首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amount of Ca2+ taken up in the mitochondrial matrix is a crucial determinant of cell fate; it plays a decisive role in the choice of the cell between life and death. The Ca2+ ions mainly originate from the inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ stores of the endoplasmic reticulum (ER). The uptake of these Ca2+ ions in the mitochondria depends on the functional properties and the subcellular localization of the IP3 receptor (IP3R) in discrete domains near the mitochondria. To allow for an efficient transfer of the Ca2+ ions from the ER to the mitochondria, structural interactions between IP3Rs and mitochondria are needed. This review will focus on the key proteins involved in these interactions, how they are regulated, and what are their physiological roles in apoptosis, necrosis and autophagy. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

2.
Overactivation of ionotropic glutamate receptors induces a Ca2+ overload into the cytoplasm that leads neurons to excitotoxic death, a process that has been linked to several neurodegenerative disorders. While the role of mitochondria and its involvement in excitotoxicity have been widely studied, the contribution of endoplasmic reticulum (ER), another crucial intracellular store in maintaining Ca2+ homeostasis, is not fully understood. In this study, we analyzed the contribution of ER-Ca2+ release through ryanodine (RyR) and IP3 (IP3R) receptors to a neuronal in vitro model of excitotoxicity. NMDA induced a dose-dependent neuronal death, which was significantly decreased by ER-Ca2+ release inhibitors in cortical neurons as well as in organotypic slices. Furthermore, ryanodine and 2APB, RyR and IP3R inhibitors respectively, attenuated NMDA-triggered intracellular Ca2+ increase and oxidative stress, whereas 2APB reduced mitochondrial membrane depolarization and caspase-3 cleavage. Consistent with ER-Ca2+ homeostasis disruption, we observed that NMDA-induced ER stress, characterized here by eIF2α phosphorylation and over-expression of GRP chaperones which were regulated by ER-Ca2+ release inhibitors. These results demonstrate that Ca2+ release from ER contributes to neuronal death by both promoting mitochondrial dysfunction and inducing specific stress and apoptosis pathways during excitotoxicity.  相似文献   

3.
Ca2+ transfer from endoplasmic reticulum (ER) to mitochondria can trigger apoptotic pathways by inducing release of mitochondrial pro-apoptotic factors. Three different types of inositol 1,4,5-trisphosphate receptor (IP3R) serve to discharge Ca2+ from ER, but possess some peculiarities, especially in apoptosis induction. The anti-apoptotic protein Akt can phosphorylate all IP3R isoforms and protect cells from apoptosis, reducing ER Ca2+ release. However, it has not been elucidated which IP3R subtypes mediate these effects. Here, we show that Akt activation in COS7 cells, which lack of IP3R I, strongly suppresses IP3-mediated Ca2+ release and apoptosis. Conversely, in SH-SY 5Y cells, which are type III-deficient, Akt is unable to modulate ER Ca2+ flux, losing its anti-apoptotic activity. In SH-SY 5Y-expressing subtype III, Akt recovers its protective function on cell death, by reduction of Ca2+ release. Moreover, regulating Ca2+ flux to mitochondria, Akt maintains the mitochondrial integrity and delays the trigger of apoptosis, in a type III-dependent mechanism. These results demonstrate a specific activity of Akt on IP3R III, leading to diminished Ca2+ transfer to mitochondria and protection from apoptosis, suggesting an additional level of cell death regulation mediated by Akt.  相似文献   

