首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rolling dynamics of a neutrophil with redistributed L-selectin   总被引:4,自引:0,他引:4  
The most common white blood cell is the neutrophil, which slowly rolls along the walls of blood vessels due to the coordinated formation and breakage of chemical selectin-carbohydrate bonds. We show that L-selectin receptors are rapidly redistributed to form a cap at one end of the cell membrane during rolling via selectins or chemotactic stimulation. This topography significantly alters the adhesive dynamics as demonstrated by computer simulations of neutrophils rolling on a carbohydrate selectin-ligand substrate under flow. It was found that neutrophils with a redistributed L-selectin cap roll on sialyl Lewis-x with a quasi-periodic motion, as characterized by relatively low velocity intervals interspersed with regular jumps in the rolling velocity. On average, neutrophils with redistributed L-selectin rolled at a lower velocity when compared with cells having a uniform L-selectin distribution of equal average density. We speculate on the possible biological implications that these differences in adhesion dynamics will have during the inflammatory response.  相似文献   

2.
Selectin-mediated leukocyte rolling is crucial for the proper function of the immune response. Recently, selectin-mediated rolling was recreated in a cell-free system (Biophysical Journal 71:2902-2907 (1996)); it was shown that sialyl Lewis(x) (sLe(x))-coated microspheres roll over E-selectin-coated surfaces under hydrodynamic flow. The cell-free system removes many confounding cellular features, such as cell deformability and signaling, allowing us to focus on the role of carbohydrate/selectin physical chemistry in mediating rolling. In this paper, we use adhesive dynamics, a computational method that allows us to simulate adhesion, to analyze the experimental data produced in the cell-free system. We simulate the effects of shear rate, ligand density, and number of receptors per particle on rolling velocity and compare them with experimental results obtained with the cell-free system. If we assume the population of particles is homogeneous in receptor density, we predict that particle rolling velocity calculated in simulations is more sensitive to shear rate than found in experiments. Also, the calculated rolling velocity is more sensitive to the number of receptors on the microspheres than to the ligand density on the surface, again in contrast to experiment. We argue that heterogeneity in the distribution of receptors throughout the particle population causes these discrepancies. We improve the agreement between experiment and simulation by calculating the average rolling velocity of a population whose receptors follow a normal distribution, suggesting heterogeneity among particles significantly affects the experimental results. Further comparison between theory and experiment yields an estimate of the reactive compliance of sLe(x)/E-selectin interactions of 0.25 A, close to that reported in the literature for E-selectin and its natural ligand (0.3 A). We also provide an estimate of the value of the intrinsic association rate (between 10(4) and 10(5) s(-1)) for the formation of sLe(x)/E-selectin bonds.  相似文献   

3.
The interaction of L-selectin expressed on leukocytes with endothelial cells leads to capture and rolling and is critical for the recruitment of leukocytes into sites of inflammation. It is known that leukocyte activation by chemoattractants, the change of osmotic pressure in cell media, or cross-linking of L-selectin all result in rapid shedding of L-selectin. Here we present a novel mechanism for surface cleavage of L-selectin on neutrophils during rolling on a sialyl Lewis x-coated surface that involves mechanical force. Flow cytometry and rolling of neutrophils labeled with Qdot(R)-L-selectin antibodies in an in vitro flow chamber showed that the mechanical shedding of L-selectin occurs during rolling and depends on the amount of shear applied. In addition, the mechanical L-selectin shedding causes an increase in cell rolling velocity with rolling duration, suggesting a gradual loss of L-selectin and is mediated by p38 mitogen-activated protein kinase activation. Thus, these data show that mechanical force induces the cleavage of L-selectin from the neutrophil surface during rolling and therefore decreases the adhesion of cells to a ligand-presenting surface in flow.  相似文献   

4.
Selectin counterreceptors are glycoprotein scaffolds bearing multiple carbohydrate ligands with exceptional ability to tether flowing cells under disruptive shear forces. Bond clusters may facilitate formation and stabilization of selectin tethers. L-selectin ligation has been shown to enhance L-selectin rolling on endothelial surfaces. We now report that monoclonal antibodies-induced L-selectin dimerization enhances L-selectin leukocyte tethering to purified physiological L-selectin ligands and glycopeptides. Microkinetic analysis of individual tethers suggests that leukocyte rolling is enhanced through the dimerization-induced increase in tether formation, rather than by tether stabilization. Notably, L-selectin dimerization failed to augment L-selectin-mediated adhesion below a threshold ligand density, suggesting that L-selectin dimerization enhanced adhesiveness only to properly clustered ligand. In contrast, an epidermal growth factor domain substitution of L-selectin enhanced tether formation to L-selectin ligands irrespective of ligand density, suggesting that this domain controls intrinsic ligand binding properties of L-selectin without inducing L-selectin dimerization. Strikingly, at low ligand densities, where L-selectin tethering was not responsive to dimerization, elevated shear stress restored sensitivity of tethering to selectin dimerization. This is the first indication that shear stress augments effective selectin ligand density at local contact sites by promoting L-selectin encounter of immobilized ligand.  相似文献   

