首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The in vitro biological actions of synthetic chum salmon melanin concentrating hormone (MCH) on melanophores of the blue damselfish (a teleost), Chrysiptera cyanea, were studied. This cyclic heptadecapeptide stimulated melanosome (melanin granule) aggregation (centripetal migration) within melanophores at a threshold concentration of about 10(-10) M. The action of this putative hormone was not blocked by alpha- or beta-adrenoceptor antagonists. It was concluded that the effects of MCH were direct and were not mediated indirectly through the actions of adrenergic neurotransmitters released from nerve terminals. Further evidence for this view comes from the observation that, unlike the case of neurotransmitter release, melanosome aggregation in response to MCH proceeded in the absence of calcium. The possible role of MCH in the control of color change of teleost fishes is discussed.  相似文献   

2.
Melanin concentrating hormone (MCH) is a cyclic heptadecapeptide, Asp-Thr-Met-Arg-Cys-Met-Val-Gly-Arg-Val-Tyr-Arg-Pro-Cys-Trp-Glu-Val, synthesized in the hypothalamus and released by the neurohypophysis of teleost fish. This hormone is a potent lightening agent of fish skin. This lightening results from the stimulation of a centripetal melanosome (melanin granule) migration to a perinuclear position within integumental melanophores. MCH and related fragment analogues, MCH5-17 and MCH1-14 were used to investigate the ionic requirements for receptor activation by MCH on dermal melanophores of the fish Poecilia reticulata. In calcium-free saline, the sensitivity of the melanophores to MCH and MCH1-14 increased, whereas the sensitivity of the cells to MCH5-17 decreased. Verapamil diminished the sensitivity to MCH5-17, but did not affect melanophore responses to MCH or MCH1-14. The melanosome aggregating response to MCH was not affected in the presence of tetrodotoxin or in sodium- or potassium-free (choline-substituted) saline. These results suggest that neither TTX-sensitive sodium channels nor extracellular sodium or potassium ions play a role in MCH-induced melanosome aggregation. It is known that MCH and MCH1-14 also exhibit MSH-like melanosome dispersion within melanophores, skin darkening activity on fish melanophores whereas MCH5-17 lacks this characteristic. Since the darkening activity of MCH and MCH1-14 requires calcium, these analogues exhibited a diminished lightening (MCH-like) activity in the presence of the divalent cation. In the absence of the N-terminal tetrapeptide sequence (necessary for the expression of MSH-like activity), a role for calcium on melanosome aggregation became evident. These results demonstrate a bifunctional role of calcium on melanosome movements.  相似文献   

3.
The occurrence of melanin-concentrating hormone (MCH) receptors on integumental melanophores was found to extend back in the evolutionary line of ray-finned bony fishes (Actinopterygii) to the group ancestral to modern teleosts, the Holostei. The two species of holosteans studied, Amia calva and Lepisosteus platyrhincus, exhibited changes of melanophore index (melanosome aggregation), indicating responses to MCH and to melatonin but no response to norepinephrine (NE). Polyodon spathula, a species of chondrostean (an older group of bony fishes ancestral to holosteans), failed to respond to MCH, to melatonin, or to NE. Nevertheless, Polyodon skin darkened (melanosome dispersion) in response to melanocyte-stimulating hormone (MSH). The preliminary implication of these observations is that the mechanism of physiological color change involving MCH and its melanophore receptors evolved near the end of the Paleozoic or during the early Mesozoic, just before or early in the evolution of neopterygian (holostean and teleostean) fishes.  相似文献   

4.
Melanin concentrating hormone (MCH) is a heptadecapeptide synthesized by the hypothalamus and secreted by the neurohypophysis of the teleost pituitary gland. MCH stimulates melanosome aggregation within teleost melanocytes but also exhibits MSH-like (melanosome dispersing) activity on tetrapod (frog and lizard) melanocytes. We have synthesized a number of MCH analogues to determine the essential features of the primary structure necessary to stimulate either melanosome aggregation or dispersion in fish or tetrapod melanocytes, respectively. An analysis of the potencies and actions of these analogues on vertebrate melanocytes is provided and demonstrates that the two activities have different structural requirements.  相似文献   