4.
Mitochondria modulate cellular Ca2+ signals by accumulating the ion via a uniporter and releasing it via Na+- or H+-exchange. In smooth muscle, inhibition of mitochondrial Ca2+ uptake inhibits Ca2+ release from the sarcoplasmic reticulum (SR) via inositol-1,4,5-trisphosphate-sensitive receptors (IP3R). At least two mechanisms may explain this effect. First, localised uptake of Ca2+ by mitochondria may prevent negative feedback by cytosolic Ca2+ on IP3R activity, or secondly localised provision of Ca2+ by mitochondrial efflux may maintain IP3R function or SR Ca2+ content. To distinguish between these possibilities the role of mitochondrial Ca2+ efflux on IP3R function was examined. IP3 was liberated in freshly isolated single colonic smooth muscle cells and mitochondrial Na+–Ca2+ exchanger inhibited with CGP-37157 (10 μM). Mitochondria accumulated Ca2+ during IP3-evoked [Ca2+]c rises and released the ion back to the cytosol (within 15 s) when mitochondrial Ca2+ efflux was active. When mitochondrial Ca2+ efflux was inhibited by CGP-37157, an extensive and sustained loading of mitochondria with Ca2+ occurred after IP3-evoked Ca2+ release. IP3-evoked [Ca2+]c rises were initially unaffected, then only slowly inhibited by CGP-37157. IP3R activity was required for inhibition to occur; incubation with CGP-37157 for the same duration without IP3 release did not inhibit IP3R. CGP-37157 directly inhibited voltage-gated Ca2+ channel activity, however SR Ca2+ content was unaltered by the drug. Thus, the gradual decline of IP3R function that followed mitochondrial Na+–Ca2+ exchanger inhibition resulted from a gradual overload of mitochondria with Ca2+, leading to a reduced capacity for Ca2+ uptake. Localised uptake of Ca2+ by mitochondria, rather than mitochondrial Ca2+ efflux, appears critical for maintaining IP3R activity.  相似文献   

5.

Background

All identified mammalian TRPC channels show a C-terminal calmodulin (CaM)- and inositol 1,4,5-trisphosphate receptors (IP3Rs)-binding (CIRB) site involved in the regulation of TRPC channel function.

Objectives

To assess the basis of CaM/IP3Rs binding to the CIRB site of TRPC6 and its role in platelet physiology.

Methods

Protein association was detected by co-immunoprecipitation and Western blotting, Ca2+ mobilization was measured by fluorimetric techniques and platelet function was analyzed by aggregometry.

Results

Co-immunoprecipitation of TRPC6 with CaM or the IP3Rs at different cytosolic free Ca2+ concentrations ([Ca2+]c) indicates that the association between these proteins is finely regulated by cytosolic Ca2+ via association of CaM and displacement of the IP3Rs at high [Ca2+]c. Thrombin-stimulated association of TRPC6 with CaM or the IP3Rs was sensitive to 2-APB and partially inhibited by dimethyl BAPTA loading, thus suggesting that the association between these proteins occurs through both Ca2+-dependent and -independent mechanisms. Incorporation of an anti-TRPC6 C-terminal antibody, whose epitope overlaps the CIRB region, impaired the dynamics of the association of TRPC6 with CaM and the IP3Rs, which lead to both inhibition and enhancement of thrombin- and thapsigargin-evoked Ca2+ entry in the presence of low or high, respectively, extracellular Ca2+ concentrations, as well as altered thrombin-evoked platelet aggregation.

Conclusions

Our results indicate that the CIRB site of TRPC6 plays an important functional role in platelets both modulating Ca2+ entry and aggregation through its interaction with CaM and IP3Rs.  相似文献   

6.
Bcl-2 family proteins, known for their apoptosis functioning at the mitochondria, have been shown to localize to other cellular compartments to mediate calcium (Ca2+) signals. Since the proper supply of Ca2+ in cells serves as an important mechanism for cellular survival and bioenergetics, we propose an integrating role for Bcl-2 family proteins in modulating Ca2+ signaling. The endoplasmic reticulum (ER) is the main Ca2+ storage for the cell and Bcl-2 family proteins competitively regulate its Ca2+ concentration. Bcl-2 family proteins also regulate the flux of Ca2+ from the ER by physically interacting with inositol 1,4,5-trisphosphate receptors (IP3Rs) to mediate their opening. Type 1 IP3Rs reside at the bulk ER to coordinate cytosolic Ca2+ signals, while type 3 IP3Rs reside at mitochondria-associated ER membrane (MAM) to facilitate mitochondrial Ca2+ uptake. In healthy cells, mitochondrial Ca2+ drives pyruvate into the citric acid (TCA) cycle to facilitate ATP production, while a continuous accumulation of Ca2+ can trigger the release of cytochrome c, thus initiating apoptosis. Since multiple organelles and Bcl-2 family proteins are involved in Ca2+ signaling, we aim to clarify the role that Bcl-2 family proteins play in facilitating Ca2+ signaling and how mitochondrial Ca2+ is relevant in both bioenergetics and apoptosis. We also explore how these insights could be useful in controlling bioenergetics in apoptosis-resistant cell lines.  相似文献   

