首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane vesicles were purified from resting corpus mucosa of pig stomachs by velocity-sedimentation on a sucrose-Ficoll step gradient. Two vesicular fractions containing the (H+ + K+)-ATPase were obtained. One fraction was tight towards KCl, the other was leaky. At 21 degrees C maximal (H+ + K+)-ATPase activities of 0.8 and 0.4 mumol X mg-1 X min-1, respectively, were observed in lyophilized vesicles. The vesicles contained a membrane-associated carbonic anhydrase, the activity of which was in 100-fold excess of the maximal ATPase activity. Both vesicular fractions were rich in phosphatidylcholine, phosphatidylethanolamine, sphingomyelin and cholesterol. The characteristics of ion permeability and transport in the tight vesicles were in agreement with corresponding data for vesicles of a tubulovesicular origin in the parietal cell. Measurement of the rate of K+ uptake into the vesicles was based on the ability of K+ to promote H+ transport. The uptake was slow and dependent on the type of anion present. The effectiveness in promoting uptake of K+ by anions was SCN- greater than NO3- greater than Cl- much greater than HCO3- greater than SO4(2-). Uptake of K+ was much more rapid at alkaline pH than at neutral or at acidic pH. Addition of CO2 at alkaline pH strongly stimulated the rate of H+ accumulation in the vesicles. The initial part of this stimulation was sensitive to acetazolamide, an inhibitor of carbonic anhydrase. A model how the (H+ + K+)-ATPase and the carbonic anhydrase may co-operate is presented. It is concluded that membrane vesicles of a tubulovesicular origin can produce acid.  相似文献   

2.
M Kitada  K Onda    K Horikoshi 《Journal of bacteriology》1989,171(4):1879-1884
The pH homeostasis and the sodium/proton antiport system have been studied in the newly isolated alkalophilic Bacillus sp. strain N-6, which could grow on media in a pH range from 7 to 10, and in its nonalkalophilic mutant. After a quick shift in external pH from 8 to 10 by the addition of Na2CO3, the delta pH (inside acid) in the cells of strain N-6 was immediately established, and the pH homeostatic state was maintained for more than 20 min in an alkaline environment. However, under the same conditions, the pH homeostasis was not observed in the cells of nonalkalophilic mutant, and the cytoplasmic pH immediately rose to pH 10. On the other hand, the results of the rapid acidification from pH 9 to 7 showed that the internal pH was maintained as more basic than the external pH in a neutral medium in both strains. The Na+/H+ antiport system has been characterized by either the effect of Na+ on delta pH formation or 22Na+ efflux in Na+-loaded right-side-out membrane vesicles of strain N-6. Na+- or Li+-loaded vesicles exhibited a reversed delta pH (inside acid) after the addition of electron donors (ascorbate plus tetramethyl-p-phenylenediamine) at both pH 7 and 9, whereas choline-loaded vesicles generated delta pHs of the conventional orientation (inside alkaline). 22Na+ was actively extruded from 22Na+-loaded vesicles whose potential was negative at pH 7 and 9. The inclusion of carbonyl cyanide m-chlorophenylhydrazone inhibited 22Na+ efflux in the presence of electron donors. These results indicate that the Na+/H+ antiport system in this strain operates electrogenically over a range of external pHs from 7 to 10 and plays a role in pH homeostasis at the alkaline pH range. The pH homeostasis at neutral ph was studied in more detail. K+ -depleted cells showed no delta pH (acid out) in the neutral conditions in the absence of K+, whereas these cells generated a delta pH if K+ was present in the medium. This increase of internal pH was accompanied by K+ uptake from the medium. These results suggest that electrogenic K+ entry allows extrusion of H+ from cells by the primary proton pump at neutral pH.  相似文献   

3.
R Jeanjean 《Biochimie》1975,57(10):1229-1236
The sensitivity of the phosphate transport system to pCMPS after phosphate starvation is dependent on protein synthesis. This fact is related to the development of transport activity at alkaline pH. In non-starved cells, the presence of only one peak of maximal activity for phosphate uptake at neutral pH (at low and high concentration) has been observed. However, in phosphate starved cells, two peaks of maximal activity (at low phosphate concentration) at neutral and alkaline pH are present. In starved cells, pCMPS inhibits more intensely the phosphate transport activity at alkaline pH than at neutral pH. By contrast, NEM inhibits the phosphate transport more strongly at neutral than at alkaline pH. Phosphate uptake at neutral and alkaline pH are sensitive to osmotic shock, but phosphate uptake at alkaline pH is decreased more than at neutral pH. The results could be interpreted either by assuming that the membrane surroundings change during phosphate starvation or that two transport systems are present in starved cells whereas only one transport system exists in non-starved cells.  相似文献   