5.
Two melanotropic peptides, melanin concentration hormone (MCH) and alpha-melanocyte stimulating hormone (alpha-MSH), exert opposing actions on melanosome (melanin granule) movements within teleost pigment cells, melanocytes (melanophores). MCH stimulates melanosome aggregation to the cell center whereas alpha-MSH stimulates pigment organelle dispersion out into the dendritic processes of the melanocytes. The actions of alpha-MSH are dependent upon extracellular calcium (Ca2+), whereas those of MCH are actually enhanced in the absence of the cation. At high concentrations (10(-5)-10(-8) M) MCH also exhibits MSH-like activity (autoantagonism), an effect which is abolished in the absence of Ca2+. Therefore, MCH exhibits MCH-like as well as MSH-like activity depending on the presence or absence of extracellular Ca2+. An analogue of MCH, [Ala5, Cys10]MCH, has been synthesized which is totally devoid of MCH activity but still exhibits MSH-like activity. These results suggest that the two melanotropic peptides share some component of structural similarity and may be evolutionarily related.  相似文献   

6.
MCH (melanin concentrating hormone) is a heptadecapeptide, Asp-Thr-Met-Arg-Cys-Met-Val-Gly-Arg-Val-Tyr-Arg-Pro-Cys-Trp-Glu-Val, which stimulates melanosome (melanin granule) aggregation to a perinuclear position within teleost fish integumental melanocytes, resulting in lightening of the skin. The mechanisms of action of MCH are unknown. Drugs that affect the diacylglycerol/inositol triphosphate pathway were used to investigate the possible roles of this pathway in the mechanisms of action of MCH on Synbranchus marmoratus (teleost) melanocytes. The shift of the dose-response curve to MCH in the presence of various concentrations of 4-bromophenacyl bromide and neomycin sulphate, phospholipase C inhibitors, suggests that phospholipase C is stimulated after MCH receptor activation. Low concentrations (10(-9) to 10(-8) M) of the phorbol ester TPA exhibited MCH-like activity, eliciting a dose-dependent melanosome aggregation. Higher doses, however, displaced to the right the dose-response curve to MCH, as did the protein kinase C inhibitors, dibucaine and 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7). These results support the assumption that protein kinase C mediates the pigment aggregating activity of MCH. Both MCH and norepinephrine lightening actions were abolished by beta-glycerophosphate, a phosphatase inhibitor, suggesting that a protein dephosphorylation occurs during melanosome aggregation, and is, therefore, a common event triggered by MCH and norepinephrine, although both agonists act through separate receptors and exhibit different transduction mechanisms.  相似文献   

7.
In melanophores of the peppered catfish and the Nile tilapia, melanin-concentrating hormone (MCH) at low doses (<1 μM) induced pigment aggregation, and the aggregated state was maintained in the presence of MCH. However, at higher MCH concentrations (such as 1 and 10 μM), pigment aggregation was immediately followed by some re-dispersion, even in the continued presence of MCH, which led to an apparent decrease in aggregation. This pigment-dispersing activity at higher concentrations of MCH required extracellular Ca2+ ions. By contrast, medaka melanophores responded to MCH only by pigment aggregation, even at the highest concentration employed (10 μM). Since it is known that medaka melanophores possess specific receptors for α-melanophore-stimulating hormone (α-MSH), the possibility that interaction between MSH receptors and MCH at high doses in the presence of Ca2+ might cause pigment dispersion is ruled out. Cyclic MCH analogs, MCH (1–14) and MCH (5–17), failed to induce pigment dispersion, whereas they induced aggregation of melanin granules. These results suggest that another type of MCH receptor that mediates pigment dispersion is present in catfish and tilapia melanophores, and that intact MCH may be the only molecule that can bind to these receptors. Determinations of cAMP content in melanophores, which were isolated from the skin of three fish species and treated with 10 nM or 10 μM MCH, indicate that MCH receptors mediating aggregation may be coupled with Gi protein, whereas MCH receptors that mediate dispersion may be linked to Gs. The response of erythrophores, xanthophores and leucophores to MCH at various concentrations was also examined, and the results suggest that the distribution patterns of the two types of MCH receptors may differ among fish species and among types of chromatophore in the same fish.  相似文献   