7.
Communication between the SR (sarcoplasmic reticulum, SR) and mitochondria is important for cell survival and apoptosis. The SR supplies Ca2+ directly to mitochondria via inositol 1,4,5-trisphosphate receptors (IP3Rs) at close contacts between the two organelles referred to as mitochondrion-associated ER membrane (MAM). Although it has been demonstrated that CaR (calcium sensing receptor) activation is involved in intracellular calcium overload during hypoxia/reoxygenation (H/Re), the role of CaR activation in the cardiomyocyte apoptotic pathway remains unclear. We postulated that CaR activation plays a role in the regulation of SR-mitochondrial inter-organelle Ca2+ signaling, causing apoptosis during H/Re. To investigate the above hypothesis, cultured cardiomyocytes were subjected to H/Re. We examined the distribution of IP3Rs in cardiomyocytes via immunofluorescence and Western blotting and found that type 3 IP3Rs were located in the SR. [Ca2+]i, [Ca2+]m and [Ca2+]SR were determined using Fluo-4, x-rhod-1 and Fluo 5N, respectively, and the mitochondrial membrane potential was detected with JC-1 during reoxygenation using laser confocal microscopy. We found that activation of CaR reduced [Ca2+]SR, increased [Ca2+]i and [Ca2+]m and decreased the mitochondrial membrane potential during reoxygenation. We found that the activation of CaR caused the cleavage of BAP31, thus generating the pro-apoptotic p20 fragment, which induced the release of cytochrome c from mitochondria and the translocation of bak/bax to mitochondria. Taken together, these results reveal that CaR activation causes Ca2+ release from the SR into the mitochondria through IP3Rs and induces cardiomyocyte apoptosis during hypoxia/reoxygenation.  相似文献   

8.
Cell-death and -survival decisions are critically controlled by intracellular Ca2 + homeostasis and dynamics at the level of the endoplasmic reticulum (ER). Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) play a pivotal role in these processes by mediating Ca2 + flux from the ER into the cytosol and mitochondria. Hence, it is clear that many pro-survival and pro-death signaling pathways and proteins affect Ca2 + signaling by directly targeting IP3R channels, which can happen in an IP3R-isoform-dependent manner. In this review, we will focus on how the different IP3R isoforms (IP3R1, IP3R2 and IP3R3) control cell death and survival. First, we will present an overview of the isoform-specific regulation of IP3Rs by cellular factors like IP3, Ca2 +, Ca2 +-binding proteins, adenosine triphosphate (ATP), thiol modification, phosphorylation and interacting proteins, and of IP3R-isoform specific expression patterns. Second, we will discuss the role of the ER as a Ca2 + store in cell death and survival and how IP3Rs and pro-survival/pro-death proteins can modulate the basal ER Ca2 + leak. Third, we will review the regulation of the Ca2 +-flux properties of the IP3R isoforms by the ER-resident and by the cytoplasmic proteins involved in cell death and survival as well as by redox regulation. Hence, we aim to highlight the specific roles of the various IP3R isoforms in cell-death and -survival signaling. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

