首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary These experiments examined whether inDrosophila immature imaginal disc tissue and tissues from embryonic stages can influence pattern regulation in a disc fragment in the same way as can mature imaginal discs. Immature imaginal discs, or the cells of whole embryos, were mixed with a test fragment (presumptive notum) from a mature wing disc. The immature tissues in each mixture were genetically marked and had been heavily irradiated (25 Kr gamma) prior to mixing to prevent growth and maturation during subsequent culture in vivo. Alteration of the regulative behavior of the test fragment (that is, regeneration of wing) thus provided an assay for the communication of positional information by the immature tissues. The results suggest that this capacity arises well before competence to metamorphose, as early as the 16th hour of embryonic development, whereas prior to 16 h, essentially no stimulation of regeneration occurred. It is suggested that the imaginal disc (or presumptive disc) cells of the embryo may have been responsible for this early stimulatory capacity.  相似文献   

2.
Summary The aldehyde oxidase staining pattern in wing discs ofDrosophila melanogaster bearing the genotypesap blt /ap blt andap blt andap blt /ap 73n showns changes from the wild-type pattern. Extensive areas of the presumptive dorsal posterior wing blade, which are normally unstained, have enzyme activity in these mutants. In wings of these genotypes, dorsal posterior structures are replaced by dorsal anterior wing structures. A strong correlation has been found between the frequencies of various staining patterns in the discs and the extent of transformation in the cuticular structures of the wing, which is consistent with the idea that aldehyde oxidase activity can be used as an indicator in the wing disc of this transformation. Unlike the homoeotic mutationengrailed, apterous has not been interpreted as a selector gene yet the work reported here shows thatapterous alleles can cause changes resembling those of theengrailed phenotype both in aldehyde oxidase staining behaviour and in the cuticular transformation.  相似文献   

3.
Summary We report on the size distribution of clones marked by mitotic recombination induced by several different doses of X-rays applied to 72 h oldDrosophila larvae. The results indicate that the radiation significantly reduces the number of cells which undergo normal proliferation in the imaginal wing disc. We estimate that 1000 r reduces by 40–60% the number of cells capable of making a normal contribution to the development of the adult wing. Part of this reduction is due to severe curtailment in the proliferative ability of cells which nevertheless remain capable of adult differentiation; this effect is possibly due to radiation-induced aneuploidy. Cytological evidence suggests that immediate cell death also occurs as a result of radiation doses as low as 100 r. The surviving cells are stimulated to undergo additional proliferation in response to the X-ray damage so that the result is the differentiation of a normal wing.  相似文献   

4.
Summary The mature labial disc, when implanted into a larva of the same age, undergoes metamorphosis along with the host and produces one lateral half of the medi- and distiproboscis. On the basis of results obtained from transplanted disc halves (including the separate peripodial membrane) a tentative fate map of the labial disc was constructed, which shows most of the presumptive mediproboscis to be located in the dorsal, and most of the presumptive distiproboscis in the ventral part of the disc. The distal protion of the peripodial membrane also contains imaginal anlagen, viz. part of the mediproboscis, prementum, and labellar cap anlagen. The involvement of this part of the peripodial membrane was checked by a careful histological analysis of labial disc development during the first ten hours after prepupation. The results were compared with the situation described forCalliphora imaginal discs.In addition, a detailed morphological analysis was made of the proboscis of the homoeotic mutantproboscipedia (pb). At 27°C,pb changes the distiproboscis into a telopodite (leg segments distal to the coxa); the (unchanged) prementum may therefore correspond to the coxa. At 15° C, the tarsus of this homoeotic telopodite is replaced to a greater or lesser extent by an arista. The present analysis thus confirms (a) the fundamental morphological correspondence of the medi- and distiproboscis with the labium of other insects, and (b) the fundamental developmental correspondence of the labial, antennal, and leg discs.K. K. was a member of the 8th International Research Group in Developmental Biology, and was the recipient of a UNESCO travel grant.)  相似文献   

