首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although factor VII/factor VIIa (FVII/FVIIa) is known to interact with many non-vascular cells, activated monocytes, and endothelial cells via its binding to tissue factor (TF), the interaction of FVII/FVIIa with unperturbed endothelium and the role of this interaction in clearing FVII/FVIIa from the circulation are unknown. To investigate this, in the present study we examined the binding of radiolabeled FVIIa to endothelial cells and its subsequent internalization. (125)I-FVIIa bound to non-stimulated human umbilical vein endothelial cells (HUVEC) in time- and dose-dependent manner. The binding is specific and independent of TF and negatively charged phospholipids. Protein C and monoclonal antibodies to endothelial cell protein C receptor (EPCR) blocked effectively (125)I-FVIIa binding to HUVEC. FVIIa binding to EPCR is confirmed by demonstrating a marked increase in (125)I-FVIIa binding to CHO cells that had been stably transfected with EPCR compared with the wild-type. Binding analysis revealed that FVII, FVIIa, protein C, and activated protein C (APC) bound to EPCR with similar affinity. FVIIa binding to EPCR failed to accelerate FVIIa activation of factor X or protease-activated receptors. FVIIa binding to EPCR was shown to facilitate FVIIa endocytosis. Pharmacological concentrations of FVIIa were found to impair partly the EPCR-dependent protein C activation and APC-mediated cell signaling. Overall, the present data provide convincing evidence that EPCR serves as a cellular binding site for FVII/FVIIa. Further studies are needed to evaluate the pathophysiological consequences and relevance of FVIIa binding to EPCR.  相似文献   

2.
3.
Metalloproteolytic release of endothelial cell protein C receptor   总被引:15,自引:0,他引:15  
Previous studies observed that there is about 100 ng/ml soluble endothelial cell protein C receptor (EPCR) in human plasma and that the levels increase in inflammatory diseases. In this study we examine the potential mechanisms involved in release of EPCR from cells. We find that EPCR is released from the surface of endothelium and transfected 293 cells by a metalloprotease in a constitutive fashion. The mass of soluble EPCR is 4 kDa less than intact EPCR. Release is blocked by either the hydroxamic acid based inhibitor, KD-IX-73-4 or by 1,10-phenanthroline, but not by matrix metalloprotease inhibitors. Release is stimulated by phorbol 12-myristate 13-acetate, thrombin, interleukin-1beta, and hydrogen peroxide. Stimulation with these agents reduces EPCR expression levels sufficiently to decrease the rate of protein C activation to a limited extent. The influence of phorbol 12-myristate 13-acetate on both EPCR release and inhibition of protein C activation are enhanced by microtubule disruption with nocodazole. EPCR release is augmented by transfection of EPCR expressing 293 cells with caveolin, suggesting that release is caveolae dependent. These studies indicate that metalloproteolytic release of EPCR is a highly regulated process that is sensitive to both coagulation factors and inflammatory mediators.  相似文献   

4.
The endothelial cell protein C receptor (EPCR) is an endothelial cell-specific transmembrane protein that binds both protein C and activated protein C (APC). EPCR regulates the protein C anticoagulant pathway by binding protein C and augmenting protein C activation by the thrombin-thrombomodulin complex. EPCR is homologous to the MHC class 1/CD1 family, members of which contain two alpha-helices that sit upon an 8-stranded beta-sheet platform. In this study, we identified 10 residues that, when mutated to alanine, result in the loss of protein C/APC binding (Arg-81, Leu-82, Val-83, Glu-86, Arg-87, Phe-146, Tyr-154, Thr-157, Arg-158, and Glu-160). Glutamine substitutions at the four N-linked carbohydrate attachment sites of EPCR have little affect on APC binding, suggesting that the carbohydrate moieties of EPCR are not critical for ligand recognition. We then mapped the epitopes for four anti-human EPCR monoclonal antibodies (mAbs), two of which block EPCR/Fl-APC (APC labeled at the active site with fluorescein) interactions, whereas two do not. These epitopes were localized by generating human-mouse EPCR chimeric proteins, since the mAbs under investigation do not recognize mouse EPCR. We found that 5 of the 10 candidate residues for protein C/APC binding (Arg-81, Leu-82, Val-83, Glu-86, Arg-87) colocalize with the epitope for one of the blocking mAbs. Three-dimensional molecular modeling of EPCR indicates that the 10 protein C/APC binding candidate residues are clustered at the distal end of the two alpha-helical segments. Protein C activation studies on 293 cells that coexpress EPCR variants and thrombomodulin demonstrate that protein C binding to EPCR is necessary for the EPCR-dependent enhancement in protein activation by the thrombin-thrombomodulin complex. These studies indicate that EPCR has exploited the MHC class 1 fold for an alternative and possibly novel mode of ligand recognition. These studies are also the first to identify the protein C/APC binding region of EPCR and may provide useful information about molecular defects in EPCR that could contribute to cardiovascular disease susceptibility.  相似文献   