9.
Communication between the SR (sarcoplasmic reticulum, SR) and mitochondria is important for cell survival and apoptosis. The SR supplies Ca2+ directly to mitochondria via inositol 1,4,5-trisphosphate receptors (IP3Rs) at close contacts between the two organelles referred to as mitochondrion-associated ER membrane (MAM). Although it has been demonstrated that CaR (calcium sensing receptor) activation is involved in intracellular calcium overload during hypoxia/reoxygenation (H/Re), the role of CaR activation in the cardiomyocyte apoptotic pathway remains unclear. We postulated that CaR activation plays a role in the regulation of SR-mitochondrial inter-organelle Ca2+ signaling, causing apoptosis during H/Re. To investigate the above hypothesis, cultured cardiomyocytes were subjected to H/Re. We examined the distribution of IP3Rs in cardiomyocytes via immunofluorescence and Western blotting and found that type 3 IP3Rs were located in the SR. [Ca2+]i, [Ca2+]m and [Ca2+]SR were determined using Fluo-4, x-rhod-1 and Fluo 5N, respectively, and the mitochondrial membrane potential was detected with JC-1 during reoxygenation using laser confocal microscopy. We found that activation of CaR reduced [Ca2+]SR, increased [Ca2+]i and [Ca2+]m and decreased the mitochondrial membrane potential during reoxygenation. We found that the activation of CaR caused the cleavage of BAP31, thus generating the pro-apoptotic p20 fragment, which induced the release of cytochrome c from mitochondria and the translocation of bak/bax to mitochondria. Taken together, these results reveal that CaR activation causes Ca2+ release from the SR into the mitochondria through IP3Rs and induces cardiomyocyte apoptosis during hypoxia/reoxygenation.  相似文献   

10.
A rise in the intracellular concentration of ionized calcium ([Ca2+]i) is a primary signal for contraction in all types of muscles. Recent progress in the development of imaging techniques, with special accent on fluorescence confocal microscopy, and new achievements in the synthesis of organelle- and ion-specific fluorochromes provide an experimental basis for studying the relationship between the structural organization of living smooth muscle cells (SMCs) and features of calcium signaling at the subcellular level. Applying fluorescent confocal imaging, patch-clamp recording, immunostaining, and flash photolysis techniques to freshly isolated SMCs, we have demonstrated that: (i) Ca2+ sparks are mediated by spontaneous clustered opening of ryanodine receptors (RyRs) and occur at the highest rate at preferred sites (frequent discharge sites, FDSs), the number of which depends on SMC type; (ii) FDSs are associated with sub-plasmalemmal sarcoplasmic reticulum (SR) elements, but not with polarized mitochondria; (iii) Ca2+ spark frequency increases with membrane depolarization in voltage-clamped SMCs or following neurotransmitter application to SMCs, in which the membrane potential was not controlled, leading to spark summation and resulting in a cell-wide increase in [Ca2+]i and myocyte contraction; (iv) cross-talk between RyRs and inositol trisphosphate receptors (IP3Rs) is an important determinant of the [Ca2+]i dynamics and recruits neighboring Ca2+-release sites to generate [Ca2+]i waves; (v) [Ca2+]i waves induced by depolarization of the plasma membrane or by noradrenaline or caffeine, but not by carbachol (CCh), originate at FDSs; (vi) Ca2+-dependent K+ and Cl- channels sense the local changes in [Ca2+]i during a Ca2+ spark and thereby may couple changes in [Ca2+]i within a microdomain to changes in the membrane potential, thus affecting the cell excitability; (vii) the muscarinic cation current (mI cat) does not mirror changes in [Ca2+]i, thus reflecting the complexity of [Ca2+]i — muscarinic cationic channel coupling; (viii) RyR-mediated Ca2+ release, either spontaneous or caffeine-induced, does not augment mI cat; (ix) intracellular flash release of Ca2+ is less effective in augmentation of mI cat than flash release of IP3, suggesting that IP3 may sensitize muscarinic cationic channels to Ca2+; (x) intracellular flash release of IP3 fails to augment mI cat in SMCs, in which [Ca2+]i was strongly buffered, suggesting that IP3 exerts no direct effect on muscarinic cationic channel gating, and that these channels sense an increase in [Ca2+]i rather than depletion of the IP3-dependent Ca2+ store; and (xi) predominant expression of IP3R type 1 in the peripheral SR provides a structural basis for a tight functional coupling between IP3R-mediated Ca2+ release and muscarinic cationic channel opening.Neirofiziologiya/Neurophysiology, Vol. 36, Nos. 5/6, pp. 455–465, September–December, 2004.This revised version was published online in April 2005 with a corrected cover date and copyright year.  相似文献   