5.
Leukocyte capture and rolling on the vascular endothelium is mediated principally by the selectin family of cell adhesion receptors. In a parallel plate flow chamber, neutrophil rolling on purified selectins or a selectin-ligand substrate was resolved by high speed videomicroscopy as a series of ratchet-like steps with a characteristic time constant (Kaplanski, G., C. Farnarier, O. Tissot, A. Pierres, A.-M. Benoliel, M. C. Alessi, S. Kaplanski, and P. Bongrand. 1993. Biophys. J. 64:1922-1933; Alon, R., D. A. Hammer, and T. A. Springer. 1995. Nature (Lond.). 374:539-542). Under shear, neutrophil arrests due to bond formation events were as brief as 4 ms. Pause time distributions for neutrophils tethering on P-, E-, L-selectin, or peripheral node addressin (PNAd) were compared at estimated single bond forces ranging from 37 to 250 pN. Distributions of selectin mediated pause times were fit to a first order exponential, resulting in a molecular dissociation constant (k(off)) for the respective selectin as a function of force. At estimated single bond forces of 125 pN and below, all three selectin dissociation constants fit the Bell and Hookean spring models of force-driven bond breakage equivalently. Unstressed k(off) values based on the Bell model were 2.4, 2.6, 2.8, 3.8 s(-1) for P-selectin, E-selectin, L-selectin, and PNAd, respectively. Bond separation distances (reactive compliance) were 0.39, 0.18, 1.11, 0.59 A for P-selectin, E-selectin, L-selectin, and PNAd, respectively. Dissociation constants for L-selectin and P-selectin at single bond forces above 125 pN were considerably lower than either Bell or Hookean spring model predictions, suggesting the existence of two regimes of reactive compliance. Additionally, interactions between L-selectin and its leukocyte ligand(s) were more labile in the presence of flow than the L-selectin endothelial ligand, PNAd, suggesting that L-selectin ligands may have different molecular and mechanical properties. Both types of L-selectin bonds had a higher reactive compliance than P-selectin or E-selectin bonds.  相似文献   

6.
An early step in activation of leukocyte adhesion is a release of integrins from cytoskeletal constraints on their diffusion, leading to rearrangement and, consequently, increased avidity. Static adhesion assays using purified ligand as a substrate have demonstrated that very low doses of cytochalasin D disconnect beta2-integrins from their cytoskeletal links, allowing rearrangement and activating adhesion. The adhesion process in blood vessels is poorly simulated by these assays, however, for two reasons: leukocyte adhesion to endothelium 1), occurs in the presence of blood flow and 2), involves the simultaneous interactions of multiple sets of adhesion molecules. We investigated the effect of cytochalasin D, at concentrations that increase integrin diffusion but do not alter leukocyte shape and surface features, on adhesion of leukocytes to endothelial cells under flow. Cytochalasin D increased the number of rolling cells, the number of firmly adherent cells, and the duration of both rolling and firm adhesion. These effects required endothelial cell expression of ICAM-1, the ligand for leukocyte beta2-integrins. The beta2-integrin-ICAM-1 interaction alone was not sufficient, however. Experiments using purified substrates demonstrated that avidity effects on activation of adhesion under flow require functional cooperativity between integrins and other adhesion receptors.  相似文献   