4.
The effects of K+, Na+ and ATP on the gastric (H+ + K+)-ATPase were investigated at various pH. The enzyme was phosphorylated by ATP with a pseudo-first-order rate constant of 3650 min-1 at pH 7.4. This rate constant increased to a maximal value of about 7900 min-1 when pH was decreased to 6.0. Alkalinization decreased the rate constant. At pH 8.0 it was 1290 min-1. Additions of 5 mM K+ or Na+, did not change the rate constant at acidic pH, while at neutral or alkaline pH a decrease was observed. Dephosphorylation of phosphoenzyme in lyophilized vesicles was dependent on K+, but not on Na+. Alkaline pH increased the rate of dephosphorylation. K+ stimulated the ATPase and p-nitrophenylphosphatase activities. At high concentrations K+ was inhibitory. Below pH 7.0 Na+ had little or no effect on the ATPase and p-nitrophenylphosphatase, while at alkaline pH, Na+ inhibited both activities. The effect of extravesicular pH on transport of H+ was investigated. At pH 6.5 the apparent Km for ATP was 2.7 microM and increased little when K+ was added extravesicularly. At pH 7.5, millimolar concentrations of K+ increased the apparent Km for ATP. Extravesicular K+ and Na+ inhibited the transport of H+. The inhibition was strongest at alkaline pH and only slight at neutral or acidic pH, suggesting a competition between the alkali metal ions and hydrogen ions at a common binding site on the cytoplasmic side of the membrane. Two H+-producing reactions as possible candidates as physiological regulators of (H+ + K+)-ATPase were investigated. Firstly, the hydrolysis of ATP per se, and secondly, the hydration of CO2 and the subsequent formation of H+ and HCO3-. The amount of hydrogen ions formed in the ATPase reaction was highest at alkaline pH. The H+/ATP ratio was about 1 at pH 8.0. When CO2 was added to the reaction medium there was no change in the rate of hydrogen ion transport at pH 7.0, but at pH 8.0 the rate increased 4-times upon the addition of 0.4 mM CO2. The results indicate a possible co-operation in the production of acid between the H+ + K+-ATPase and a carbonic anhydrase associated with the vesicular membrane.  相似文献   

5.
S Ni  J E Boone    D R Boone 《Journal of bacteriology》1994,176(23):7274-7279
Methanolobus taylorii GS-16, a moderately halophilic and alkaliphilic methanogen, grows over a wide pH range, from 6.8 to 9.0. Cells suspended in medium with a pH above 8.2 reversed their transmembrane pH gradient (delta pH), making their cytosol more acidic than the medium. The decreased energy in the proton motive force due to the reversed delta pH was partly compensated by an increased electric membrane potential (delta psi). The cytosolic acidification by M. taylorii at alkaline pH values was accompanied by K+ extrusion. The cytosolic K+ concentration was 110 mM in cells suspended at pH 8.7, but it was 320 mM in cells suspended at neutral pH values. High external K+ concentrations (210 mM or higher) inhibited the growth of M. taylorii at alkaline pH values, perhaps by preventing K+ extrusion. Cells suspended at pH 8.5 and 300 mM external K+ failed to acidify their cytosol. The key observation indicative of the involvement of K+ transport in cytosolic acidification was that valinomycin (0.8 microM), a K+ uniporter, inhibited the growth of M. taylorii only at alkaline pH values. Experiments with resting cells indicated that at alkaline pH values valinomycin uncoupled catabolic reactions from ATP synthesis. Thus, K+/H+ antiport activity was proposed to account for the K+ extrusion and the uncoupling effect of valinomycin at alkaline pH values. Such antiport activity was demonstrated by the sharp drop in pH of the bulk medium of the cell suspension upon the addition of 0.1 M KCl. The antiporter appeared to be active only at alkaline pH values, which was in accordance with a possible role in pH homeostasis by M. taylorii growing at alkaline pH values.  相似文献   