5.
Summary Analysis of the development of the aldehyde oxidase (AO) pattern in the wing pouch ofD. melanogaster showed that the extension of areas with AO activity occurs in steps. This indicates that the activation of this enzyme is regulated in groups of cells. It is proposed to use the term territory for such a cell group. In the wing pouches ofD. melanogaster, D. simulans andMusca, corresponding parts of the disc become AO positive at comparable developmental stages. This indicates that AO becomes active in individual territories in a specific sequence.Borderlines of the distribution pattern of different enzymes in the wing pouch ofDrosophila and other dipteran species are in agreement with those found for the development of the AO pattern or are complementary to them. This indicates the existence of a common set of territories in the wing pouches of all higher diptera. Borderlines of patterns, as caused by different genetic constitution, are also in accord with this set of territories. The borderlines of some territories coincide with the compartmental A/P or D/V boundary. The results support the idea that both the location of compartmental boundaries and that of borderlines of enzyme territories are determined by a single mechanism.The distribution and the shape of the territories in the wing pouch is best explained by the reaction-diffusion model proposed by Meinhardt (1980), which involves three different gradients.  相似文献   

6.
Summary When complementary fragments of an imaginal disc ofDrosophila are cultured for several days prior to metamorphosis, usually one fragment will regenerate while the other will duplicate. It has been proposed that wound healing plays an important part in disc regulation (French et al. 1976; Reinhardt et al. 1977) by initiating cell proliferation and determining the mode of regulation. We tried to delay the wound healing process by leaving a region of dead cells between the wound edges. In 06 fragments (Bryant 1975a) wound healing has occurred after 1–2 days of culture and the regeneration of missing structures after 2–4 days of culture. We observed that leaving a region of dead cells between the wound edges delays both wound healing and the regeneration of missing structures by 2 days.When disc fragments are cultured in female abdomens and then exposed to3H-thymidine to label replicating cells, then the label is found to be localised around the wound. We observed that delaying wound healing does not delay this localisation of labelled nuclei indicating that wound healing may not be required to initiate DNA replication.  相似文献   

7.
Summary In the imaginal discs ofMusca domestica, Drosophila melanogaster, D. simulans, D. hydei, andZaprionus spec. the enzyme aldehyde oxidase (AO) appeared in a clear-cut pattern. In the leg and eye-antennal discs of these species this pattern shows a high degree of conformity, while that of the wing and haltere discs is species-specific.No aldehyde oxidase activity was detected in the imaginal discs ofCalliphora erythrocephala, Phormia regina orLucilia cuprina, but the discs of these species are characterized by grossly similar patterns of 5-nucleotidase. Since the other species studied lack this enzyme, the two enzymes may perform similar functions in the morphogenesis of the discs.The coincidence of the sharp boundary of the AO pattern in the leg and wing discs ofD. melanogaster with the boundary between the anterior and posterior disc compartments gives a strong indication for the existence of analogous compartments in other discs showing a similar sharply bounded AO pattern. Compartmentalization may be considered a general phenomenon which occurs in discs of all segments and is not restricted toD. melanogaster. From the changes in the AO pattern during disc development it can be deduced that the localisation of this enzyme is regulated by supracellular determination involving positional information.  相似文献   

8.
Summary The transdetermination capacities of leg discs ofDrosophila melanogaster were examined by mechanically disrupting and kneading whole discs from late third instar larvae and by culturing the resulting tissue mass for 10–14 days in adult female abdomens where the cells continued to divide. The grown implants were then dissected from the abdomens and injected into third instar larvae to undergo metamorphosis.After this treatment, prothoracic leg discs ofDrosophila melanogaster transdetermined with a high frequency (59% of all implants) to wing. Mesothoracic leg discs also transdetermined to wing, but at a very low frequency (4%). Metathoracic leg discs exhibited the same low frequency of transdetermination (4%), but in this case the direction of transdetermination was to haltere (Table 1,D. melanogaster).Very similar results were obtained with leg discs ofDrosophila nigromelanica (Table 1,D. nigromelanica), showing that the peculiar behavior of the three leg discs is not unique forDrosophila melanogaster.The homeotic mutation Polycomb (Pc 3) which partially transforms meso- and metathoracic legs into prothoracic legs did not significantly increase the frequencies of transdetermination in these leg dises and had clearly no effect on the direction of transdetermination (Table 1).We dedicate this publication to the memory of our teacher and advisor, the late Professor Ernst Hadorn, whose enthusiasm and interest stimulated our work  相似文献   

9.
Summary Imaginal wing discs from late third-instar larvae were gammairradiated to induce clones of rapidly growingMinute cells in a background of slowly growingMinute cells and culturedin vivo for periods up to 18 days. Clones in discs cultured for 16 to 18 days did not grow significantly larger than clones in uncultured controls, indicating that competition between populations of cells having potentially different mitotic rates does not occur in imaginal discs after their growth is completed.  相似文献   