8.
Highly purified synthetic salmonid melanin concentrating hormone (MCH) and some analogs were investigated for their ability to concentrate the pigment in scale melanophores of the Chinese grass carp, Ctenopharyngodon idellus, to produce melanin dispersion in frog or lizard melanophores and to inhibit alpha-MSH in its action on mouse melanoma and rat adrenal glomerulosa cells in vitro. In the grass carp, MCH produced half-maximal pigment aggregation at 6 X 10(-11) M and its oxidized form at 7 X 10(-11) M. Replacement of the two methionines at position 3 and 6 with norvaline lowered the potency by a factor of 2.7 and with propargylglycine by a factor of about 7. Linear, Cys5,14-Acm-protected MCH was a full agonist of MCH but with a 345-fold lower potency. Iodinated MCH showed similar, low activity. In tetrapods, salmonid MCH and its analogs displayed only marginal pigment dispersion at concentrations greater than 10(-5) M. Alkali-treatment of MCH increased the pigment-dispersing potency by a factor of about 30 whereas the activity for pigment aggregation in the grass carp was destroyed. At high concentrations (10(-6), 10(-5) M) MCH also stimulated tyrosinase activity in B-16 mouse melanoma cells but did not modify the effects of alpha-MSH in this system. By contrast, when tested on rat adrenal glomerulosa cells, salmonid MCH had no effect alone but at a concentration of greater than 10(-10) M it slightly reduced corticosterone production by an alpha-MSH concentration of 10(-7) M. Aldosterone production was not affected and MCH did not influence the response to ACTH.  相似文献   

9.
It has previously been shown that alpha 2-adrenoceptors are involved in noradrenaline-induced pigment aggregation within fish melanophores. In the present investigation, melanin concentrating hormone (MCH) elicited pigment aggregation (EC50 approximately 1 x 10(-7) M) that was associated with a significant reduction in the cAMP content; 1 x 10(-7) M MCH reduced the cAMP content from a basal level of 50.4 +/- 2.8 pmol/mg protein to 36.9 +/- 3.8 pmol/mg protein. Like the alpha 2-adrenoceptor-induced pigment aggregation, the MCH response was effectively blocked by the adenylate cyclase stimulator forskolin. These findings suggest that attenuation of cAMP may serve as an intracellular signal transduction mechanism for both MCH and noradrenaline.  相似文献   

10.
Melanin concentrating hormone (MCH) is a heptadecapeptide, Asp-Thr-Met-Arg-Cys-Met-Val-Gly-Arg-Val-Tyr-Arg-Pro-Cys-Trp-Glu-Val, synthesized in the brain and secreted from the pars nervosa of teleost fish. This hormone stimulates melanosome (melanin granule) aggregation within integumental melanocytes of fishes but, in contrast, stimulates melanosome dispersion within tetrapod (frog and lizard) melanocytes. We determined the message sequence of the primary structure of MCH which is responsible for its MSH-like component of activity. Removal of the N-terminal amino acid results in an almost total loss of MSH-like activity. The C-terminal amino acid is also essential for full MSH-like activity since the analogue, MCH(1-16), is about 100 times less active than MCH. Therefore, the entire heptadecapeptide sequence of MCH appears to contribute to the MSH-like activity of MCH. Ring-contracted analogues (e.g., [Ala5, Cys10]MCH) of MCH are almost devoid of any melanosome aggregating (MCH-like) activity but generally possess considerable or as great an MSH-like activity as MCH. Racemization of MCH by heat-alkali treatment drastically reduces the MCH-like activity of MCH, but does not enhance the MSH-like activity of the hormone.  相似文献   

11.
Intracellular transport is essential for cytoplasm organization, but mechanisms regulating transport are mostly unknown. In Xenopus melanophores, melanosome transport is regulated by cAMP-dependent protein kinase A (PKA). Melanosome aggregation is triggered by melatonin, whereas dispersion is induced by melanocyte-stimulating hormone (MSH). The action of hormones is mediated by cAMP: High cAMP in MSH-treated cells stimulates PKA, whereas low cAMP in melatonin-treated cells inhibits it. PKA activity is typically restricted to specific cell compartments by A-kinase anchoring proteins (AKAPs). Recently, Rab32 has been implicated in protein trafficking to melanosomes and shown to function as an AKAP on mitochondria. Here, we tested the hypothesis that Rab32 is involved in regulation of melanosome transport by PKA. We demonstrated that Rab32 is localized to the surface of melanosomes in a GTP-dependent manner and binds to the regulatory subunit RIIalpha of PKA. Both RIIalpha and Cbeta subunits of PKA are required for transport regulation and are recruited to melanosomes by Rab32. Overexpression of wild-type Rab32, but not mutants unable to bind PKA or melanosomes, inhibits melanosome aggregation by melatonin. Therefore, in melanophores, Rab32 is a melanosome-specific AKAP that is essential for regulation of melanosome transport.  相似文献   

