首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined cultures of neonatal human foreskin keratinocytes (HFKs) to determine the ligands and functions of integrins alpha 2 beta 1, and alpha 3 beta 1 in normal epidermal stratification and adhesion to the basement membrane zone (BMZ) in skin. We used three assay systems, HFK adhesion to purified extracellular matrix (ECM) ligands and endogenous secreted ECM, localization of integrins in focal adhesions (FAs), and inhibition of HFK adhesion with mAbs to conclude: (a) A new anti-alpha 3 beta 1 mAb, P1F2, localized alpha 3 beta 1 in FAs on purified laminin greater than fibronectin/collagen, indicating that laminin was the best exogeneous ligand for alpha 3 beta 1. However, in long term culture, alpha 3 beta 1 preferentially codistributed in and around FAs with secreted laminin-containing ECM, in preference to exogenous laminin. Anti-alpha 3 beta 1, mAb P1B5, detached prolonged cultures of HFKs from culture plates or from partially purified HFK ECM indicating that interaction of alpha 3 beta 1 with the secreted laminin-containing ECM was primarily responsible for HFK adhesion in long term culture. (b) In FA assays, alpha 2 beta 1 localized in FAs conincident with initial HFK adhesion to exogenous collagen, but not laminin or fibronectin. However, in inhibition assays, anti-alpha 2 beta 1 inhibited initial HFK adhesion to both laminin and collagen. Thus, alpha 2 beta 1 contributes to initial HFK adhesion to laminin but alpha 3 beta 1 is primarily responsible for long-term HFK adhesion to secreted laminin-containing ECM. (c) Serum or Ca2(+)-induced aggregation of HFKs resulted in relocation of alpha 2 beta 1 and alpha 3 beta 1 from FAs to cell-cell contacts. Further, cell-cell adhesion was inhibited by anti-alpha 3 beta 1 (P1B5) and a new anti-beta 1 mAb (P4C10). Thus, interaction of alpha 3 beta 1 with either ECM or membrane coreceptors at cell-cell contacts may facilitate Ca2(+)-induced HFK aggregation. (d) It is suggested that interaction of alpha 3 beta 1 with a secreted, laminin-containing ECM in cultured HFKs, duplicates the role of alpha 3 beta 1 in basal cell adhesion to the BMZ in skin. Further, relocation of alpha 2 beta 1 and alpha 3 beta 1 to cell-cell contacts may result in detachment of cells from the BMZ and increased cell-cell adhesion in the suprabasal cells contributing to stratification of the skin.  相似文献   

2.
Integrin alpha3beta1 engagement disrupts intercellular adhesion   总被引:2,自引:0,他引:2  
During tissue morphogenesis and tumor invasion, epithelial cells must undergo intercellular rearrangement in which cells are repositioned with respect to one another and the surrounding mesenchymal extracellular matrix. Using three-dimensional aggregates of squamous epithelial cells, we show that such intercellular rearrangements can be triggered by activation of beta1 integrins after their ligation with extracellular matrices. On nonadherent substrates, multicellular aggregates (MCAs) formed rapidly via E-cadherin junctional complexes and over time became compacted spheroids exhibiting a more epithelial phenotype. After MCAs were replated on culture substrates, the spheroids collapsed to yield tightly arranged cell monolayers. Cell-cell contact induced rapid elevation in E-cadherin levels, which was due to an increase in the metabolic stability of junctional receptors. During MCA remodeling of cell-cell adhesions, and monolayer formation, their E-cadherin levels fell rapidly. Similar behavior was obtained regardless of which ECM ligand-collagen type I, fibronectin, or laminin 1-MCAs were seeded on. In contrast, when seeded onto a matrix elaborated by squamous epithelial cells, cells in the MCA attached, spread, lost cell-cell junctions, and dispersed. Analysis identified laminin 5 as the active ECM ligand in this matrix, and MCA dispersion required functional beta1 integrin and specifically alpha3beta1. Furthermore, substrate-immobilized anti-integrin antibody effectively reproduced the epithelial-mesenchymal-like transition induced by the laminin 5 matrix. During the early stages of aggregate rearrangement and collapse, cells on laminin 5 substrates, but not those on collagen I substrates, exhibited intense cortical arrays of F-actin, microspikes, and fascin accumulation at their peripheral surfaces. These results suggest that engagement of specific integrin-ligand pairs regulates cadherin junctional adhesions during events common to epithelial morphogenesis and tumor invasion.  相似文献   

