首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibrobacter succinogenes S85 is an anaerobic non-cellulosome utilizing cellulolytic bacterium originally isolated from the cow rumen microbial community. Efforts to elucidate its cellulolytic machinery have resulted in the proposal of numerous models which involve cell-surface attachment via a combination of cellulose-binding fibro-slime proteins and pili, the production of cellulolytic vesicles, and the entry of cellulose fibers into the periplasmic space. Here, we used a combination of RNA-sequencing, proteomics, and transmission electron microscopy (TEM) to further clarify the cellulolytic mechanism of F. succinogenes. Our RNA-sequence analysis shows that genes encoding type II and III secretion systems, fibro-slime proteins, and pili are differentially expressed on cellulose, relative to glucose. A subcellular fractionation of cells grown on cellulose revealed that carbohydrate active enzymes associated with cellulose deconstruction and fibro-slime proteins were greater in the extracellular medium, as compared to the periplasm and outer membrane fractions. TEMs of samples harvested at mid-exponential and stationary phases of growth on cellulose and glucose showed the presence of grooves in the cellulose between the bacterial cells and substrate, suggesting enzymes work extracellularly for cellulose degradation. Membrane vesicles were only observed in stationary phase cultures grown on cellulose. These results provide evidence that F. succinogenes attaches to cellulose fibers using fibro-slime and pili, produces cellulases, such as endoglucanases, that are secreted extracellularly using type II and III secretion systems, and degrades the cellulose into cellodextrins that are then imported back into the periplasm for further digestion by β-glucanases and other cellulases.  相似文献   

2.
Succinic acid is a platform molecule that has recently generated considerable interests. Production of succinate from waste orange peel and wheat straw by consolidated bioprocessing that combines cellulose hydrolysis and sugar fermentation, using a cellulolytic bacterium, Fibrobacter succinogenes S85, was studied. Orange peel contains d-limonene, which is a well-known antibacterial agent. Its effects on batch cultures of F. succinogenes S85 were examined. The minimal concentrations of limonene found to inhibit succinate and acetate generation and bacterial growth were 0.01%, 0.1%, and 0.06% (v/v), respectively. Both pre-treated orange peel by steam distillation to remove d-limonene and intact wheat straw were used as feedstocks. Increasing the substrate concentrations of both feedstocks, from 5 to 60 g/L, elevated succinate concentration and productivity but lowered the yield. In addition, pre-treated orange peel generated greater succinate productivities than wheat straw but had similar resultant titres. The greatest succinate titres were 1.9 and 2.0 g/L for pre-treated orange peel and wheat straw, respectively. This work demonstrated that agricultural waste such as wheat straw and orange peel can be biotransformed to succinic acid by a one-step consolidated bioprocessing. Measures to increase fermentation efficiency are also discussed.  相似文献   

3.
The effect of the presence of ammonia on [1-13C]glucose metabolism in the rumen fibrolytic bacterium Fibrobacter succinogenes S85 was studied by 13C and 1H nuclear magnetic resonance (NMR). Ammonia halved the level of glycogen storage and increased the rate of glucose conversion into acetate and succinate 2.2-fold and 1.4-fold, respectively, reducing the succinate-to-acetate ratio. The 13C enrichment of succinate and acetate was precisely quantified by 13C-filtered spin-echo difference 1H-NMR spectroscopy. The presence of ammonia did not modify the 13C enrichment of succinate C-2 (without ammonia, 20.8%, and with ammonia, 21.6%), indicating that the isotopic dilution of metabolites due to utilization of endogenous glycogen was not affected. In contrast, the presence of ammonia markedly decreased the 13C enrichment of acetate C-2 (from 40 to 31%), reflecting enhanced reversal of the succinate synthesis pathway. The reversal of glycolysis was unaffected by the presence of ammonia as shown by 13C-NMR analysis. Study of cell extracts showed that the main pathways of ammonia assimilation in F. succinogenes were glutamate dehydrogenase and alanine dehydrogenase. Glutamine synthetase activity was not detected. Glutamate dehydrogenase was active with both NAD and NADP as cofactors and was not repressed under ammonia limitation in the culture. Glutamate-pyruvate and glutamate-oxaloacetate transaminase activities were evidenced by spectrophotometry and 1H NMR. When cells were incubated in vivo with [1-13C]glucose, only 13C-labeled aspartate, glutamate, alanine, and valine were detected. Their labelings were consistent with the proposed amino acid synthesis pathway and with the reversal of the succinate synthesis pathway.  相似文献   

4.
Sodium gradients (DeltapNa) were measured in resting cells of Fibrobacter succinogenes by in vivo 23Na nuclear magnetic resonance using Tm(DOTP)5- [thulium(III) 1,4,7,10-tetraazacyclododecane-N',N",N"'-tetramethylenephosphonate] as the shift reagent. This bacterium was able to maintain a DeltapNa of -55 to -40 mV for extracellular sodium concentrations ranging from 30 to 200 mM. Depletion of Na+ ions during the washing steps led to irreversible damage (modification of glucose metabolism and inability to maintain a sodium gradient).  相似文献   