6.
Tre character of K+ uptake in anaerobically grown S. typhimurium LT-2 is studied. In the alkaline media with glucose and moderate K+ activity these bacteria uptake K+ in two steps, the first of which has a high rate of K+ uptake, Km 2.1 mM and Vmax 0.44 mM/g. min and is sensitive to the medium osmolarity. Bacteria transfer from the media with high osmolarity to that with low one leads to a decrease of K+ uptake at the first step. The second increase of the medium osmolarity turns on the rapid K+ uptake only at alkaline pH. K+ uptake at the first step is inhibited by DCC and protonophores. In the absence of phosphate in the medium arsenate blocks K+ uptake at the first step, and when phosphate is available arsenate decreases K+ uptake. Valinomycin decreases the rate of K+ uptake. K+ uptake at the first step in S. typhimurium proceeds via Trk-like system which requires for K+ uptake both ATP and delta mu H+.  相似文献   

7.
The kinetic parameters of noradrenaline uptake by chromaffin granule ghosts have been measured at external pH values between 6.5 and 8.5. The log of the Km for noradrenaline decreased linearly with pH with a slope of -1.0, indicating that the observed affinity increase of originated in deprotonation of a single chemical group. This result is interpreted as showing that the neutral form of monoamines is the true substrate for the amine carrier. The Km of the carrier for the neutral form of noradrenaline was calculated as 0.1 microM. The maximal velocity, V, of the uptake reaction was constant from pH 6.5 to 8.0 and decreased at more alkaline pH values. Since the proton electrochemical gradient delta muH+ generated by the membrane H+-pump was independent of the pH in the range 6.5-9.5, the pH dependence of the maximal velocity of uptake reflects the pH profile of the monoamine transporter.  相似文献   

8.
We examined the mechanism of prostaglandin E2 transport in rabbit renal basolateral membrane vesicles which were predominantly oriented right-side-out. In the presence of an inwardly directed H+ gradient, the initial rate of uptake was markedly accelerated and the influx of prostaglandin E2 resulted in a transient accumulation (overshoot) above the equilibrium value. Both H+-independent and H+-stimulated prostaglandin E2 uptake were shown to be insensitive to valinomycin-induced K+ diffusion potentials. Intravesicular probenecid inhibited the pH gradient-stimulated uptake of prostaglandin E2 but did not affect the pH-stimulated uptake of thiocyanate and acetate which enter membranes via ionic and nonionic diffusion, respectively. Finally, the existence of a Na+ cotransport or of a K+ antiport pathway for prostaglandin E2 could not be demonstrated. Thus, these data demonstrate the presence of an electrically neutral H+-prostaglandin E2 cotransport or OH- -prostaglandin E2 antiport mechanism in the basolateral membrane of the rabbit proximal tubule.  相似文献   

9.
We have cloned the gene encoding the TRK transporter of the soil yeast Schwanniomyces occidentalis and obtained the HAK1 trk1 delta and the hak1 delta TRK1 mutant strains. Analyses of the transport capacities of these mutants have shown that (i) the HAK1 and the TRK1 potassium transporters are the only transporters operating at low and medium K+ concentrations (< 1 mM); (ii) the HAK1 transporter is functional at low pH but fails at high pH; and (iii) the TRK1 transporter functions at neutral and high pH and fails at low pH. At neutral pH, both transporters are functional, but HAK1 is not expressed, except at very low K+ concentrations (< 50 microM) where HAK1 is very effective. TRK1 is also involved in the control of the membrane potential.  相似文献   

10.
Selectively permeable membrane vesicles isolated from Simian virus 40-transformed mouse fibroblasts catalyzed Na+ gradient-coupled active transport of several neutral amino acids dissociated from intracellular metabolism. Na+-stimulated alanine transport activity accompanied plasma membrane material during centrifugation in discontinuous dextran 110 gradients. Carrier-mediated transport into the vesicle was demonstrated. When Na+ was equilibrated across the membrane, countertransport stimulation of L-[3H]alanine uptake occurred in the presence of accumulated unlabeled L-alanine, 2-aminoisobutyric acid, or L-methionine. Competitive interactions among neutral amino acids, pH profiles, and apparent Km values for Na+ gradient-stimulated transport into vesicles were similar to those previously described for amino acid uptake in Ehrlich ascites cells, which suggests that the transport activity assayed in vesicles is a component of the corresponding cellular uptake process. Both the initial rate and quasi-steady state of uptake were stimulated as a function of a Na+ gradient (external Na+ greater than internal Na+) applied artificially across the membrane and were independent of endogenous (Na+ + K+)-ATPase activity. Stimulation by Na+ was decreased when the Na+ gradient was dissipated by monensin, gramicidin D or Na+ preincubation. Na+ decreased the apparent Km for alanine, 2-aminoisobutyric acid, and glutamine transport. Na+ gradient-stimulated amino acid transport was electrogenic, stimulated by conditions expected to generate an interior-negative membrane potential, such as the presence of the permeant anions NO3- and SCN-. Na+-stimulated L-alanine transport was also stimulated by an electrogenic potassium diffusion potential (K+ internal greater than K+ external) catalyzed by valinomycin; this stimulation was blocked by nigericin. These observations provide support for a mechanism of active neutral amino acid transport via the "A system" of the plasma membrane in which both a Na+ gradient and membrane potential contribute to the total driving force.  相似文献   