3.
TPA primes alpha2beta1 integrins for cell adhesion   总被引:1,自引:0,他引:1  
Integrin avidity is regulated by changes in the conformation of the heterodimer and cluster formation. We measured cell adhesion by integrin alpha2beta1 (CHO-alpha2) to collagen at short contact times (0.5-60s) by single cell force spectroscopy (SCFS). The adhesion increased rapidly with contact time and was further strengthened by the addition of 12-O-tetradecanoylphorbol-13-acetate (TPA), a protein kinase C (PKC) and integrin activator. TPA also improved the strength of adhesive units. Furthermore, changes in membrane nanotube properties indicated better coupling of integrins to the cell cytoskeleton. We conclude that in addition to increasing integrin avidity TPA strengthens integrin-cytoskeletal linkage.  相似文献   

4.
In keratinocytes, the beta1 integrins mediate adhesion to the extracellular matrix and also regulate the initiation of terminal differentiation. To explore the relationship between these functions, we stably infected primary human epidermal keratinocytes and an undifferentiated squamous cell carcinoma line, SCC4, with retroviruses encoding wild-type and mutant chick beta1 integrin subunits. We examined the ability of adhesion-blocking chick beta1-specific antibodies to inhibit suspension-induced terminal differentiation of primary human keratinocytes and the ability of the chick beta1 subunit to promote spontaneous differentiation of SCC4. A D154A point mutant clustered in focal adhesions but was inactive in the differentiation assays, showing that differentiation regulation required a functional ligand-binding domain. The signal transduced by beta1 integrins in normal keratinocytes was "do not differentiate" (transduced by ligand-occupied receptors) as opposed to "do differentiate" (transduced by unoccupied receptors), and the signal depended on the absolute number, rather than on the proportion, of occupied receptors. Single and double point mutations in cyto-2 and -3, the NPXY motifs, prevented focal adhesion targeting without inhibiting differentiation control. However, deletions in the proximal part of the cytoplasmic domain, affecting cyto-1, abolished the differentiation-regulatory ability of the beta1 subunit. We conclude that distinct signaling pathways are involved in beta1 integrin-mediated adhesion and differentiation control in keratinocytes.  相似文献   

5.
Growth factors, integrins, and the extracellular matrix (ECM) are known to play key roles in epidermal wound healing, although the interplay between these proteins is not fully understood. We show that growth factor macrophage stimulating protein (MSP)- and its receptor Ron-mediated PI3K activation in keratinocytes induces phosphorylation of both Ron and alpha6beta4 integrin at specific 14-3-3 binding sites. Consequently, a Ron/alpha6beta4 complex formed via 14-3-3 binding displaces alpha6beta4 from its location at hemidesmosomes (structures supporting cell adhesion) and relocalizes it to lamellipodia. Concomitant activation of alpha3beta1 and keratinocyte spreading/migration on laminin-5 occurs. Further, MSP-dependent beta4 tyrosine phosphorylation evokes p38 and NF-kappaB signaling required for keratinocyte wound closure. Based on these results, we propose a mechanism based on MSP-Ron-dependent phosphorylation and 14-3-3 association, whereby the function of alpha6beta4 switches from a mechanical adhesive device into a signaling component, and might be critically involved in human epidermal wound healing.  相似文献   