5.
Blocking protein C binding to the endothelial cell protein C receptor (EPCR) on the endothelium is known to reduce protein C activation rates. Now we isolate human EPCR and thrombomodulin (TM) and reconstitute them into phosphatidylcholine vesicles. The EPCR increases protein C activation rates in a concentration-dependent fashion that does not saturate at 14 EPCR molecules/TM. Without EPCR, the protein C concentration dependence fits a single class of sites (Km = 2.17 +/- 0.13 microM). With EPCR, two classes of sites are apparent (Km = 20 +/- 15 nM and Km = 3.2 +/- 1.7 microM). Increasing the EPCR concentration at a constant TM concentration increases the percentage of high affinity sites. Holding the TM:EPCR ratio constant while decreasing the density of these proteins results in a decrease in the EPCR enhancement of protein C activation, suggesting that there is little affinity of the EPCR for TM. Negatively charged phospholipids also enhance protein C activation. EPCR acceleration of protein C activation is blocked by anti-EPCR antibodies, but not by annexin V, whereas the reverse is true with negatively charged phospholipids. Human umbilical cord endothelium expresses approximately 7 times more EPCR than TM. Anti-EPCR antibody reduces protein C activation rates 7-fold over these cells, whereas annexin V is ineffective, indicating that EPCR rather than negatively charged phospholipid provide the surface for protein C activation. EPCR expression varies dramatically among vascular beds. The present results indicate that the EPCR concentration will determine the effectiveness of the protein C activation complex.  相似文献   

6.
Protease-activated receptor (PAR) signaling is closely linked to the cellular activation of the pro- and anticoagulant pathways. The endothelial protein C receptor (EPCR) is crucial for signaling by activated protein C through PAR1, but EPCR may have additional roles by interacting with the 4-carboxyglutamic acid domains of procoagulant coagulation factors VII (FVII) and X (FX). Here we show that soluble EPCR regulates the interaction of FX with human or mouse tissue factor (TF)-FVIIa complexes. Mutagenesis of the FVIIa 4-carboxyglutamic acid domain and dose titrations with FX showed that EPCR interacted primarily with FX to attenuate FX activation in lipid-free assay systems. In human cell models of TF signaling, antibody inhibition of EPCR selectively blocked PAR activation by the ternary TF-FVIIa-FXa complex but not by the non-coagulant TF-FVIIa binary complex. Heterologous expression of EPCR promoted PAR1 and PAR2 cleavage by FXa in the ternary complex but did not alter PAR2 cleavage by TF-FVIIa. In murine smooth muscle cells that constitutively express EPCR and TF, thrombin and FVIIa/FX but not FVIIa alone induced PAR1-dependent signaling. Although thrombin signaling was unchanged, cells with genetically reduced levels of EPCR no longer showed a signaling response to the ternary complex. These results demonstrate that EPCR interacts with the ternary TF coagulation initiation complex to enable PAR signaling and suggest that EPCR may play a role in regulating the biology of TF-expressing extravascular and vessel wall cells that are exposed to limited concentrations of FVIIa and FX provided by ectopic synthesis or vascular leakage.  相似文献   