11.
We examined the effect of diethyl pyrocarbonate (DEPC), a histidine-specific reagent, on the H+/organic cation antiport system in brush-border membrane vesicles isolated from the rat renal cortex. Pretreatment of membrane vesicles with DEPC resulted in the inhibition of tetraethylammonium transport. This inhibition was reversed by subsequent treatment with hydroxylamine, but not with dithiotreitol. In contrast, the uptake of p-aminohippurate, a typical organic anion, was not inhibited by DEPC pretreatment. In the absence of an H+ gradient, pretreatment with DEPC inhibited the uptake of tetraethylammonium at pH 6.0-7.0, but not at pH 7.5. The Vmax value of tetraethylammonium uptake at pH 7.0 was decreased without any change in the Km value, but the kinetic parameters at pH 7.5 were unchanged. Unlabeled tetraethylamonium did not protect against the inhibition by DEPC. These results suggest that histidine residues in the organic cation carrier are essential for transport at acidic and neutral pH values, but not at alkaline pH values, and that histidine residues play an important role as regulatory sites in the H+/organic cation antiport system rather than as binding sites for organic cations.  相似文献   

12.
Na+ was found to be essential for the accumulation of sucrose by Vibrio alginolyticus. Sucrose uptake was completely inhibited by the addition of proton conductor at neutral pH, but not at alkaline pH, where the primary electrogenic Na+ pump generates the Na+ electrochemical gradient. We therefore conclude that sucrose transport is driven by the electrochemical potential of Na+ in this organism.  相似文献   

13.
Leucine uptake into membrane vesicles from larvae of the midge Chironomus riparius was studied. The membrane preparation was highly enriched in typical brush border membrane enzymes and depleted of other membrane contaminants. In the absence of cations, there was a stereospecific uptake of l-leucine, which exhibited saturation kinetics. Parameters were determined both at neutral (Km 33 +/- 5 microM and Vmax 22.6 +/- 6.8 pmol/7s/mg protein) and alkaline (Km 46 +/- 5 microM and Vmax 15.5 +/- 2.5 pmol/7s/mg protein) pH values. At alkaline pH, external sodium increased the affinity for leucine (Km 17 +/- 1 microM) and the maximal uptake rate (Vmax 74.0 +/- 12.5 pmol/7s/mg protein). Stimulation of leucine uptake by external alkaline pH agreed with lumen pH measurements in vivo. Competition experiments indicated that at alkaline pH, the transport system readily accepts most L-amino acids, including branched, unbranched, and alpha-methylated amino acids, histidine and lysine, but has a low affinity for phenylalanine, beta-amino acids, and N-methylated amino acids. At neutral pH, the transport has a decreased affinity for lysine, glycine, and alpha-methylleucine. Taken together, these data are consistent with the presence in midges of two distinct leucine transport systems, which combine characters of the lepidopteran amino acid transport system and of the sodium-dependent system from lower neopterans.  相似文献   