6.
BACKGROUND INFORMATION: Functional adaptation of skeletal muscle is a requirement for different muscle groups (e.g. craniofacial, ocular and limb) to undergo site-specific changes. Such tissue remodelling depends on dynamic interactions between muscle cells and their extracellular matrix, via participation of multifunctional molecules such as integrins. In view of data suggesting a role in fundamental muscle biology and muscle development in other systems, the present study has focused on expression and function of alpha v integrins, in cultured adult human craniofacial muscle (masseter) precursor cells and myotubes, and the predominantly fibroblastic IC (interstitial cells) population. RESULTS AND CONCLUSIONS: Flow-cytometric phenotyping and immunofluorescence phenotyping show that alpha v, alpha v beta 3 and alpha v beta 5 are expressed in all mononuclear cells (muscle precursors and IC) seeded on muscle extracellular molecules such as gelatin, VN (vitronectin) and FN (fibronectin). In this system, blockade of alpha v activity using a function-perturbing antibody abrogates cell migration on VN and FN. alpha v integrins act predominantly as VN receptors as cell-substrate attachment is diminished when alpha v neutralizing agents are introduced into cultures seeded on VN, and this inhibition is reversible; these integrins also appear to be minor FN receptors. These results demonstrate that the alpha v subset of integrins present on both myogenic precursors and IC is an essential cohort of VN and, to a lesser extent, FN receptors mediating cell adhesion and, either directly or indirectly, arbiters of cell motility.  相似文献   

7.
Fibrillins are the major glycoprotein components of microfibrils that form a template for tropoelastin during elastic fibrillogenesis. We have examined cell adhesion to assembled purified microfibrils, and its molecular basis. Human dermal fibroblasts exhibited Arg-Gly-Asp and cation-dependent adhesion to microfibrils and recombinant fibrillin-1 protein fragments. Strong integrin alpha 5 beta 1 interactions with fibrillin ligands were identified, but integrin alpha v beta 3 also contributed to cell adhesion. Fluorescence-activated cell sorting analysis confirmed the presence of abundant alpha 5 beta 1 and some alpha v beta 3 receptors on these cells. Adhesion to microfibrils and to Arg-Gly-Asp containing fibrillin-1 protein fragments induced signaling events that led to cell spreading, altered cytoskeletal organization, and enhanced extracellular fibrillin-1 deposition. Differences in cell shape when plated on fibrillin or fibronectin implied substrate-specific alpha 5 beta 1-mediated cellular responses. An Arg-Gly-Asp-independent cell adhesion sequence was also identified within fibrillin-1. Adhesion and spreading of smooth muscle cells on fibrillin ligands was enhanced by antibody-induced beta1 integrin activation. A375-SM melanoma cells bound Arg-Gly-Asp-containing fibrillin-1 protein fragments mainly through alpha v beta 3, whereas HT1080 cells used mainly alpha 5 beta 1. This study has shown that fibrillin microfibrils mediate cell adhesion, that alpha 5 beta 1 and alpha v beta 3 are both important but cell-specific fibrillin-1 receptors, and that cellular interactions with fibrillin-1 influence cell behavior.  相似文献   

8.
The collagen-binding integrins α1β1 and α2β1 have profoundly different functions, yet they are often co-expressed in epithelial cells. When both integrins are expressed in the same cell, it has been suggested that α1β1 negatively regulates integrin α2β1-dependent functions. In this study we utilized murine ureteric bud (UB) epithelial cells, which express no functionally detectable levels of endogenous integrins α1β1 and α2β1, to determine the mechanism whereby this regulation occurs. We demonstrate that UB cells expressing integrin α2β1, but not α1β1 adhere, migrate and proliferate on collagen I as well as form cellular cords in 3D collagen I gels. Substitution of the transmembrane domain of the integrin α2 subunit with that of α1 results in decreased cell adhesion, migration and cord formation. In contrast, substitution of the integrin α2 cytoplasmic tail with that of α1, decreases cell migration and cord formation, but increases proliferation. When integrin α1 and α2 subunits are co-expressed in UB cells, the α1 subunit negatively regulates integrin α2β1-dependent cord formation, adhesion and migration and this inhibition requires expression of both α1 and α2 tails. Thus, we provide evidence that the transmembrane and cytoplasmic domains of the α2 integrin subunit, as well as the α1 integrin subunit, regulate integrin α2β1 cell function.  相似文献   