11.
12.
Many agonists bring about their effects on cellular functions through a rise incytosolic [Ca2+]([Ca2+]c) mediated by the second messenger inositol 1,4,5-trisphosphate (IP3). Imaging studiesof single cells have demonstrated that [Ca2+]c signals display cell specific spatiotemporalorganization that is established by coordinated activation of IP3 receptor Ca2+ channels.Evidence emerges that cytosolic calcium signals elicited by activation of the IP3 receptors areefficiently transmitted to the mitochondria. An important function of mitochondrial calciumsignals is to activate the Ca2+-sensitive mitochondrial dehydrogenases, and thereby to meetdemands for increased energy in stimulated cells. Activation of the permeability transitionpore (PTP) by mitochondrial calcium signals may also be involved in the control of cell death.Furthermore, mitochondrial Ca2+ transport appears to modulate the spatiotemporal organizationof [Ca2+]c responses evoked by IP3 and so mitochondria may be important in cytosolic calciumsignaling as well. This paper summarizes recent research to elucidate the mechanisms andsignificance of IP3-dependent mitochondrial calcium signaling.  相似文献   

13.
Inositol 1,4,5-trisphosphate receptors (IP3R) are the most widely expressed intracellular Ca2+ release channels. Their activation by IP3 and Ca2+ allows Ca2+ to pass rapidly from the ER lumen to the cytosol. The resulting increase in cytosolic [Ca2+] may directly regulate cytosolic effectors or fuel Ca2+ uptake by other organelles, while the decrease in ER luminal [Ca2+] stimulates store-operated Ca2+ entry (SOCE). We are close to understanding the structural basis of both IP3R activation, and the interactions between the ER Ca2+-sensor, STIM, and the plasma membrane Ca2+ channel, Orai, that lead to SOCE. IP3Rs are the usual means through which extracellular stimuli, through ER Ca2+ release, stimulate SOCE. Here, we review evidence that the IP3Rs most likely to respond to IP3 are optimally placed to allow regulation of SOCE. We also consider evidence that IP3Rs may regulate SOCE downstream of their ability to deplete ER Ca2+ stores. Finally, we review evidence that IP3Rs in the plasma membrane can also directly mediate Ca2+ entry in some cells.  相似文献   

14.
The ability of cells to maintain low levels of Ca2+ under resting conditions and to create rapid and transient increases in Ca2+ upon stimulation is a fundamental property of cellular Ca2+ signaling mechanism. An increase of cytosolic Ca2+ level in response to diverse stimuli is largely accounted for by the inositol 1,4,5-trisphosphate receptor (IP3R) present in the endoplasmic reticulum membranes of virtually all eukaryotic cells. Extensive information is currently available on the function of IP3Rs and their interaction with modulators. Very little, however, is known about their molecular architecture and therefore most critical issues surrounding gating of IP3R channels are still ambiguous, including the central question of how opening of the IP3R pore is initiated by IP3 and Ca2+. Membrane proteins such as IP3R channels have proven to be exceptionally difficult targets for structural analysis due to their large size, their location in the membrane environment, and their dynamic nature. To date, a 3D structure of complete IP3R channel is determined by single-particle cryo-EM at intermediate resolution, and the best crystal structures of IP3R are limited to a soluble portion of the cytoplasmic region representing ∼15% of the entire channel protein. Together these efforts provide the important structural information for this class of ion channels and serve as the basis for further studies aiming at understanding of the IP3R function.  相似文献   

15.