12.
The biological activity of endothelins (ETs) in non-innervated Synbranchus marmoratus melanophores was demonstrated. These peptides induced a dose-dependent pigment aggregation (lightening skin) in these cells. However, they presented EC50's (effective concentration required to produce 50% of response) 26, 106 and 35 times higher than, respectively, the melanin concentrating hormone (MCH) EC50, and exhibited a characteristic temporal and dose-dependent autodessensibilization of the aggregative effect on the melanophores of this fish.The receptor characterization suggested the presence of the ET(B) subtype, since BQ-788 (selective antagonist of ET(B)) but not BQ-485 (selective antagonist of ET(A)) blocked the aggregative effect of the hormones. Confirming these data, sarafotoxin (SRTX) S6c, a toxin selective for ET(B), induced maximal aggregation of pigment granules. S6c presented an EC50 6.8 times higher than the MCH EC50, and 3.9, 15.6 and 5.1 times lower than the EC50's ETs, respectively.The melanotropic effect of SRTX S6b and vasoactive intestinal contractor (VIC) were demonstrated for the first time in this work. SRTX S6b induced a dose-dependent pigment aggregation and presented an EC50 2.54 and 17.2 times higher than the S6c and MCH EC50's, respectively. Compared to the ETs it was 1.53, 6.19 and 2.03 times lower, respectively.  相似文献   

13.
In isolated scale melanophores ofLabeo rohita the melanosome aggregating effect of K+ was inhibited in Ca2+ deprived medium. Moreover, the Ca2+-antagonists, verapamil and lanthanum inhibited the action of K+ in concentration dependent manner. The elevation of extracellular Ca2+ could compromise the verapamil induced inhibition in a concentration dependent manner. The cation Ca2+ appeared to be required only for K+ -induced aggregation and not melanosome aggregationper se, as in this fish adrenaline and melanin concentrating hormone effectively caused aggregation of melanosomes in Ca2+ free medium  相似文献   

14.
Winter flounder, Pleuronectes americanus, adapting to black or white backgrounds display significant increase and decline respectively in the number of visible epidermal melanophores over periods up to 8 weeks or longer. This contrasts with a stability in the number of visible dermal melanophores during the same periods of exposure to each background. Flounders treated with -melanophore stimulating hormone exhibited an enhanced rate of increase in number of visible epidermal melanophores when the background was changed from white to black, whereas white-adapted flounder treated with -melanophore stimulating hormone without background change did not manifest any such increase in number of epidermal melanophores. Flounder treated with -melanophore stimulating hormone after transfer from black to white displayed a similar initial decline in visible epidermal melanophore number as in control fish, but the final decline was significantly attenuated. Thus -melanophore stimulating hormone, which has no apparent influence on melanosome dispersion in this species, may have a limited morphological melanophore regulatory role which is discussed in relation to possible antagonistic and synergistic factors that could influence melanogenesis and visible melanophore numbers.Abbreviations DMI dermal melanophore index - EMI epidermal melanophore index - LSD least significant difference - MCH melanosome concentrating hormone - MIF melanogenesis inhibiting factor - MSF melanogenesis stimulating factor - MSH melanophore stimulating hormone  相似文献   

15.
Asp-Thr-Met-Arg-Cys-Met-Val-Gly-Arg-Val-Tyr-Arg-Pro-Cys-Trp-Glu-Val (melanin concentrating hormone, MCH) and several fragment analogs (MCH1-14, MCH5-17, MCH5-14) were synthesized and their biological activities determined in a very sensitive fish skin bioassay. The potency ranking and minimum effective doses of the peptides were determined to be: MCH1-17 (10(-12)M) greater than less than MCH5-17 (10(-12)M) greater than MCH1-14 (10(-11)M) greater than MCH5-14 (2 X 10(-10)M). The melanosome aggregating activity of MCH could be completely reversed by a 100-fold higher concentration of pounds-MSH. MCH was self-antagonized in a dose-related manner by higher concentrations of the peptide as was the activity of the MCH1-14 fragment analog. The MCH activities of the MCH5-17 and MCH5-14 analogs were not compromised by even the highest concentrations of the peptides employed. The MSH-like activity of MCH appears to relate to the N-terminus of the peptide whereas MCH activity is more a function of the C-terminus of the hormone. Self-antagonism of MCH at high concentrations appears to relate to the N-terminal tetrapeptide, which is responsible for the intrinsic MSH-like activity of the hormone.  相似文献   