9.
betaig-h3 is an extracellular matrix protein and its expression is highly induced by TGF-beta and it has also been suggested to play important roles in skin wound healing. In this paper, we demonstrate that betaig-h3 is present in the papillary layer of dermis and synthesized in the basal keratinocytes in vivo and its expression is induced by TGF-beta in normal human keratinocytes (NHEK) and HaCaT cells. betaig-h3 mediates not only adhesion and spreading of keratinocytes but also supports migration and proliferation. These activities are mediated through interacting with alpha3beta1 integrin. Previously identified two alpha3beta1 integrin-interacting motifs of betaig-h3, EPDIM, and NKDIL, are responsible for these activities. The results suggest that betaig-h3 may regulate keratinocyte functions in normal skin and potentially during wound-healing process.  相似文献   

10.
Keratinocytes and other epithelial cells express two receptors for the basement membrane (BM) extracellular matrix component laminin-5 (Ln-5), integrins alpha 3 beta 1 and alpha 6 beta 4. While alpha 3 beta 1 mediates adhesion, spreading, and migration (Kreidberg, J.A. 2000. Curr. Opin. Cell Biol. 12:548--553), alpha 6 beta 4 is involved in BM anchorage via hemidesmosomes (Borradori, L., and A. Sonnenberg. 1999. J. Invest. Dermatol. 112:411--418). We investigated a possible regulatory interplay between alpha 3 beta 1 and alpha 6 beta 4 in cell motility using HaCaT keratinocytes as a model. We found that alpha 6 beta 4 antibodies inhibit alpha 3 beta 1-mediated migration on Ln-5, but only when migration is haptotactic (i.e., spontaneous or stimulated by alpha 3 beta 1 activation), and not when chemotactic (i.e., triggered by epidermal growth factor receptor). Inhibition of migration by alpha 6 beta 4 depends upon phosphoinositide 3-kinase (PI3-K) since it is abolished by PI3-K blockers and by dominant-negative PI3-K, and constitutively active PI3-K prevents haptotaxis. In HaCaT cells incubated with anti-alpha 6 beta 4 antibodies, activation of PI3-K is mediated by alpha 6 beta 4-associated erbB-2, as indicated by erbB-2 autophosphorylation and erbB-2/p85 PI3-K coprecipitation. Furthermore, dominant-negative erbB-2 abolishes inhibition of haptotaxis by anti-alpha 6 beta 4 antibodies. These results support a model whereby (a) haptotactic cell migration on Ln-5 is regulated by concerted action of alpha 3beta 1 and alpha 6 beta 4 integrins, (b) alpha 6 beta 4-associated erbB-2 and PI3-K negatively affect haptotaxis, and (c) chemotaxis on Ln-5 is not affected by alpha 6 beta 4 antibodies and may require PI3-K activity. This model could be of general relevance to motility of epithelial cells in contact with BM.  相似文献   