10.
Summary The mutationsvestigial (vg; recessive) andUltravestigial (vg U; dominant) ofDrosophila melanogaster give rise to identical mutant adult phenotypes in which much of the cases this results from cell death in the presumptive wing margin of the wing disc in the third larval instar, but the process of cell degeneration is quite different in the two mutants. Invg cell death occurs continuously throughout the third larval instar, while invg U it occurs only in the early third instar. Cells fragment and some of the fragments condense, becoming electron dense (apoptosis). Both condensed and ultrastructurally normal cell fragments are extruded to the basal side of thevg disc epithelium. They accumulate under the basal lamina in the wing pouch area until they are phagocytosed by blood cells entering the wing pouch during the six hours following pupariation. Fragments are not extruded from thevg U epithelium but are apparently phagocytosed by neighboring epithelial cells. The basal lamina undergoes mophological changes following pupariation and is phagocytosed by blood cells in both wild-type andvestigial, but investigial the degenerated cell fragments are also engulfed by the same blood cells.  相似文献   

11.
We have examined wound healing during regeneration of Drosophila wing imaginal discs fragments by confocal microscopy and assessed the role of components of the JNK pathway in this process. After cutting, columnar and peripodial epithelia cells at the wound edge start to close the wound through formation and contraction of an actin cable. This is followed by a zipping process through filopodial protrusions from both epithelia knitting the wound edges from proximal to distal areas of the disc. Activation of the JNK pathway is involved in such process. puckered (puc) expression is induced in several rows of cells at the edge of the wound, whereas absence of JNK pathway activity brought about by hemipterous, basket, and Dfos mutants impair wound healing. These defects are accompanied by lowered or loss of expression of puc. In support of a role of puc in wound healing, hep mutant phenotypes are rescued by reducing puc function, whereas overexpression of puc inhibits wound healing. Altogether, these results demonstrate a role for the JNK pathway in imaginal disc wound healing, similar to that reported for other healing processes such as embryonic dorsal closure, thoracic closure, and adult epithelial wound healing in Drosophila. Differences with such processes are also highlighted.  相似文献   

12.
Summary Drosophila imaginal disc cell lines show a characteristic pattern of aggregation in culture, which appears to be due to cell-cell rather than cell-substrate interactions. We have examined the distribution of PS integrins in wing and leg cell lines, and find that these integrin homologues are expressed preferentially in aggregates. Cell sheets, small cell clumps and chains of cells express antigen at points of cell-cell contact only.  相似文献   

13.
Summary By X-irradiation ofM/M + embryos and larvae to induce mitotic recombination, clones ofM +/M+ genotype were obtained (Fig. 1). Since such cells grow faster than the surroundingM/M +-cells they can fill large areas within the compartments of an imaginal disc.The present studies concentrated mainly on the three leg discs. Clones were induced by doses of 1000 r at ages ranging from 3±0.5 h after oviposition to 144 h.All clones induced later than the blastoderm stage were absolutely restricted to either the anterior or the posterior compartment of a disc. The border between the anterior and posterior compartment runs as a straight line along the entire leg and at the distal end separates the two claws (Figs. 5, 6, 7). A further subdivision of the anterior compartment is indicated by clones initiated in the second larval instar (Fig. 11). A parallel subdivision could not be detected in the posterior compartment. Irradiation in the early third instar led to clones which were restricted to single longitudinal bristle rows and leg segments. But no clear-cut compartment borders could be found; in particular a proximo-distal separation appears to be absent.Among the 318 clones induced at the blastoderm stage eleven extended from the wing into the second leg (Fig. 8), or from the haltere into the third leg.With the exception of 3 clones that apparently occupied the anterior as well as the posterior compartment of a wing or a leg, all clones remained confined to either the anterior or the posterior compartment.Frequently clones overlapped left and right forelegs (Fig. 9). Intersegmental overlaps were not observed.The results show that the earliest compartment borders appear in all thoracic discs. This suggests that compartmentalization is a fundamental process common to all discs.Supported bySchweizerischer Nationalfonds Gesuch Nr. 3.480-0.75  相似文献   