Background

Inositol 1,4,5-trisphosphate receptors (IP3R) are expressed in almost all animal cells. Three mammalian genes encode closely related IP3R subunits, which assemble into homo- or hetero-tetramers to form intracellular Ca2 + channels.

Scope of the review

In this brief review, we first consider a variety of complementary methods that allow the links between IP3 binding and channel gating to be defined. How does IP3 binding to the IP3-binding core in each IP3R subunit cause opening of a cation-selective pore formed by residues towards the C-terminal? We then describe methods that allow IP3, Ca2 + signals and IP3R mobility to be examined in intact cells. A final section briefly considers genetic analyses of IP3R signalling.

Major conclusions

All IP3R are regulated by both IP3 and Ca2 +. This allows them to initiate and regeneratively propagate intracellular Ca2 + signals. The elementary Ca2 + release events evoked by IP3 in intact cells are mediated by very small numbers of active IP3R and the Ca2 +-mediated interactions between them. The spatial organization of these Ca2 + signals and their stochastic dependence on so few IP3Rs highlight the need for methods that allow the spatial organization of IP3R signalling to be addressed with single-molecule resolution.

General significance

A variety of complementary methods provide insight into the structural basis of IP3R activation and the contributions of IP3-evoked Ca2 + signals to cellular physiology. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signaling.  相似文献   

16.
We have demonstrated that adenosine did not produce any change of intracellular free Ca2+ concentration ([Ca2+]i) in oviductal ciliated cells; however, it increased the ATP-induced Ca2+ influx through the activation of protein kinase A (PKA). Uncaging of IP3 and cAMP triggered a larger Ca2+ influx than did IP3 alone. Furthermore, the IP3 effect was abolished by Xestospongin C, an IP3 receptor blocker. Whole-cell recordings demonstrated the presence of an ATP-induced Ca2+ current, and the addition of adenosine increased the peak of this current. This effect was not observed in the presence of H-89, a PKA inhibitor. Using excised macro-patches of plasma membrane, IP3 generated a current, which was higher in the presence of the catalytic PKA subunit and this current was blocked by Xestospongin C. We show here that activation of plasma membrane IP3 receptors directly triggers Ca2+ influx in response to ATP and that these receptors are modulated by adenosine-activated PKA.  相似文献   

17.
Yoo SH 《Cell calcium》2011,50(2):175-183
The majority of secretory cell calcium is stored in secretory granules that serve as the major IP3-dependent intracellular Ca2+ store. Even in unicellular phytoplankton secretory granules are responsible for the IP3-induced Ca2+ release that triggers exocytosis. The number of secretory granules in the cell is directly related not only to the magnitude of IP3-induced Ca2+ release, which accounts for the majority of the IP3-induced cytoplasmic Ca2+ release in neuroendocrine cells, but also to the IP3 sensitivity of the cytoplasmic IP3 receptor (IP3R)/Ca2+ channels. Moreover, secretory granules contain the highest IP3R concentrations and the largest amounts of IP3Rs in any subcellular organelles in neuroendocrine cells. Secretory granules from phytoplankton to mammals contain large amounts of polyanionic molecules, chromogranins being the major molecules in mammals, in addition to acidic intragranular pH and high Ca2+ concentrations. The polyanionic molecules undergo pH- and Ca2+-dependent conformational changes that serve as a molecular basis for condensation-decondensation phase transitions of the intragranular matrix. Likewise, chromogranins undergo pH- and Ca2+-dependent conformational changes with increased exposure of the structure and increased interactions with Ca2+ and other granule components at acidic pH. The unique physico-chemical properties of polyanionic molecules appear to be at the center of biogenesis, and physiological functions of secretory granules in living organisms from primitive to advanced species.  相似文献   