7.
A stochastic model of leukocyte rolling.   总被引:2,自引:0,他引:2       下载免费PDF全文
Y Zhao  S Chien    R Skalak 《Biophysical journal》1995,69(4):1309-1320
Selectin-mediated leukocyte rolling under flow is an important process in leukocyte recruitment during inflammation. The rolling motion of individual cells has been observed to fluctuate randomly both in vivo and in vitro. This paper presents a stochastic model of the micromechanics of cell rolling and provides an analytical method of treating experimental data. For a homogeneous cell population, the velocity distribution is obtained in an analytical form, which is in good agreement with experimentally determined velocity histograms obtained previously. For a heterogeneous cell population, the model provides a simple, analytical method of separating the contributions of temporal fluctuations and population heterogeneity to the variance of measured rolling velocities. The model also links the mean and variance of rolling velocities to the molecular events underlying the observed cellular motion, allowing characterization of the distribution and release rate of the clusters of molecular bonds that tether the cell to substratum. Applying the model to the analysis of data obtained for neutrophils rolling on an E-selectin-coated surface at a wall shear stress of 1.2 dyn/cm2 yields estimations of the average distance between bond clusters (approximately micron) and the average time duration of a bond cluster resisting the applied fluid force (approximately 0.5 s).  相似文献   

8.
Interaction of leukocytes in flow with adherent leukocytes may contribute to their accumulation at sites of inflammation. Using L- selectin immobilized in a flow chamber, a model system that mimics presentation of L-selectin by adherent leukocytes, we characterize ligands for L-selectin on leukocytes and show that they mediate tethering and rolling in shear flow. We demonstrate the presence of L- selectin ligands on granulocytes, monocytes, and myeloid and lymphoid cell lines, and not on peripheral blood T lymphocytes. These ligands are calcium dependent, sensitive to protease and neuraminidase, and structurally distinct from previously described ligands for L-selectin on high endothelial venules (HEV). Differential sensitivity to O-sialo- glycoprotease provides evidence for ligand activity on both mucin-like and nonmucin-like structures. Transfection with fucosyltransferase induces expression of functional L-selectin ligands on both a lymphoid cell line and a nonhematopoietic cell line. L-selectin presented on adherent cells is also capable of supporting tethering and rolling interactions in physiologic shear flow. L-selectin ligands on leukocytes may be important in promoting leukocyte-leukocyte and subsequent leukocyte endothelial interactions in vivo, thereby enhancing leukocyte localization at sites of inflammation.  相似文献   

9.
Selectin-ligand interactions (bonds) mediate leukocyte rolling on vascular surfaces. The molecular basis for differential ligand recognition by selectins is poorly understood. Here, we show that substituting one residue (A108H) in the lectin domain of L-selectin increased its force-free affinity for a glycosulfopeptide binding site (2-GSP-6) on P-selectin glycoprotein ligand-1 (PSGL-1) but not for a sulfated-glycan binding site (6-sulfo-sialyl Lewis x) on peripheral node addressin. The increased affinity of L-selectinA108H for 2-GSP-6 was due to a faster on-rate and to a slower off-rate that increased bond lifetimes in the absence of force. Rather than first prolonging (catching) and then shortening (slipping) bond lifetimes, increasing force monotonically shortened lifetimes of L-selectinA108H bonds with 2-GSP-6. When compared with microspheres bearing L-selectin, L-selectinA108H microspheres rolled more slowly and regularly on 2-GSP-6 at low flow rates. A reciprocal substitution in P-selectin (H108A) caused faster microsphere rolling on 2-GSP-6. These results distinguish molecular mechanisms for L-selectin to bind to PSGL-1 and peripheral node addressin and explain in part the shorter lifetimes of PSGL-1 bonds with L-selectin than P-selectin.  相似文献   

10.
The current paradigm for receptor-ligand dissociation kinetics assumes off-rates as functions of instantaneous force without impact from its prior history. This a priori assumption is the foundation for predicting dissociation from a given initial state using kinetic equations. Here we have invalidated this assumption by demonstrating the impact of force history with single-bond kinetic experiments involving selectins and their ligands that mediate leukocyte tethering and rolling on vascular surfaces during inflammation. Dissociation of bonds between L-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) loaded at a constant ramp rate to a constant hold force behaved as catch-slip bonds at low ramp rates that transformed to slip-only bonds at high ramp rates. Strikingly, bonds between L-selectin and 6-sulfo-sialyl Lewis X were impervious to ramp rate changes. This ligand-specific force history effect resembled the effect of a point mutation at the L-selectin surface (L-selectinA108H) predicted to contact the former but not the latter ligand, suggesting that the high ramp rate induced similar structural changes as the mutation. Although the A108H substitution in L-selectin eliminated the ramp rate responsiveness of its dissociation from PSGL-1, the inverse mutation H108A in P-selectin acquired the ramp rate responsiveness. Our data are well explained by the sliding-rebinding model for catch-slip bonds extended to incorporate the additional force history dependence, with Ala-108 playing a pivotal role in this structural mechanism. These results call for a paradigm shift in modeling the mechanical regulation of receptor-ligand bond dissociation, which includes conformational coupling between binding pocket and remote regions of the interacting molecules.  相似文献   

