscopy were used to examine the organization and regulation of cytoplasmic and cortical microtubules during the first cell cycle of fertilized Xenopus eggs. Appearance of microtubules in the egg cortex temporally coincided with the outgrowth of the sperm aster. Microtubules of the sperm aster first reached the animal cortex at 0.25, (times normalized to first cleavage), forming a radially organized array of cortical microtubules. A disordered network of microtubules was apparent in the vegetal cortex as early as 0.35. Cortical microtubule networks of both animal and vegetal hemispheres were reorganized at times corresponding to the cortical rotation responsible for specification of the dorsal-ventral (D-V) axis. Optical sections suggest that the cortical microtubules are continuous with the microtubules of the sperm aster in fertilized eggs, or an extensive activation aster in activated eggs. Neither assembly and organization, nor disassembly of the cortical microtubules coincided with MPF activation during mitosis. However, cycloheximide or 6-dimethylaminopurine, which arrest fertilized eggs at interphase, blocked cortical microtubule disassembly. Injection of p13, a protein that specifically inhibits MPF activation, delayed or inhibited cortical microtubule breakdown. In contrast, eggs injected with cyc delta 90, a truncated cyclin that arrest eggs in M-phase, showed normal microtubule disassembly. Finally, injection of partially purified MPF into cycloheximide-arrested eggs induced cortical microtubule breakdown. These results suggest that, despite a lack of temporal coincidence, breakdown of the cortical microtubules is dependent on the activation of MPF.  相似文献   

4.
The amphibian egg undergoes a rotation of its subcortical cytoplasm relative to its surface during the first cell cycle. Nile blue spots applied to the egg periphery move with the subcortical cytoplasm and make rotation directly observable (J.-P. Vincent, G.F. Oster, and J. C. Gerhart (1986). Dev. Biol. 113, 484). We have previously shown that the direction of rotation accurately predicts the orientation of the embryonic axis developed by the egg. This suggests an important role for subcortical rotation in axis specification. In this report, we provide two kinds of experimental evidence for the essential role of rotation, and against a role for other concurrent cytoplasmic movements such as the convergence of subcortical cytoplasm toward the sperm entry point in the animal hemisphere. First, dispermic eggs develop only one embryonic axis, which is oriented accurately in line with the direction of the single rotation movement and not with the two convergence foci that form in the animal hemisphere. Rotation probably modifies the vegetal, not animal, hemisphere since axial development is normal in dispermic eggs despite highly altered animal subcortical movement. Second, we show that the amount of rotation correlates with the extent of dorsal development. UV irradiation of the vegetal hemisphere, or cold shock of the egg, inhibits rotation effectively. When there is no rotation, there is no dorsal development. On average within the egg population, increasing amounts of rotation correlate with the increasingly anterior limit of the dorsal structures of the embryonic body axis. However, individual partially inhibited eggs vary greatly in the amount of axis formed following a given amount of movement. Furthermore, the egg normally rotates more than is necessary for the development of a complete axis. These findings suggest that rotation, although essential, does not directly pattern the antero-posterior dimension of the body axis, but triggers a response system which varies from egg to egg in its sensitivity to rotation. This system is artificially sensitized by exposure of the egg to D2O shortly before rotation. We show that D2O-treated eggs produce extensive axes despite very limited rotation, often developing into hyperdorsal embryos. However, like normal eggs, they depend on rotation and cannot form dorsal structures if it is eliminated.  相似文献   

5.
In eggs of Xenopus laevis, the meridian of sperm entry (SEP meridian), the direction of subcortical rotation, and the first cleavage furrow have been used to predict, with varying degrees of accuracy, the position of the plane of bilateral symmetry of the embryo. We show here that altering the shape of the uncleaved egg by lateral compression disrupts some of these topographical relationships in a reproducible way. The neural groove, which identifies the embryonic dorsal midline, usually forms at either of the two narrow ends of the compressed egg, regardless of the position of the SEP meridian, whereas the first cleavage furrow divides the compressed egg across its shorter dimension, regardless of the position of the SEP meridian. Thus the positions of the SEP meridian, the cleavage plane, and the embryonic bilateral plane can be completely uncoupled from each other. In contrast, the direction of subcortical rotation is usually parallel to the plane of compression and predicts the position of the neural groove in all cases. Since the direction of subcortical rotation and the plane of bilateral symmetry still correlate under conditions of compression, we conclude that subcortical rotation is the crucial early step in the process of axis specification.  相似文献   