7.
Cytoadhesion of Plasmodium falciparum‐infected erythrocytes to endothelial protein C receptor (EPCR) is associated with severe malaria. It has been postulated that parasite binding could exacerbate microvascular coagulation and endothelial dysfunction in cerebral malaria by impairing the protein C–EPCR interaction, but the extent of binding inhibition has not been fully determined. Here we expressed the cysteine‐rich interdomain region (CIDRα1) domain from a variety of domain cassette (DC) 8 and DC13 P. falciparum erythrocyte membrane protein 1 proteins and show they interact in a distinct manner with EPCR resulting in weak, moderate and strong inhibition of the activated protein C (APC)–EPCR interaction. Overall, there was a positive correlation between CIDRα1–EPCR binding activity and APC blockade activity. In addition, our analysis from a combination of mutagenesis and blocking antibodies finds that an Arg81 (R81) in EPCR plays a pivotal role in CIDRα1 binding, but domains with weak and strong APC blockade activity were distinguished by their sensitivity to inhibition by anti‐EPCR mAb 1535, implying subtle differences in their binding footprints. These data reveal a previously unknown functional heterogeneity in the interaction between P. falciparum and EPCR and have major implications for understanding the distinct clinical pathologies of cerebral malaria and developing new treatment strategies.  相似文献   

8.

Background  

Increasing evidences show that beyond its role in coagulation, endothelial protein C receptor (EPCR) interferes with carcinogenesis. Pro-carcinogenic effects of EPCR were linked with a raised generation of activated protein C (aPC) and anti-apoptotic signalling. This study was carried out to analyze the expression, cell surface exposition, and shedding of EPCR in normal and malignant prostate cell lines.  相似文献   

9.
10.
Adenosine stimulates the release of interleukin 6 (IL-6) and vascular endothelial growth factor from folliculostellate cells of the anterior pituitary gland indicating that such cells are also involved in the communication between the immune and endocrine systems during stress and inflammation. In order to understand the precise actions of adenosine on folliculostellate cells, DNA microarray analysis was used to determine global changes in gene expression. Hierarchical clusters revealed, of the genes that had altered expression, the majority were suppressed and many, such as B cell translocation gene 2 and cyclin-dependent kinase inhibitor 2b were related to cell cycle arrest or inhibition of proliferation. Several of the up-regulated genes were associated with cytokine signalling or membrane receptor activity. The most notable of these being IL-6, sulfiredoxin 1, endothelial protein C receptor (EPCR) and thrombomodulin (THBD) which can all play a role in controlling inflammation. The EPCR and THBD pathway is well known in anti-coagulation but also has anti-inflammatory and anti-apoptotic properties. Up-regulation of EPCR and THBD in folliculostellate cells was confirmed by qRT-PCR and western blotting analysis and their expression were also demonstrated in many of the hormone-secreting cells of the anterior pituitary gland. Our findings suggest that adenosine can stimulate expression of stress and inflammation related genes from folliculostellate cells of the anterior pituitary gland. These genes include EPCR and THBD, neither of which has been previously identified in the pituitary gland.  相似文献   

11.
12.
Activated protein C (APC) is an anticoagulant and anti-inflammatory factor that acts via endothelial protein C receptor (EPCR). Interestingly, APC also exhibits neuroprotective activities. In the present study, we demonstrate for the first time expression of EPCR, the receptor for APC, in rat cortical and hippocampal neurons. Moreover, exposing the neurons to glutamate excitotoxicity we studied the functional consequence of the expression of EPCR. By cytotoxicity assay we showed that EPCR was necessary for the APC-mediated protective effect in both neuronal cell types in culture. The effect of APC was abrogated in the presence of blocking EPCR antibodies. Analysis of neuronal death by cell labelling with dyes which allow distinguishing living and dead cells confirmed that the anti-apoptotic effect of APC was dependent on both EPCR and protease-activated receptor-1. Thus, we suggest that binding of APC to EPCR on neurons and subsequent activation of protease-activated receptor-1 by the complex of APC-EPCR promotes survival mechanisms after exposure of neurons to damaging factors.  相似文献   

13.
Preeclampsia is a severe pregnancy-related disease that is found in 3%–5% of pregnancies worldwide and is primarily related to the decreased proliferation and invasion of trophoblast cells and abnormal uterine spiral artery remodelling. However, studies on the pathogenesis of placental trophoblasts are insufficient, and the aetiology of PE remains unclear. Here, we report that endothelial protein C receptor (EPCR), a transmembrane glycoprotein, was down-regulated in placentas from preeclamptic patients. Moreover, lack of EPCR significantly reduced the trophoblast cell proliferation, invasion and tube formation capabilities. Microscale thermophoresis analysis showed that EPCR directly bound to protease-activated receptor 1 (PAR-1), a G protein-coupled receptor. This change resulted in a substantial reduction in active Rac1 and caused excessive actin rearrangement. Our findings reveal a previously unidentified role of EPCR in the regulation of trophoblast proliferation, invasion and tube formation through promotion of actin polymerization, which is required for normal placental development.  相似文献   