14.
Summary The regulative behavior of fragments of the imaginal discs of the wing and first leg was studied when these fragments were combined with fragments of other thoracic imaginal discs. A fragment of the wing disc which does not normally regenerate when cultured could be stimulated to regenerate by combination with certain fragments of the haltere disc. When combined with a haltere disc fragment thought to be homologous by the criteria of morphology and the pattern of homoeotic transformation, such stimulated intercalary regeneration was not observed. Combinations of first and second leg disc fragments showed that a lateral first leg fragment could be stimulated to regenerate medial structures when combined with a medial second leg disc fragment but not when combined with a lateral second leg disc fragment. Combinations of wing and second leg disc fragments showed that one fragment of the second leg disc is capable of stimulating regeneration from a wing disc fragment while another second leg disc fragment fails to stimulate such regeneration. It is suggested that absence of intercalary regeneration in combinations of fragments of different thoracic imaginal discs is a result of homology or identity of the positional information residing in the cells of the fragments. The pattern of correspondence of positional information revealed by this analysis is consistant with the pattern of homology determined by morphological observation and by analysis of the positional specificity of homoeotic transformation among serially homologous appendages. The implications of the existence of homologous positional information in wing and second leg discs which share a common cell lineage early in development are discussed.  相似文献   

15.
Summary The effect of suboptimal levels of -ecdysone on the differentiation in vitro ofDrosophila melanogaster wing discs was enhanced by the addition of larval fat body to the cultures. However, similar experiments with -ecdysome showed no enhancement. It is suggested that a partial conversion of -ecdysone to -ecdysone by the fat body may well account for these results.  相似文献   

16.
17.
Summary The hormonal control of evagination of the imaginal leg discs of the fleshflySarcophaga crassipalpis was studied by means of ectopic transplantation of discs from mature larvae or prepupae onto prepupal hosts. Evagination was influenced by the age of the donor and the developmental commitment of the host. Discs from non-diapuse as well as diapause-committed donors did not differ in their capacity to evaginate and differentiate. Mature larval discs from either type of donor could evaginate only when transplanted onto non-diapause hosts; they failed to evaginate on diapause-committed hosts even though host discs evaginated in situ about 40 h after transplantation. Discs from white prepupae evaginated whether transplanted onto non-diapause or onto diapause-committed hosts.  相似文献   

18.
Summary Mutations of the bithorax complex result in segmental transformations in the thorax and abdomen ofDrosophila. The haltere discs from larvae homozygous forbx 3 orpbx are transformed so that the discs contain cells that will produce wing cuticle as well as cells that produce haltere cuticle. The pattern regulation behavior of these discs has been examined. The fate maps of the two discs were established, and then the regulative behavior of a number of fragments from both types of mutant discs was established by culturing the fragments in vivo prior to metamorphosis. The most important conclusion from this work is that the cells producing, haltere cuticle and wing cuticle within the same disc share the same positional information and that they communicate during pattern regulation.  相似文献   

19.
Females of manyDrosophila species spread apart their wings prior to copulation. In the present study we found female wing spreading to provoke male copulation attempts inDrosophila virilis-group species, helping the males to attempt copulation when the female is ready to mate. The males of most species, however, rarely responded to female wing spreading by copulation attempt without licking the female genitalia before and/or after female wing spreading bout. Blocking the female genitalia (D. virilis, D. novamexicana) reduces males' tendency to attempt copulation after female wing spreading. In these, and most other species of the group, female wing spreading seems to be an efficient signal only when combined with stimuli from female genitalia.  相似文献   

20.
Summary l(1)su(f)mad-ts (mad) is a new temperature-sensitive (ts) lethal mutant ofDrosophila melanogaster which produces duplicated legs after temperature pulse treatment during larval development. The ts-lethality was studied in temperature experiments and genetic mosaics. Temperature pulses given during two distinct TSPs of larval development result in two different types of leg pattern duplication. Total differ from partial duplications with respect to the affected leg compartments and the orientation of the planes of symmetry which are perpendicular to the dorso-ventral and the proximo-distal leg axes in total and partial duplications, respectively. Genetic mosaic studies indicate (i) disc autonomy of leg pattern duplication, (ii) clonal separation of the anlagen of the two pattern copies, and (iii) clonal restriction along the antero-posterior compartment border in the two pattern copies of totally duplicated legs.The results suggest thatmad leg pattern duplication is caused by a change in positional information rather than by cell death and subsequent regeneration. Our data are compatible with the assumption that during normal development the leg disc cells acquire information about their position within the disc with respect to the different leg axes independently and at different times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号