11.
Integrins can mediate the attachment of cells to collagen type I. In the present study we have investigated the possible differences in collagen type I recognition sites for the alpha 1 beta 1 and alpha 2 beta 1 integrins. Different cyanogen bromide (CB) fragments of the alpha 1 (I) collagen chain were used in cell attachment experiments with three rat cell types, defined with regard to expression of collagen binding integrins. Primary rat hepatocytes expressed alpha 1 beta 1, primary rat cardiac fibroblasts alpha 1 beta 1 and alpha 2 beta 1, and Rat-1 cells only alpha 2 beta 1. All three cell types expressed alpha 3 beta 1 but this integrin did not bind to collagen--Sepharose or to immobilized collagen type I in a radioreceptor assay. Hepatocytes and cardiac fibroblasts attached to substrata coated with alpha 1(I)CB3 and alpha 1(I)CB8; Rat-1 cells attached to alpha 1(I)CB3 but only poorly to alpha 1(I)CB8-coated substrata. Cardiac fibroblasts and Rat-1 cells spread and formed beta 1-integrin-containing focal adhesions when grown on substrata coated with native collagen or alpha 1(I)CB3; focal adhesions were also detected in cardiac fibroblasts cultured on alpha 1(I)CB8. The rat alpha 1 specific monoclonal antibody 3A3 completely inhibited hepatocyte attachment to alpha 1(I)CB3 and alpha 1(I)CB8, as well as the attachment of cardiac fibroblasts to alpha 1(I)CB8, but only partially inhibited the attachment of cardiac fibroblasts to alpha 1(I)CB3. 3A3 IgG did not inhibit the attachment of Rat-1 cells to collagen type I or to alpha 1(I)CB3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Netrins, axon guidance cues in the CNS, have also been detected in epithelial tissues. In this study, using the embryonic pancreas as a model system, we show that Netrin-1 is expressed in a discrete population of epithelial cells, localizes to basal membranes, and specifically associates with elements of the extracellular matrix. We demonstrate that alpha6beta4 integrin mediates pancreatic epithelial cell adhesion to Netrin-1, whereas recruitment of alpha6beta4 and alpha3beta1 regulate the migration of CK19+/PDX1+ putative pancreatic progenitors on Netrin-1. These results provide evidence for the activation of epithelial cell adhesion and migration by a neural chemoattractant, and identify Netrin-1/integrin interactions as adhesive/guidance cues for epithelial cells.  相似文献   

13.
The interactions of cells with basement membranes are primarily mediated via the engagement of laminins by a group of integrin family proteins, including integrins alpha3beta1, alpha6beta1, alpha7beta1 and alpha6beta4. To explore the ligand-binding specificities of these laminin-binding integrins, we produced these integrins, including two alpha7beta1 splice variants (alpha7X1beta1 and alpha7X2beta1), as soluble recombinant proteins and determined their binding specificities and affinities toward a panel of purified laminin isoforms containing distinct alpha chains. Among the five laminin-binding integrins investigated, alpha3beta1 and alpha6beta4 exhibited a clear specificity for laminin-332 (alpha3beta3gamma2) and laminin-511 (alpha5beta1gamma1)/521 (alpha5beta2gamma1), while integrin alpha6beta1 showed a broad specificity, binding to all laminin isoforms with a preference for laminin-111 (alpha1beta1gamma1), laminin-332 and laminin-511/521. The two alpha7beta1 variants were distinct from alpha3beta1, alpha6beta1 and alpha6beta4 in that they did not bind to laminin-332. alpha7X1beta1 bound to all laminins, except laminin-332, with a preference for laminin-211 (alpha2beta1gamma1)/221 (alpha2beta2gamma1) and laminin-511/521, while alpha7X2beta1 bound preferentially to laminin-111 and laminin-211/221. Laminin-511/521 was the most preferred ligand for all the laminin-binding integrins, except for alpha7X2beta1, whereas laminin-411 was the poorest ligand, capable of binding to alpha6beta1 and alpha7X1beta1 with only modest binding affinities. These comprehensive analyses of the interactions between laminin-binding integrins and a panel of laminins clearly demonstrate that the isoforms of both integrins and laminins differ in their binding specificities and affinities, and provide a molecular basis for better understanding of the adhesive interactions of cells with basement membranes of defined laminin compositions.  相似文献   