6.
Following fertilization, the Xenopus egg cortex rotates relative to the cytoplasm by 30 degrees about a horizontal axis. The direction of rotation, and as a result the orientation of the embryonic body axes, is normally specified by the position of sperm entry. The mechanism of rotation appears to involve an array of aligned microtubules in the vegetal cortex (Elinson and Rowning, 1988, Devl Biol. 128, 185-197). We performed anti-tubulin immunofluorescence on sections to follow the formation of this array. Microtubules disappear rapidly from the egg following fertilization, and reappear first in the sperm aster. Surprisingly, astral microtubules then extend radially through both the animal and vegetal cytoplasm. The cortical array arises as they reach the vegetal cell surface. The eccentric position of the sperm aster gives asymmetry to the formation of the array and may explain its alignment since microtubules reaching the cortex tend to bend away from the sperm entry side. The radial polymerization of cytoplasmic microtubules is not dependent on the sperm aster or on the female pronucleus: similar but more symmetric patterns arise in artificially activated and enucleate eggs, slightly later than in fertilized eggs. These observations suggest that the cortical microtubule array forms as a result of asymmetric microtubule growth outward from cytoplasm to cortex and, since cortical and cytoplasmic microtubules remain connected throughout the period of the rotation, that the microtubules of the array rotate with the cytoplasm.  相似文献   

7.
Two UV-sensitive targets in dorsoanterior specification of frog embryos   总被引:3,自引:0,他引:3  
Previous work has shown that ultraviolet (UV) irradiation of fertilized frog eggs yields embryos that lack dorsal and anterior structures. The eggs fail to undergo the cortical/cytoplasmic rotation that specifies dorsoventral polarity, and they lack an array of parallel microtubules associated with the rotation. These eggs can be rescued by tilting with respect to gravity, and normal dorsoanterior development occurs. We find here that UV irradiation of Xenopus prophase I oocytes or Rana metaphase I oocytes also causes the dorsoanterior deficient syndrome, but the UV target is different from that in fertilized eggs. Tilting eggs, irradiated as oocytes, with respect to gravity, does not rescue dorsoanterior development, although lithium treatment does. The UV dose required to produce dorsoanterior deficiency for Rana metaphase I oocytes is much less than that for fertilized eggs, and the oocytes can form the array of parallel microtubules and undergo the cortical/cytoplasmic rotation after fertilization. Despite these features of normal development, no dorsoanterior structures form. While the UV target in fertilized eggs is thought to be the parallel microtubules (Elinson & Rowning, 1988; Devl Biol. 128, 185-197), the UV target in the oocytes may be a dorsal determinant.  相似文献   

8.
The initiation site of surface contraction waves (SCWs) was examined in fertilized, parthenogenetically activated and enucleated Xenopus eggs after either rotation through 90° off the vertical axis or injection of colchicine. In enucleated eggs, SCWs always started from a top site of the egg under all conditions examined. In fertilized or activated eggs, SCWs started, depending on the experimental conditions, from either the sperm entry point, the animal pole region located sideward or the top site of the egg. Histological examinations of fertilized and activated eggs revealed that the nucleus was in most cases positioned close to the initiation site of SCWs under various experimental conditions. It is suggested from these results that the egg cytoplasm has an intrinsic capability of causing the surface to generate SCWs, and that the nucleus is generally involved in localizing the initiation site of SCWs in fertilized or activated Xenopus eggs. A possible mechanism for localizing the initiation site of SCWs in Xenopus eggs is proposed.  相似文献   

9.
Dorsal-ventral (D-V) polarization in Xenopus eggs and embryos is achieved by passing through a series of complicated phenomena such as initial specification of the polarity before first cleavage, establishment of polarity during cleavage stages resulting in an acquisition of a unique developmental capacity by each blastomere, regional differentiation of mesoderm, and finally neural induction by Spemann's organizer. In order to gain an insight into basic mechanisms which govern D-V polarization, experimental modifications or perturbations of the body axis of embryos, including physical or chemical treatments of eggs, altered orientation of eggs under the normal gravity, centrifugation, manipulation of blastomeres, cytoplasmic withdrawal, and bisection or partial ligation of fertilized eggs are reviewed: all data are consistent with the concept that a cytoplasmic activity which becomes localized in the dorsal side of the egg is responsible or indispensable for the establishment of the D-V axis. The cytoplasmic activity is tentatively called "anterodorsal structure-forming activity." A model which explains the specification, establishment, and realization of D-V polarity in Xenopus laevis is proposed.  相似文献   