11.
Selectin-ligand interactions mediate the tethering and rolling of circulating leukocytes on vascular surfaces during inflammation and immune surveillance. To support rolling, these interactions are thought to have rapid off-rates that increase slowly as wall shear stress increases. However, the increase of off-rate with force, an intuitive characteristic named slip bonds, is at odds with a shear threshold requirement for selectin-mediated cell rolling. As shear drops below the threshold, fewer cells roll and those that do roll less stably and with higher velocity. We recently demonstrated a low force regime where the off-rate of P-selectin interacting with P-selectin glycoprotein ligand-1 (PSGL-1) decreased with increasing force. This counter-intuitive characteristic, named catch bonds, might partially explain the shear threshold phenomenon. Because L-selectin-mediated cell rolling exhibits a much more pronounced shear threshold, we used atomic force microscopy and flow chamber experiments to determine off-rates of L-selectin interacting with their physiological ligands and with an antibody. Catch bonds were observed at low forces for L-selectin-PSGL-1 interactions coinciding with the shear threshold range, whereas slip bonds were observed at higher forces. These catch-slip transitional bonds were also observed for L-selectin interacting with endoglycan, a newly identified PSGL-1-like ligand. By contrast, only slip bonds were observed for L-selectin-antibody interactions. These findings suggest that catch bonds contribute to the shear threshold for rolling and are a common characteristic of selectin-ligand interactions.  相似文献   

12.
13.
L-selectin-mediated leukocyte rolling has been proposed to require a high rate of bond formation compared to that of P-selectin to compensate for its much higher off-rate. To test this hypothesis, a microbead system was utilized to measure relative L-selectin and P-selectin bond formation rates on their common ligand P-selectin glycoprotein ligand-1 (PSGL-1) under shear flow. Using video microscopy, we tracked selectin-coated microbeads to detect the formation frequency of adhesive tether bonds. From velocity distributions of noninteracting and interacting microbeads, we observed that tether bond formation rates for P-selectin on PSGL-1 decreased with increasing wall shear stress, from 0.14 ± 0.04 bonds/μm at 0.2 dyn/cm2 to 0.014 ± 0.003 bonds/μm at 1.0 dyn/cm2. In contrast, L-selectin tether bond formation increased from 0.017 ± 0.005 bonds/μm at 0.2 dyn/cm2 to 0.031 ± 0.005 bonds/μm at 1.0 dyn/cm2. L-selectin tether bond formation rates appeared to be enhanced by convective transport, whereas P-selectin rates were inhibited. The transition force for the L-selectin catch-slip transition of 44 pN/bond agreed well with theoretical models (Pereverzev et al. 2005. Biophys. J. 89:1446-1454). Despite catch bond behavior, hydrodymanic shear thresholding was not detected with L-selectin beads rolling on PSGL-1. We speculate that shear flow generated compressive forces may enhance L-selectin bond formation relative to that of P-selectin and that L-selectin bonds with PSGL-1 may be tuned for the compressive forces characteristic of leukocyte-leukocyte collisions during secondary capture on the blood vessel wall. This is the first report, to our knowledge, comparing L-selectin and P-selectin bond formation frequencies in shear flow.  相似文献   

14.
The selectin family of adhesion molecules mediates attachment and rolling of neutrophils to stimulated endothelial cells. This step of the inflammatory response is a prerequisite to firm attachment and extravasation. We have reported that microspheres coated with sialyl Lewis(x) (sLe(x)) interact specifically and roll over E-selectin and P-selectin substrates (Brunk et al., 1996; Rodgers et al 2000). This paper extends the use of the cell-free system to the study of the interactions between L-selectin and sLe(x) under flow. We find that sLe(x) microspheres specifically interact with and roll on L-selectin substrates. Rolling velocity increases with wall shear stress and decreases with increasing L-selectin density. Rolling velocities are fast, between 25 and 225 microm/s, typical of L-selectin interactions. The variability of rolling velocity, quantified by the variance in rolling velocity, scales linearly with rolling velocity. Rolling flux varies with both wall shear stress and L-selectin site density. At a density of L-selectin of 800 sites/microm(2), the rolling flux of sLe(x) coated microspheres goes through a clear maximum with respect to shear stress at 0.7 dyne/cm(2). This behavior, in which the maintenance and promotion of rolling interactions on selectins requires shear stress above a threshold value, is known as the shear threshold effect. We found that the magnitude of the effect is greatest at an L-selectin density of 800 sites/microm(2) and gradually diminishes with increasing L-selectin site density. Our study is the first to reveal the shear threshold effect with a cell free system and the first to show the dependence of the shear threshold effect on L-selectin site density in a reconstituted system. Our ability to recreate the shear threshold effect in a cell-free system strongly suggests the origin of the effect is in the physical chemistry of L-selectin interaction with its ligand, and largely eliminates cellular features such as deformability or topography as its cause.  相似文献   