14.
15.
Integrins alpha(1)beta(1) and alpha(2)beta(1) are two major collagen receptors on the surface of eukaryotic cells. Binding to collagen is primarily due to an A-domain near the N terminus of the alpha chains. Previously, we reported that recombinant A-domain of alpha(1)beta(1) (alpha(1)A) had at least two affinity classes of binding sites in type I collagen (Rich, R. L., et al. (1999) J. Biol. Chem. 274, 24906-24913). Here, we compared the binding of the recombinant A-domain of alpha(2)beta(1) (alpha(2)A) to type I collagen with that of alpha(1)A using surface plasmon resonance and showed that alpha(2)A exhibited only one detectable class of binding sites in type I collagen, with a K(D) of approximately 10 microm at approximately 3 binding sites per collagen molecule. We further demonstrated that alpha(1)A and alpha(2)A competed with each other for binding to type I collagen in enzyme-linked immunosorbent assay (ELISA), suggesting that the binding sites in collagen for the two A-domains overlap or are adjacent to each other. By using rotary shadowing, the complexes of alpha(1)A- and alpha(2)A-procollagen were visualized. Morphometric analyses indicated three major binding regions (near the N terminus, in the central part, and near the C terminus) along the type I procollagen molecule for both A-domains. The positions of the respective binding regions for alpha(1)A and alpha(2)A were overlapping with or adjacent to each other, consistent with the ELISA results. Analysis of the sequences of type I collagen revealed that GER or GER-like motifs are present at each of the binding regions, and notably, the central region contains the GFOGER sequence, which was previously identified as a high affinity site for both alpha(1)A and alpha(2)A (Knight, C. G., et al. (2000) J. Biol. Chem. 275, 35-40). Peptides containing GLOGERGRO (peptide I, near the N terminus), GFOGERGVQ (peptide II, central), and GASGERGPO (peptide III, near the C terminus) were synthesized. Peptides I and II effectively inhibited the binding of alpha(1)A and alpha(2)A to type I collagen, while peptide III did so moderately. The N-terminal site in type I collagen has the sequence GLOGER in all three chains. Thus, it seems that peptide I represents a newly discovered native high affinity site for alpha(1)A and alpha(2)A.  相似文献   

16.
Previously identified high affinity integrin-binding motifs in collagens, GFOGER and GLOGER, are not present in type III collagen. Here, we first characterized the binding of recombinant I domains from integrins alpha(1) and alpha(2) (alpha(1)I and alpha(2)I) to fibrillar collagen types I-III and showed that each I domain bound to the three types of collagens with similar affinities. Using rotary shadowing followed by electron microscopy, we identified a high affinity binding region in human type III collagen recognized by alpha(1)I and alpha(2)I. Examination of the region revealed the presence of two sequences that contain the critical GER motif, GROGER and GAOGER. Collagen-like peptides containing these two motifs were synthesized, and their triple helical nature was confirmed by circular dichroism spectroscopy. Experiments show that the GROGER-containing peptide was able to bind both alpha(1)I and alpha(2)I with high affinity and effectively inhibit the binding of alpha(1)I and alpha(2)I to type III and I collagens, whereas the GAOGER-containing peptide was considerably less effective. Furthermore, the GROGER-containing peptide supported adhesion of human lung fibroblast cells when coated on a culture dish. Thus, we have identified a novel high affinity binding sequence for the collagen-binding integrin I domains.  相似文献   

17.
The alpha 5 beta 1, alpha 6 beta 4 and Mac-1 integrins all participate in the endocytotic cycle. By contrast, alpha 3 beta 1, alpha 4 beta 1 and LFA-1 do so much more slowly, or not at all, in the cell lines examined. This indicates that the alpha-chains appear to determine whether an integrin cycles or not, and that alpha 5 beta 1, alpha 6 beta 4 and Mac-1 can be brought to the leading edge of a moving cell by endocytosis and recycling.  相似文献   