14.
The hypothesis that the primary Na+-pump, Na+-ATPase, functions in the plasma membrane (PM) of halotolerant microalga Dunaliella maritima was tested using membrane preparations from this organism enriched with the PM vesicles. The pH profile of ATP hydrolysis catalyzed by the PM fractions exhibited a broad optimum between pH 6 and 9. Hydrolysis in the alkaline range was specifically stimulated by Na+ ions. Maximal sodium dependent ATP hydrolysis was observed at pH 7.5-8.0. On the assumption that the ATP-hydrolysis at alkaline pH values is related to a Na+-ATPase activity, we investigated two ATP-dependent processes, sodium uptake by the PM vesicles and generation of electric potential difference (Deltapsi) across the vesicle membrane. PM vesicles from D. maritima were found to be able to accumulate 22Na+ upon ATP addition, with an optimum at pH 7.5-8.0. The ATP-dependent Na+ accumulation was stimulated by the permeant NO3- anion and the protonophore CCCP, and inhibited by orthovanadate. The sodium accumulation was accompanied by pronounced Deltapsi generation across the vesicle membrane. The data obtained indicate that a primary Na+ pump, an electrogenic Na+-ATPase of the P-type, functions in the PM of marine microalga D. maritima.  相似文献   

15.
The calcium (Ca2+) uptake by brush border membrane vesicles isolated from fresh human placentas has been characterized. This process was saturable and time- and concentration-dependent. It exhibited a double Michaelis-Menten kinetics, with apparent Km values of 0.17 +/- 0.03 and 2.98 +/- 0.17 mM Ca2+, and Vmax values of 0.9 +/- 0.13 and 2.51 +/- 0.45 pmol.micrograms-1.5 s-1. It was not influenced by the presence of Na+ or Mg2+ in the incubation medium. It was not increased by K+ or anion diffusion potentials, inside negative. At a steady state of 1 mM Ca2+ uptake, a large proportion (approximately 94%) of the Ca2+ was bound to the internal surface of the membranes. Preincubation of these membrane vesicles with voltage-dependent Ca2+ channel blockers (nifedipine and verapamil) had no influence on Ca2+ uptake. However, this uptake was very sensitive to pH. In the absence of a pH gradient, the Ca2+ uptake increased with alkalinity. When the intravesicular pH was kept constant while the pH of the incubation medium was increased, Ca2+ uptake was also stimulated by alkaline pH. In contrast, when the pH of the incubation medium was kept constant and the intravesicular pH was progressively increased, Ca2+ uptake was diminished with alkaline pH. Therefore, H+ gradient (H+ in trans-position greater than H+ in cis-position) favored Ca2+ transport, suggesting a H+/Ca2+ exchange mechanism. Finally, in contrast to the basal plasma membrane, the brush border membrane did not show any ATP-dependent Ca2+ transport activity.  相似文献   

16.
Summary The distribution of Mg+ +-ATPase in osteoclasts along the endosteal surface of the chick tibia was investigated by neutral and alkaline pH cytochemical methods at the electron-microscopic level. Reaction product was observed in mitochondria, cytoplasmic vesicles, and ruffled-border membrane. Levamisole, ouabain, and vanadate did not affect the enzymatic activity. Para-chloromercuribenzoic acid (PCMB) prevented staining of mitochondria, ruffled border, and most cytoplasmic vesicles. Tri-n-butyltin decreased the amount of reaction product in cytoplasmic vesicles and ruffled-border membrane, but did not inhibit reaction product formation within mitochondria. Duramycin, which is a potent inhibitor for proton-pump ATPase, blocked reaction-product formation along the ruffled-border membrane, in mitochondria, and in cytoplasmic vesicles at alkaline pH, but not at neutral pH. It is concluded that the alkaline pH method for Mg+ +-ATPase appears to demonstrate sites of proton-pump ATPase activity.  相似文献   

17.
The marine bacterium, Vibrio alginolyticus, regulates the cytoplasmic pH at about 7.8 over the pH range 6.0-9.0. By the addition of diethanolamine (a membrane-permeable amine) at pH 9.0, the internal pH was alkalized and simultaneously the cellular K+ was released. Following the K+ exit, the internal pH was acidified until 7.8, where the K+ exit leveled off. The K+ exit was mediated by a K+/H+ antiporter that is driven by the outwardly directed K+ gradient and ceases to function at the internal pH of 7.8 and below. The Na+-loaded cells assayed in the absence of KCl generated inside acidic delta pH at alkaline pH due to the function of an Na+/H+ antiporter, but the internal pH was not maintained at a constant value. At acidic pH range, the addition of KCl to the external medium was necessary for the alkalization of cell interior. These results suggested that in cooperation with the K+ uptake system and H+ pumps, the K+/H+ antiporter functions as a regulator of cytoplasmic pH to maintain a constant value of 7.8 over the pH range 6.0-9.0.  相似文献   