15.
Here we accurately recreate the mechanical shedding of L-selectin and its effect on the rolling behavior of neutrophils in vitro using the adhesive dynamics simulation by incorporating the shear-dependent shedding of L-selectin. We have previously shown that constitutively expressed L-selectin is cleaved from the neutrophil surface during rolling on a sialyl Lewis x-coated planar surface at physiological shear rates without the addition of exogenous stimuli. Utilizing a Bell-like model to describe a shedding rate which presumably increases exponentially with force, we were able to reconstruct the characteristics of L-selectin-mediated neutrophil rolling observed in the experiments. First, the rolling velocity was found to increase during rolling due to the mechanical shedding of L-selectin. When most of the L-selectin concentrated on the tips of deformable microvilli was cleaved by force exerted on the L-selectin bonds, the cell detached from the reactive plane to join the free stream as observed in the experiments. In summary, we show through detailed computational modeling that the force-dependent shedding of L-selectin can explain the rolling behavior of neutrophils mediated by L-selectin in vitro.  相似文献   

16.
L-selectin is a leukocyte lectin that mediates leukocyte capture and rolling in the vasculature. The cytoplasmic domain of L-selectin has been shown to regulate leukocyte rolling. In this study, the regulatory mechanisms by which this domain controls L-selectin adhesiveness were investigated. We report that an L-selectin mutant generated by truncation of the COOH-terminal 11 residues of L-selectin tail, which impairs association with the cytoskeletal protein alpha-actinin, could capture leukocytes to glycoprotein L-selectin ligands under physiological shear flow. However, the conversion of initial tethers into rolling was impaired by this partial tail truncation, and was completely abolished by a further four-residue truncation of the L-selectin tail. Physical anchorage of both cell-free tail-truncated mutants within a substrate fully rescued their adhesive deficiencies. Microkinetic analysis of full-length and truncated L-selectin-mediated rolling at millisecond temporal resolution suggests that the lifetime of unstressed L-selectin tethers is unaffected by cytoplasmic tail truncation. However, cytoskeletal anchorage of L-selectin stabilizes the selectin tether by reducing the sensitivity of its dissociation rate to increasing shear forces. Low force sensitivity (reactive compliance) of tether lifetime is crucial for selectins to mediate leukocyte rolling under physiological shear stresses. This is the first demonstration that reduced reactive compliance of L-selectin tethers is regulated by cytoskeletal anchorage, in addition to intrinsic mechanical properties of the selectin-carbohydrate bond.  相似文献   

17.
During lymphocyte homing to secondary lymphoid organs and instances of inflammatory trafficking, the rolling of leukocytes on vascular endothelium is mediated by transient interactions between L-selectin on leukocytes and several carbohydrate-modified ligands on the endothelium. Most L-selectin ligands such as CD34 and podocalyxin present sulfated carbohydrate structures (6-sulfated sialyl Lewis x or 6-sulfo-sLex) as a recognition determinant within their heavily glycosylated mucin domains. We recently identified endoglycan as a new member of the CD34 family. We report here that endoglycan, like the two other members of this family (CD34 and podocalyxin) can function as a L-selectin ligand. However, endoglycan employs a different binding mechanism, interacting with L-selectin through sulfation on two tyrosine residues and O-linked sLex structures that are presented within its highly acidic amino-terminal region. Our analysis establishes striking parallels with PSGL-1, a leukocyte ligand that interacts with all three selectins, mediating leukocyte-endothelial, leukocyte-leukocyte, and platelet-leukocyte interactions. Since the distribution of endoglycan includes hematopoietic precursors and leukocyte subpopulations, in addition to endothelial cells, our findings suggest several potential settings for endoglycan-mediated adhesion events.  相似文献   