14.
Endothelial protein C receptor (EPCR) is a CD1‐like transmembrane glycoprotein with important regulatory roles in protein C (PC) pathway, enhancing PC's anticoagulant, anti‐inflammatory, and antiapoptotic activities. Similarly to homologous CD1d, EPCR binds a phospholipid [phosphatidylethanolamine (PTY)] in a groove corresponding to the antigen‐presenting site, although it is not clear if lipid exchange can occur in EPCR as in CD1d. The presence of PTY seems essential for PC γ‐carboxyglutamic acid (Gla) domain binding. However, the lipid‐free form of the EPCR has not been characterized. We have investigated the structural role of PTY on EPCR, by multiple molecular dynamics (MD) simulations of ligand bound and unbound forms of the protein. Structural changes, subsequent to ligand removal, led to identification of two stable and folded ligand‐free conformations. Compared with the bound form, unbound structures showed a narrowing of the A′ pocket and a high flexibility of the helices around it, in agreement with CD1d simulation. Thus, a lipid exchange with a mechanism similar to CD1d is proposed. In addition, unbound conformations presented a reduced interaction surface for Gla domain, confirming the role of PTY in establishing the proper EPCR conformation for the interaction with its partner protein. Single MD simulations were also obtained for 29 mutant models with predicted structural stability and impaired binding ability. Ligand affinity calculations, based on linear interaction energy method, showed that substitution‐induced conformational changes affecting helices around the A′ pocket were associated to a reduced binding affinity. Mutants responsible for this effect may represent useful reagents for experimental tests. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
The endothelial cell receptor (EPCR) for protein C (PC)/activated protein C (APC) is a 221 amino-acid residues long transmembrane glycoprotein with unclear physiological function. To facilitate future studies and to rationalize recently reported experimental data about this protein, we have constructed three-dimensional models of human, bovine and mouse EPCR using threading and comparative model building. EPCR is homologous to CD1/MHC class I molecules. It consists of two domains, which are similar to the alpha1 and alpha2 domains of MHC class I molecules, whereas the alpha3 domain of MHC is replaced in EPCR by a transmembrane region followed by a short cytosolic tail. The alpha1 and alpha2 domains of CD1/MHC proteins form a groove, which binds short peptides. These domains are composed of an eight-stranded antiparallel beta-pleated sheet with two long antiparallel alpha-helices. The distance between the helical segments dictates the width of the groove. The cleft in EPCR appears to be relatively narrow and it is lined with hydrophobic/aromatic and polar residues with a few charged amino acids. Analysis of the human EPCR model predicts that (a) the protein does not contain any calcium binding pockets; (b) C101 and C169 form a buried disulphide bridge, while C97 is free, and buried in the core of the molecule; and (c) four potential glycosylation sites are solvent exposed.  相似文献   

16.
The protein C pathway is a primary regulator of blood coagulation and a critical component of the host response to inflammatory stimuli. The most recent member of this pathway is the endothelial protein C receptor (EPCR), a type I transmembrane protein with homology to CD1d/MHC class I proteins. EPCR accelerates formation of activated protein C, a potent anticoagulant and antiinflammatory agent. The current study demonstrates that soluble EPCR binds to PMA-activated neutrophils. Using affinity chromatography, binding studies with purified components, and/or blockade with specific Abs, it was found that soluble EPCR binds to proteinase-3 (PR3), a neutrophil granule proteinase. Furthermore, soluble EPCR binding to neutrophils was partially dependent on Mac-1 (CD11b/CD18), a beta(2) integrin involved in neutrophil signaling, and cell-cell adhesion events. PR3 is involved in multiple diverse processes, including hemopoietic proliferation, antibacterial activity, and autoimmune-mediated vasculitis. The observation that soluble EPCR binds to activated neutrophils via PR3 and a beta(2) integrin suggests that there may be a link between the protein C anticoagulant pathway and neutrophil functions.  相似文献   