10.
 Cytoplasmic determinants that specify the fate of endoderm, muscle and epidermis cells are known to be localized in specific areas of fertilized eggs of ascidians. The presence of such cytoplasmic determinants in unfertilized eggs was demonstrated in previous studies, but no information has yet been proved about their distribution. To investigate the distribution of cytoplasmic determinants in unfertilized eggs, we devised a method for distinguishing the polarity of unfertilized eggs using vital staining and we performed cytoplasmic-transfer experiments by fusing blastomeres and cytoplasmic fragments from various identified regions of unfertilized eggs. Cytoplasmic fragments, that contained cortical and subcortical material, from five different positions along the animal-vegetal axis were prepared, and they were fused with a4.2 (presumptive-epidermis) or A4.1 (non-epidermis) blastomeres. The ectopic development of endoderm, muscle and epidermis cells that was promoted by the transplanted cytoplasm was assessed by examining the expression of alkaline phosphatase (ALP), myosin and epidermis-specific antigen, respectively. Differentiation of endoderm and muscle was observed at higher frequencies as cytoplasmic fragments closer to the vegetal pole were transplanted. Conversely, formation of epidermis was observed at higher frequencies as cytoplasmic fragments closer to the animal pole were transplanted. The results suggest that, in cortical and subcortical regions of unfertilized ascidian eggs, endoderm and muscle determinants are widely distributed along a gradient, with maximum activity at the vegetal pole, whilst epidermis determinants are also distributed along a gradient but with maximum activity at the animal pole. Recieved: 10 June 1996 / Accepted: 12 September 1996  相似文献   

11.
In Xenopus laevis , the dorsoventral axis of the embryo is specified by a 30° relative rotation between the cortex and the cytoplasm of the fertilized egg, and a cortical array of parallel microtubules may be part of the rotation machinery (7). The parallel microtubules are aligned with the sperm entry point in most of the eggs as expected, since the dorsoventral axis is usually defined by the sperm entry point. We show that gravity can play two roles in the formation of the dorsoventral axis. First, a simple 90° tilt off-axis before the start of the rotation overcomes the influence of the sperm and determines the orientation of the parallel microtubules. Second, a 90° tilt off-axis can specify the dorsoventral axis even in the absence of the parallel microtubules. Therefore, gravity can affect dorsoventral polarity by orienting the parallel microtubules or by moving cytoplasm directly without microtubules.  相似文献   

12.
Studies examining cytoplasmic and sperm nuclear transformations in sea urchin (Arbacia punctulata) eggs inseminated at different periods after ammonia activation have been caried out at the light- and electron-microscopic levels of observation. Arbaca eggs treated with ammonia-seawater demonstrated chromosome condensation after DNA synthesis and underwent a chromosome cycle similar to that described for Lytechinus [Mazia, 1947]. Cortical granule reaction, fertilization cone formation, and sperm aster development in eggs fertilized at 20 (interphase), 50 (prometaphase), and 180 (interphase) min after ammonia activation were structurally simialr to processes in untreated zygotes. Cyclical changes in the formation of fertilization cones and sperm asters, as reported for eggs fertilized after activation by agents that induce a cortical granule reaction, were not observed. Although sperm nuclear transformations were prolonged (14 vs 18 min), male pronuclei that developed in eggs fertilized 20 min after ammonia activation were morphologically similar to those observed in fertilized, untreated ova and incorporated 3H-thymidine. Sperm incorporated into eggs at 50 min after ammonia activation underwent nuclear envelope breakdown and chromatin despersion; however, 3H-thymidine incorporation was not observed, and male pronuclei rarely developed (less than 5% of all specimens examined). Subsequent to dispersion, the paternal chromatin condensed into chromosomes which were associated with an aster. These results demonstrate that although ammonia-activated eggs inseminated at interphase or prometaphase undergo similar cytoplasmic alterations, sperm nuclear transformations vary with the chromosome cycle of the egg.  相似文献   