16.
Photomicrography and reflectance microphotometry were used to monitor melanosome movement in frog skin melanocytes in vitro in response to hormonal stimulation and cytochalasin B (CB). Melanocyte-stimulating hormone (MSH), theophylline, and dibutyryl cyclic AMP (DiBcAMP) induced melanosome dispersion (darkening) which was promptly arrested by cytochalasin B in concentrations of 5–20 µg/ml. Melanosome aggregation (skin lightening) occurred only after removal of the darkening agent (MSH, theophylline, or DiBcAMP) and proceeded in the presence or absence of CB. When CB was added to darkened skins, they did not lighten and melanosomes remained in the dispersed state. Use of CB has permitted the dissection of cyclic AMP-mediated melanosome dispersion into two distinct events. The first, induction of melanosome dispersion, is CB sensitive. The second action of intracellular cyclic AMP involves an uncoupling of the centripetal motive force, and is CB insensitive. In the latter process, production of cyclic AMP appears to produce the same result as application of microtubule-disrupting agents.  相似文献   

17.
A continuous observation apparatus was used to study the responses of Phoxinus phoxinus melanophores to illuminated black/white backgrounds and their reversal. The fish. Although confined, showed maximum melanosome dispersion (MI 5) and maximum melanosome aggregation (MI 1) when exposed to illuminated black and white backgrounds respectively. Melanophores affected by spinal nerve section showed full melanosome dispersion and the affected area appeared as a black band. The affected melanophores marginally and gradually aggregated their melanosomes if the fish was exposed to an illuminated white background for about a week. The responses of these melanophores to illuminated black and white backgrounds and their reversal indicates that the dispersal of their melanosomes in response to a black background is much faster than their aggregation in response to a white background. It is concluded that an active mechanism is involved and possible factors controlling it are discussed.  相似文献   

18.
It has previously been shown that α2-adrenoceptors (α2-ARs) mediate pigment granule (melanosome) aggregation in melanophores of the teleost fish Labrus ossifagus. The present investigation scrutinized the signalling mechanisms of melanosome aggregation induced by sympathetic nerve stimulation or by exogenous addition of α-AR agonists and cAMP analogues. The following was observed: i) nerve-induced melanosome aggregation was associated with a rapid decrease in the cAMP level; ii) noradrenaline or medetomidine (an α2-AR agonist) caused melanosome aggregation and reduced the cAMP content; iii) RP-S-CI-cAMP, a membrane-permeating inhibitor of protein kinase A induced melanosome aggregation; and iv) B-HT 920 (an α2-AR agonist) and methoxamine (an α1-AR agonist) induced melanosome aggregation, although they did not reduce cAMP. It has been suggested that in some teleost species α1-ARs mediate melanosome aggregation by increasing the level of intracellular calcium. However, we found that the effect of methoxamine in melanophores from Labrus ossifagus could be blocked by yohimbine (an α2-AR antagonist) but not by equimolar concentration of prazosin (an α1-AR antagonist). Furthermore, 1 μM ionomycin (a calcium ionophore) did not induce melanosome aggregation. Our findings therefore do not indicate that α1-ARs and/or an increase in intracellular calcium mediate melanosome aggregation in Labrus ossifagus. Our results suggest that α2-AR-mediated melanosome aggregation is induced by multiple signalling pathways. One of these involves a reduction in cAMP, but none involves an increase in intracellular calcium.  相似文献   

19.
Melanin-concentrating hormone (MCH) was originally discovered in fish, in which it causes aggregation or concentration of melanin granules in melanophores, thus regulating body color. MCH is a cyclic neuropeptide synthesized as a preprohormone in the hypothalamus of all vertebrates. Mammalian MCH plays an important role as a neurotransmitter or neuromodulator in regulating food intake and energy homeostasis. MCH signaling system may involve in regulating food intake also in fish. This neuropeptide binds to G-protein-coupled seven transmembrane receptor[s] to mediate its functions. This article reviews MCH and MCH receptor signaling systems in body color change and food intake in fish.  相似文献   

20.
The effects of melatonin and noradrenaline (NA) on bi-directional melanosome transport were analysed in primary cultures of melanophores from the Atlantic cod. Both agents mediated rapid melanosome aggregation, and by using receptor antagonists, melatonin was found to bind to a melatonin receptor whereas NA binds to an alpha2-adrenoceptor. It has previously been stated that melatonin-mediated melanosome aggregation in Xenopus is coupled with tyrosine phosphorylation of a so far unidentified high molecular weight protein and we show that although acting through different receptors and through somewhat different downstream signalling events, tyrosine phosphorylation is of the utmost importance for melanosome aggregation mediated by both NA and melatonin in cod melanophores. Together with cyclic adenosine 3-phosphate-fluctuations, tyrosine phosphorylation functions as a switch signal for melanosome aggregation and dispersion in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号