17.
Plasma protein C functions as an anticoagulant when it is converted to the active form of serine protease. Protein C activation has been found to be mediated by the endothelial cell surface thrombin/thrombomodulin (TM) complex. In addition, we recently identified the endothelial cell protein C/activated protein C receptor (EPCR) which is capable of high-affinity binding for protein C. In this study, we established monoclonal antibodies (mAbs) against EPCR including several function blocking antibodies. Immunohistochemical analysis using these mAbs demonstrated that EPCR is widely expressed in the endothelial cells of arteries, veins, and capillaries in the lung, heart, and skin. Function blocking anti-EPCR mAbs strongly inhibited protein C activation mediated by primary cultured arterial endothelial cells which express abundant EPCR. Anti-EPCR mAbs also prevent protein C activation mediated by microvascular endothelial cells. These results indicate that EPCR functions as an important regulator for the protein C pathway in various types of vessels.  相似文献   

18.
The endothelial cell protein C receptor (EPCR) shares approximately 20% sequence identity with the major histocompatibility complex class 1/CD1 family of molecules, accelerates the thrombin-thrombomodulin-dependent generation of activated protein C, a natural anticoagulant, binds to activated neutrophils, and can undergo translocation from the plasma membrane to the nucleus. Blocking protein C/activated protein C binding to the receptor inhibits not only protein C activation but the ability of the host to respond appropriately to bacterial challenge, exacerbating both the coagulant and inflammatory responses. To understand how EPCR accomplishes these multiple tasks, we solved the crystal structure of EPCR alone and in complex with the phospholipid binding domain of protein C. The structures were strikingly similar to CD1d. A tightly bound phospholipid resides in the groove typically involved in antigen presentation. The protein C binding site is outside this conserved groove and is distal from the membrane-spanning domain. Extraction of the lipid resulted in loss of protein C binding, which could be restored by lipid reconstitution. CD1d augments the immune response by presenting glycolipid antigens. The EPCR structure is a model for how CD1d binds lipids and further suggests additional potential functions for EPCR in immune regulation, possibly including the anti-phospholipid syndrome.  相似文献   

19.
Endothelial cell protein C receptor (EPCR) plays important roles in blood coagulation and inflammation. EPCR activity is markedly changed by ectodomain cleavage and release as the soluble EPCR. EPCR can be shed from the cell surface, which is mediated by tumor necrosis factor-α converting enzyme (TACE). Oroxylin A (OroA), a major component of Scutellaria baicalensis Georgi, is known to exhibit anti-angiogenic, antiinflammation, and anti-invasive activities. However, little is known about the effects of OroA on EPCR shedding. Data showed that OroA induced potent inhibition of phorbol-12-myristate 13-acetate (PMA), tumor necrosis factor (TNF)-α, interleukin (IL)-1β and on cecal ligation and puncture (CLP)-induced EPCR shedding through suppression of TACE expression and activity. In addition, treatment with OroA resulted in reduced PMA-stimulated phosphorylation of p38, extracellular regulated kinases (ERK) 1/2, and c-Jun N-terminal kinase (JNK). These results demonstrate the potential of OroA as an anti-sEPCR shedding reagent against PMA and CLP-mediated EPCR shedding. [BMB Reports 2014; 47(6): 336-341]  相似文献   

20.
The endothelial protein C receptor (EPCR) has a critical role in the regulation of anticoagulant and anti-inflammatory functions of activated protein C (APC). Abnormalities in EPCR might be associated with an increased risk of thrombosis. In this respect, a 23 bp insertion in the exon 3 of the EPCR gene predicts a truncated protein which cannot bind APC. High levels of C-reactive protein (CRP), a strong predictor of cardiovascular events, are found both in the obese and in subjects with Prader-Willi syndrome (PWS). Several cardiovascular risk factors are already present in prepubertal PWS children, but it is uncertain which mechanism contributes to the increased risk of cardiovascular disease in PWS. We analyzed the distribution of 23 bp insertion in the EPCR gene in 81 overweight and obese PWS subjects, 52 adults and 29 children, and in 58 overweight and obese children and adolescents (controls). We found that 1/58 (1.7%) of the controls was heterozygous for the 23 bp insertion, while this mutation was never found in PWS subjects. Furthermore, we evaluated CRP levels, glucose, insulin, and lipid profile, and we found higher CRP values in PWS adults with respect to children with PWS and controls, and a better insulin sensitivity in all PWS subjects than in the controls. This study suggests that in PWS subjects there is no predisposition to develop thrombotic events in association with EPCR gene alteration and demonstrates substantial differences regarding metabolic and inflammatory profile between PWS and non-PWS obese children, with further impairment in adults with PWS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号