13.
Heat-Induced Reversal of Dorsal-Ventral Polarity in Xenopus Eggs   总被引:2,自引:2,他引:0  
Heat-treatment of fertilized Xenopus laevis eggs at 30°C induced; 1. conspicuous concentration of the pigment toward the sperm entry point (SEP), 2. eccentric first cleavage furrow formation, and 3. reversal of the dorsal-ventral polarity of the embryos. The optimal treatment was for 2.5 min applied at 20 min postfertilization (p.f.). The rotation movement of the Nile-blue stained spots in the vegetal hemisphere of the heated eggs accurately located the future dorsal midline as in untreated embryos (ref. 22). Exposure of eggs to D2O also reversed the dorsal-ventral polarity of the embryo suggesting that stabilization of microtubules is involved in the dorsal-ventral axis reversal.  相似文献   

14.
Deep cytoplasmic rearrangements during early development in Xenopus laevis   总被引:4,自引:0,他引:4  
The egg of the frog Xenopus is cylindrically symmetrical about its animal-vegetal axis before fertilization. Midway through the first cell cycle, the yolky subcortical cytoplasm rotates 30 degrees relative to the cortex and plasma membrane, usually toward the side of the sperm entry point. Dorsal embryonic structures always develop on the side away from which the cytoplasm moves. Details of the deep cytoplasmic movements associated with the cortical rotation were studied in eggs vitally stained during oogenesis with a yolk platelet-specific fluorescent dye. During the first cell cycle, eggs labelled in this way develop a complicated swirl of cytoplasm in the animal hemisphere. This pattern is most prominent on the side away from which the vegetal yolk moves, and thus correlates in position with the prospective dorsal side of the embryo. Although the pattern is initially most evident near the egg's equator or marginal zone, extensive rearrangements associated with cleavage furrowing (cytoplasmic ingression) relocate portions of the swirl to vegetal blastomeres on the prospective dorsal side.  相似文献   

15.
"Spiral asters" composed of swirls of subcortical microtubules were recently described in fertilized eggs of the sea urchin Strongylocentrotus purpuratus. In our study, these structures did not occur at culture temperatures below 16 degrees C. When the culture temperature was elevated, however, "spiral asters" routinely appeared during a susceptible period before mitotic prophase when the sperm aster-diaster normally exists. A massive and protracted rotation of the cytoplasm (excluding an immobile cortex and perinuclear region) began within 1 min of exposure to elevated temperature. Fibrils of the "spiral aster" could be seen within this rotating mass even by bright-field microscopy. The identity of microtubules in these structures was confirmed by indirect immunofluorescence microscopy. A mechanistic association between "spiral aster" formation and cytoplasmic rotation was indicated by the simultaneous inhibitory effects of microtubule and dynein poisons. Inhibitors of microfilaments, however, had no effect. We infer that elevated temperature induces unique changes in the microtubules of the pre-prophase sperm aster-diaster, resulting in cytoplasmic rotation and the spiral configuration of microtubules. Comparative cytological evidence supports the idea that "spiral asters" do not normally occur in fertilized sea urchin eggs. Biogeographic evidence for S. purpuratus indicates that fertilization and development naturally occur below 15 degrees C, hence "spiral asters" in eggs of this species should be regarded as abnormalities induced in the laboratory by unnaturally elevated temperatures.  相似文献   

16.
Nuclei transplanted into unactivated amphibian eggs are known to condense into metaphase chromosomes whereas those transplanted into activated eggs decondense and enlarge. We have made cell-free cytoplasmic preparations from Rana pipiens eggs which can induce demembranated Xenopus laevis sperm to undergo changes similar to those seen in intact eggs. Sperm chromatin which is incubated for 3 hr in unactivated egg preparations made using a buffer containing 3 mM EGTA is induced to form metaphase chromosomes. However, decondensed interphase nuclei are formed when chromatin is incubated in unactivated egg preparations made without EGTA as well as in activated egg preparations. When Ca2+ ions are added to unactivated egg preparations made with EGTA, the preparations lose the ability to induce metaphase chromosome formation and become capable of decondensing sperm chromatin. Once the ability to decondense chromatin has developed, either in unactivated or activated egg preparations, it cannot be suppressed by the addition of EGTA. However, decondensation of sperm chromatin in activated egg preparations can be suppressed by the addition of unactivated egg preparations made with EGTA. In this case, the incubated sperm chromatin is induced to form metaphase chromosomes. These results may indicate that the chromosome condensation activity of unactivated egg cytoplasm can be sustained in cell-free preparations when Ca2+ ion levels are kept low, but when Ca2+ ion levels increase this activity is lost and replaced by a new activity which can decondense chromatin. Since this change in cytoplasmic activities is comparable to that occurring in the intact egg following fertilization, these results suggest that Ca2+ ions play a crucial role during activation in altering the cytoplasmic activities which control nuclear behavior.  相似文献   