18.
Oxalase-supported, ATP-dependent Ca2+ uptake by cardiac and skeletal muscle sarcoplasmic reticulum (SR) exhibits a pH profile with the maximal rate of Ca2+ uptake at pH 6.6-6.8 and marked inhibition (90-95%) at pH 7.4-7.6, a point at which Ca2+-dependent ATPase activity is optimal. These observations are noted when the SR is first preincubated in media containing no added Ca2+. This alkaline pH inhibition is not caused by an irreversible perturbation since the Ca2+ uptake rate is fully restored by changing the alkaline pH preincubation medium to pH 6.8. When SR is preincubated with added Ca2+, Ca2+ uptake at alkaline pH (7.4-7.6) is only inhibited by 10-30%. Ca2+ uptake at pH 6.8 is the same regardless of preincubation conditions. A depressed oxalate permeability is not a factor in the observed alkaline pH inhibition of Ca2+ uptake. At alkaline pH, the relationship between the preincubation Ca2+ concentration and the rate of Ca2+ uptake is hyperbolic; the half-maximal free Ca2+ concentration for stabilization of Ca2+ uptake is 8-15 microM with a Vmax equal to the velocity at the optimal pH. The Hill coefficient is 1.0, implying a single class of Ca2+-requiring sites for stabilization at alkaline pH. In contrast to its effect on Ca2+ uptake, the presence of Ca2+ during preincubation does not alter the pH sensitivity of Ca2+-dependent ATPase activity. Thus, the presence of Ca2+ during preincubation may stabilize a state of the CaATPase, conducive to the coupling of net Ca2+ translocation to Ca2+-dependent ATPase activity, which is ordinarily opposed by alkaline pH. The data suggest a single class of Ca2+-requiring sites which favors this coupled state.  相似文献   

19.
Alkalophilic Bacillus sp. strain C-59 could grow well on an alkaline medium containing K2CO3, as well as Na2CO3, but did not grow on K+-depleted medium. Right-side-out membrane vesicles, energized in the absence of Na+, however, could not take up [14C]methylamine actively, while vesicles equilibrated with 10 mM NaCl actively took up [14C]methylamine. The uptake of [14C]serine was also stimulated by the addition of Na+, and the imposition of a sodium gradient caused transient uptake. These results indicated that an Na+/H+ antiporter was involved in pH homeostasis and generation of an electrochemical sodium gradient in strain C-59 even though a growth requirement for Na+ was not evident. The efflux of 22Na+ from 22Na+-loaded vesicles was more rapid at pH 9.5 than at pH 7 in the presence of an electron donor. On the other hand, vesicles at pH 7 showed more rapid efflux than at pH 9.5 when the antiporter was energized by a valinomycin-mediated K+ diffusion potential (inside negative).  相似文献   

20.
The proton motive force (PMF) was determined in Rhodobacter sphaeroides under anaerobic conditions in the dark and under aerobic-dark and anaerobic-light conditions. Anaerobically in the dark in potassium phosphate buffer, the PMF at pH 6 was -20 mV and was composed of an electrical potential (delta psi) only. At pH 7.9 the PMF was composed of a high delta psi of -98 mV and was partially compensated by a reversed pH gradient (delta pH) of +37 mV. ATPase inhibitors did not affect the delta psi, which was most likely the result of a K+ diffusion potential. Under energized conditions in the presence of K+ the delta psi depolarized due to electrogenic K+ uptake. This led to the generation of a delta pH (inside alkaline) in the external pH range of 6 to 8. This delta pH was dependent on the K+ concentration and was maximal at external K+ concentrations larger than 1.2 mM. In energized cells in 50 mM KPi buffer containing 5 mM MgSO4, a delta pH (inside alkaline) was present at external pHs from pH 6 to 8. As a result the overall magnitude of the PMF at various external pHs remained constant at -130 mV, which was significantly higher than the PMF under anaerobic-dark conditions. In the absence of K+, in 50 mM NaPi buffer containing 5 mM MgSO4, no depolarization of the delta psi was found and the PMF was composed of a large delta psi and a small delta pH. The delta pH became even reversed (inside acidic) at alkaline pHs (pH>7.3), resulting in a lowering of the PMF. These results demonstrate that in R. sphaeroides K+ uptake is essential for the generation of a delta pH and plays a central role in the regulation of the internal pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号