18.
The laminin-type globular (LG) domains of laminin alpha chains have been implicated in various cellular interactions that are mediated through receptors such as integrins, alpha-dystroglycan, syndecans, and the Lutheran blood group glycoprotein (Lu). Lu, an Ig superfamily transmembrane receptor specific for laminin alpha5, is also known as basal cell adhesion molecule (B-CAM). Although Lu/B-CAM binds to the LG domain of laminin alpha5, the binding site has not been precisely defined. To better delineate this binding site, we produced a series of recombinant laminin trimers containing modified alpha chains, such that all or part of alpha5LG was replaced with analogous segments of human laminin alpha1LG. In solid phase binding assays using a soluble Lu (Lu-Fc) composed of the Lu extracellular domain and human IgG1 Fc, we found that Lu bound to Mr5G3, a recombinant laminin containing alpha5 domains LN through LG3 fused to human laminin alpha1LG4-5. However, Lu/B-CAM did not bind other recombinant laminins containing alpha5LG3 unless alpha5LG1-2 was also present. A recombinant alpha5LG1-3 tandem lacking the laminin coiled coil (LCC) domain did not reproduce the activity of Lu/B-CAM binding. Therefore, proper structure of the alpha5LG1-3 tandem with the LCC domain was essential for the binding of Lu/B-CAM to laminin alpha5. Our results also suggest that the binding site for Lu/B-CAM on laminin alpha5 may overlap with that of integrins alpha3beta1 and alpha6beta1.  相似文献   

19.
Integrins are ubiquitous transmembrane receptors that play crucial roles in cell-cell and cell-matrix interactions. In this study, we have determined the effects of the loss of beta 1 integrins in keratinocytes in vitro and during cutaneous wound repair. Flow cytometry of cultured beta 1-deficient keratinocytes confirmed the absence of beta 1 integrins and showed downregulation of alpha 6 beta 4 but not of alpha v integrins. beta 1-null keratinocytes were characterised by poor adhesion to various substrates, by a reduced proliferation rate and by a strongly impaired migratory capacity. In vivo, the loss of beta 1 integrins in keratinocytes caused a severe defect in wound healing. beta 1-null keratinocytes showed impaired migration and were more densely packed in the hyperproliferative epithelium. Surprisingly, their proliferation rate was not reduced in early wounds and even increased in late wounds. The failure in re-epithelialisation resulted in a prolonged inflammatory response, leading to dramatic alterations in the expression of important wound-regulated genes. Ultimately, beta 1-deficient epidermis did cover the wound bed, but the epithelial architecture was abnormal. These findings demonstrate a crucial role of beta 1 integrins in keratinocyte migration and wound re-epithelialisation. Movies available on-line  相似文献   

20.
Activation of beta1 integrins induces cell-cell adhesion   总被引:3,自引:0,他引:3  
Integrins are highly regulated receptors that can function in both cell-substrate and cell-cell adhesion. We have found that the activating anti-beta1 mAb, 12G10, can specifically and rapidly induce both cell-substrate and cell-cell adhesion of HT-1080 human fibrosarcoma and other cell types. Binding of mAb 12G10 induced clustering of cell-surface integrins, and the preferential localization of beta1 integrins expressing the 12G10 epitope at cell-cell adhesion sites. Fab fragments of mAb 12G10 induced HT-1080 cell-cell adhesion as effectively as did intact antibodies, suggesting that integrin clustering was not due to direct antibody crosslinking. Latrunculin B, an inhibitor of F-actin polymerization, inhibited cell-cell adhesion but not the clustering of integrins. Results from a novel, two-color cell-cell adhesion assay suggested that nonactivated cells can bind to activated cells and that integrin activation-induced HT-1080 cell-cell adhesion minimally requires the interaction of activated alpha2beta1 with nonactivated alpha3beta1. These findings suggest that HT-1080 cell-cell adhesion induced by integrin activation require a signaling process involving integrin clustering and the subsequent organization of the cytoskeleton. Integrin activation could therefore play a key role in cell-cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号