17.
Xenopus eggs, artificially fertilized, were prevented from undergoing equilibrium rotation by incubation in medium containing ficoll. Three orientations were selected: normal, with animal pole uppermost; inverted, with vegetal pole away from gravity; and an off-axis orientation, with embryos tilted approximately 90 degrees from the animal-vegetal axis. At blastula stage 8, cells forming the blastocoelic roof were cultured in isolation as explants. These cells are normally fated to from epidermis ventrally and neural derivatives dorsally. Unexpectedly, in the fragments originating from inverted or 90 degrees-off-axis embryos, axial structures were found: notochord, somites, neural cells, cement glands, and sometimes sensory organs. Inverted eggs could be exploited in studies of mesodermal specification.  相似文献   

18.
19.
In a previous study, we identified Xenopus egg uroplakin III (xUPIII), a single-transmembrane protein that localized to lipid/membrane rafts and was tyrosine-phosphorylated upon fertilization. An antibody against the xUPIII extracellular domain abolishes fertilization, suggesting that xUPIII acts not only as tyrosine kinase substrate but also as a receptor for sperm. Previously, it has been shown that the protease cathepsin B can promote a transient Ca2+ release and egg activation as seen in fertilized eggs (Mizote, A., Okamoto, S., Iwao, Y., 1999. Activation of Xenopus eggs by proteases: possible involvement of a sperm protease in fertilization. Dev. Biol. 208, 79-92). Here, we show that activation of Xenopus eggs by cathepsin B is accompanied by tyrosine phosphorylation of egg-raft-associated Src, phospholipase Cgamma, and xUPIII. Cathepsin B also promotes a partial digestion of xUPIII both in vitro and in vivo. A synthetic xUPIII-GRR peptide, which contains a potential proteolytic site, inhibits the cathepsin-B-mediated proteolysis and tyrosine phosphorylation of xUPIII and egg activation. Importantly, this peptide also inhibits sperm-induced tyrosine phosphorylation of xUPIII and egg activation. Protease activity that digests xUPIII in an xUPIII-GRR peptide-sensitive manner is present in Xenopus sperm. Several protease inhibitors, which have been identified to be inhibitory toward Xenopus fertilization, are shown to inhibit sperm-induced tyrosine phosphorylation of xUPIII. Uroplakin Ib, a tetraspanin UP member, is found to be associated with xUPIII in egg rafts. Our results highlight novel mechanisms of fertilization signaling by which xUPIII serves as a potential target for sperm protease essential for fertilization.  相似文献   

20.
Incubation of demembranated sperm chromatin in cytoplasmic extracts of unfertilized Xenopus laevis eggs resulted in nuclear envelope assembly, chromosome decondensation, and sperm pronuclear formation. In contrast, egg extracts made with EGTA-containing buffers induced the sperm chromatin to form chromosomes or irregularly shaped clumps of chromatin that were incorporated into bipolar or multipolar spindles. The 150,000 g supernatants of the EGTA extracts could not alone support these changes in incubated nuclei. However, these supernatants induced not only chromosome condensation and spindle formation, but also nuclear envelope breakdown when added to sperm pronuclei or isolated Xenopus liver or brain nuclei that were incubated in extracts made without EGTA. Similar changes were induced by partially purified preparations of maturation-promoting factor. The addition of calcium chloride to extracts containing condensed chromosomes and spindles caused dissolution of the spindles, decondensation of the chromosomes, and re-formation of interphase nuclei. These results indicate that nuclear envelope breakdown, chromosome condensation, and spindle assembly, as well as the regulation of these processes by Ca2+-sensitive cytoplasmic components, can be studied in vitro using extracts of amphibian eggs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号