18.
How Ca2+ oscillations are generated and fine-tuned to yield versatile downstream responses remains to be elucidated. In hepatocytes, G protein-coupled receptor-linked Ca2+ oscillations report signal strength via frequency, whereas Ca2+ spike amplitude and wave velocity remain constant. IP3 uncaging also triggers oscillatory Ca2+ release, but, in contrast to hormones, Ca2+ spike amplitude, width, and wave velocity were dependent on [IP3] and were not perturbed by phospholipase C (PLC) inhibition. These data indicate that oscillations elicited by IP3 uncaging are driven by the biphasic regulation of the IP3 receptor by Ca2+, and, unlike hormone-dependent responses, do not require PLC. Removal of extracellular Ca2+ did not perturb Ca2+ oscillations elicited by IP3 uncaging, indicating that reloading of endoplasmic reticulum stores via plasma membrane Ca2+ influx does not entrain the signal. Activation and inhibition of PKC attenuated hormone-induced Ca2+ oscillations but had no effect on Ca2+ increases induced by uncaging IP3. Importantly, PKC activation and inhibition differentially affected Ca2+ spike frequencies and kinetics. PKC activation amplifies negative feedback loops at the level of G protein-coupled receptor PLC activity and/or IP3 metabolism to attenuate IP3 levels and suppress the generation of Ca2+ oscillations. Inhibition of PKC relieves negative feedback regulation of IP3 accumulation and, thereby, shifts Ca2+ oscillations toward sustained responses or dramatically prolonged spikes. PKC down-regulation attenuates phenylephrine-induced Ca2+ wave velocity, whereas responses to IP3 uncaging are enhanced. The ability to assess Ca2+ responses in the absence of PLC activity indicates that IP3 receptor modulation by PKC regulates Ca2+ release and wave velocity.  相似文献   

19.
Synaptically activated postsynaptic [Ca2+]i increases occur through three main pathways: Ca2+ entry through voltage-gated Ca2+ channels, Ca2+ entry through ligand-gated channels, and Ca2+ release from internal stores. The first two pathways have been studied intensively; release from stores has been the subject of more recent investigations.Ca2+ release from stores in CNS neurons primarily occurs as a result of IP3 mobilized by activation of metabotropic glutamatergic and/or cholingergic receptors coupled to PLC. Ca2+ release is localized near spines in Purkinje cells and occurs as a wave in the primary apical dendrites of pyramidal cells in the hippocampus and cortex. The amplitude of the [Ca2+]i increase can reach several micromolar, significantly larger than the increase due to backpropagating spikes.The large amplitude, long duration, and unique location of the [Ca2+]i increases due to Ca2+ release from stores suggests that these increases can affect specific downstream signaling mechanisms in neurons.  相似文献   

20.
Vertebrate left–right (LR) body axis is manifested as an asymmetrical alignment of the internal organs such as the heart and the gut. It has been proposed that the process of LR determination commonly involves a cilia-driven leftward flow in the mammalian node and its equivalents (Kupffer’s vesicle in zebrafish and the gastrocoel roof plate in Xenopus). Recently, it was reported that Ca2+ flux regulates Kupffer’s vesicle development and is required for LR determination. As a basis of Ca2+ flux in many cell types, inositol 1,4,5-trisphosphate (IP3) receptor-mediated calcium release from the endoplasmic reticulum (ER) plays important roles. However, its involvement in LR determination is poorly understood. We investigated the role of IP3 signaling in LR determination in Xenopus embryos. Microinjection of an IP3 receptor-function blocking antibody that can inhibit IP3 calcium channel activity randomized the LR axis in terms of left-sided Pitx2 expression and organ laterality. In addition, an IP3 sponge that could inhibit IP3 signaling by binding IP3 more strongly than the IP3 receptor impaired LR determination. Examination of the gastrocoel roof plate revealed that the number of cilia was significantly reduced by IP3 signal blocking. These results provide evidence that IP3 signaling is involved in LR asymmetry formation in vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号