18.
L-selectin is a calcium-dependent lectin on leukocytes mediating leukocyte rolling in high endothelial venules and inflamed microvessels. Many selectin ligands require modification of glycoproteins by leukocyte core2 beta1,6-N-acetylglucosaminyltransferase (Core2GlcNAcT-I). To test the role of Core2GlcNAcT-I for L-selectin ligand biosynthesis, we investigated leukocyte rolling in venules of untreated and TNF-alpha-treated cremaster muscles and in Peyer's patch high endothelial venules (HEV) of Core2GlcNAcT-I null (core2(-/-)) mice. In the presence of blocking mAbs against P- and E-selectin, L-selectin-mediated leukocyte rolling was almost completely abolished in cremaster muscle venules of core2(-/-) mice, but not littermate control mice. By contrast, leukocyte rolling in Peyer's patch HEV was not significantly different between core2(-/-) and control mice. To probe L-selectin ligands more directly, we injected L-selectin-coated beads. These beads showed no rolling in cremaster muscle venules of core2(-/-) mice, but significant rolling in controls. In Peyer's patch HEV, beads coated with a low concentration of L-selectin showed reduced rolling in core2(-/-) mice. Beads coated with a 10-fold higher concentration of L-selectin rolled equivalently in core2(-/-) and control mice. Our data show that endothelial L-selectin ligands relevant for rolling in inflamed microvessels of the cremaster muscle are completely Core2GlcNAcT-I dependent. In contrast, L-selectin ligands in Peyer's patch HEV are only marginally affected by the absence of Core2GlcNAcT-I, but are sufficiently functional to support L-selectin-dependent leukocyte rolling in Core2GlcNAcT-I-deficient mice.  相似文献   

19.
Interactions between the leukocyte adhesion receptor L-selectin and P-selectin glycoprotein ligand-1 play an important role in regulating the inflammatory response by mediating leukocyte tethering and rolling on adherent leukocytes. In this study, we have examined the effect of post-translational modifications of PSGL-1 including Tyr sulfation and presentation of sialylated and fucosylated O-glycans for L-selectin binding. The functional importance of these modifications was determined by analyzing soluble L-selectin binding and leukocyte rolling on CHO cells expressing various glycoforms of PSGL-1 or mutant PSGL-1 targeted at N-terminal Thr or Tyr residues. Simultaneous expression of core-2 beta1,6-N-acetylglucosaminyltransferase and fucosyltransferase VII was required for optimal L-selectin binding to PSGL-1. Substitution of Thr-57 by Ala but not of Thr-44, strongly decreased L-selectin binding and leukocyte rolling on PSGL-1. Substitution of Tyr by Phe revealed that PSGL-1 Tyr-51 plays a predominant role in mediating L-selectin binding and leukocyte rolling whereas Tyr-48 has a minor role, an observation that contrasts with the pattern seen for the interactions between PSGL-1 and P-selectin where Tyr-48 plays a key role. Molecular modeling analysis of L-selectin and P-selectin interactions with PSGL-1 further supported these observations. Additional experiments showed that core-2 O-glycans attached to Thr-57 were also of critical importance in regulating the velocity and stability of leukocyte rolling. These observations pinpoint the structural characteristics of PSGL-1 that are required for optimal interactions with L-selectin and may be responsible for the specific kinetic and mechanical bond properties of the L-selectin-PSGL-1 adhesion receptor-counterreceptor pair.  相似文献   

20.
Expression of L-selectin on human hematopoietic cells (HC) is associated with a higher proliferative activity and a more rapid engraftment after hematopoietic stem cell transplantation. Two L-selectin ligands are expressed on human HCs, P-selectin glycoprotein ligand-1 (PSGL-1) and a specialized glycoform of CD44 (hematopoietic cell E- and L-selectin ligand, HCELL). Although the structural biochemistry of HCELL and PSGL-1 is well characterized, the relative capacity of these molecules to mediate L-selectin-dependent adhesion has not been explored. In this study, we examined under shear stress conditions L-selectin-dependent leukocyte adhesive interactions mediated by HCELL and PSGL-1, both as naturally expressed on human HC membranes and as purified molecules. By utilizing both Stamper-Woodruff and parallel-plate flow chamber assays, we found that HCELL displayed a 5-fold greater capacity to support L-selectin-dependent leukocyte adherence across a broad range of shear stresses compared with that of PSGL-1. Moreover, L-selectin-mediated leukocyte binding to immunopurified HCELL was consistently >5-fold higher than leukocyte binding to equivalent amounts of PSGL-1. Taken together, these data indicate that HCELL is a more avid L-selectin ligand than PSGL-1 and may be the preferential mediator of L-selectin-dependent adhesive interactions among human HCs in the bone marrow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号