5.
Cells of the anaerobic ruminal bacterium Fibrobacter succinogenes subsp. succinogenes S85 (formerly Bacteroides succinogenes) exhibit arylesterase activity. When cells were grown on cellulose, it was found that 69% of the total esterase activity was extracellular while 65% was nonsedimentable upon centrifugation of the culture supernatant at 100,000 x g. Disruption of the cells by various different methods failed to increase the esterase activity, indicating that the substrate was fully accessible to esterase enzymes in intact cells. During growth of cells with either glucose or cellulose as the sole carbon source, the increase in acetylesterase activity corresponded to an increase in cell density, suggesting constitutive production. The enzyme(s) hydrolyzed alpha-naphthyl, p-nitrophenyl, and 4-methylumbelliferyl derivatives of acetic acid; xylose tetraacetate; glucose pentaacetate; acetylxylan; and a polymer composed of ferulic acid, arabinose, and xylose in molar proportions of 1:1.1:2.2 (FAX). These data demonstrate the presence of an acetylxylan esterase and a ferulic acid esterase. The cleavage of FAX also documents the presence of an alpha-l-arabinofuranosidase.  相似文献   

6.
Growing cultures of Fibrobacter succinogenes S85 digested cellulose at a rapid rate, but nongrowing cells and cell extracts did not have detectable crystalline cellulase activity. Cells that had been growing exponentially on cellobiose initiated cellulose digestion and succinate production immediately, and cellulose-dependent succinate production could be used as an index of enzyme activity against crystalline cellulose. Cells incubated with cellulose never produced detectable cellobiose, and cells that were preincubated for a short time with thiocellobiose lost their ability to digest cellulose (competitive inhibition [K(infi)] of only 0.2 mg/ml or 0.56 mM). Based on these results, the crystalline cellulases of F. succinogenes were very sensitive to feedback inhibition. Different cellulose sources bound different amounts of Congo red, and the binding capacity was HCl-regenerated cellulose > ball-milled cellulose > Sigmacel > Avicel > filter paper. Congo red binding capacity was highly correlated with the maximum rates of metabolism of cellulose digestion and inversely related to K(infm). Congo red (250 (mu)g/ml) did not inhibit the growth of F. succinogenes S85 on cellobiose, but this concentration of Congo red inhibited the rate of ball-milled cellulose digestion. A Lineweaver-Burk plot of ball-milled cellulose digestion rate versus the amount of cellulose indicated that Congo red was a competitive inhibitor of cellulose digestion (K(infi) was 250 (mu)g/ml).  相似文献   

7.
Wheat straw degradation by Fibrobacter succinogenes was monitored by nuclear magnetic resonance (NMR) spectroscopy and chemolytic methods to investigate the activity of an entire fibrolytic system on an intact complex substrate. In situ solid-state NMR with 13C cross-polarization magic angle spinning was used to monitor the modification of the composition and structure of lignocellulosic fibers (of 13C-enriched wheat straw) during the growth of bacteria on this substrate. There was no preferential degradation either of amorphous regions of cellulose versus crystalline regions or of cellulose versus hemicelluloses in wheat straw. This suggests either a simultaneous degradation of the amorphous and crystalline parts of cellulose and of cellulose and hemicelluloses by the enzymes or degradation at the surface at a molecular scale that cannot be detected by NMR. Liquid-state two-dimensional NMR experiments and chemolytic methods were used to analyze in detail the various sugars released into the culture medium. An integration of NMR signals enabled the quantification of oligosaccharides produced from wheat straw at various times of culture and showed the sequential activities of some of the fibrolytic enzymes of F. succinogenes S85 on wheat straw. In particular, acetylxylan esterase appeared to be more active than arabinofuranosidase, which was more active than α-glucuronidase. Finally, cellodextrins did not accumulate to a great extent in the culture medium.  相似文献   

8.
We show for the first time the occurrence of maltodextrin-1-Phosphate (MD-1P) (DP2) in F. succinogenes S85, a rumen bacterium specialized in cellulolysis which is not able to use maltose and starch. MD-1P were found in intra and extracellular medium of resting cells incubated with glucose. We used 2D 1H NMR technique and TLC to identify their structure and quantify their production with time. It was also shown that these phosphorylated oligosaccharides originated both from exogenous glucose and endogenous glycogen.  相似文献   

9.
The distribution of endoglucanase activities in cultures of Fibrobacter succinogenes subsp. succinogenes S85 grown on different carbon sources was examined by a variety of biochemical and immunological techniques. Total culture endoglucanase activity was primarily cell associated and was expressed constitutively, although synthesis of endoglucanase 1 (EG1) was repressed by cellobiose. Western immunoblotting showed that EG1 and EG3 were released into the culture fluid during growth, while EG2 remained largely associated with the cell. Subcellular localization showed low endoglucanase activity in the periplasmic fraction and similar, high levels in the cytoplasmic and membrane fractions. Western immunoblotting showed that EG2 was absent from the periplasmic fraction. Data from immunoelectron microscopy with either polyclonal or monoclonal antibody to EG2 revealed a high density of gold labeling at sites where there was a disruption in the regular features of the cell surface, such as in blebbing or physical tearing of the membrane. When cells were grown on cellulose, there was a high density of labeling on the cellulose but not on the cells, indicating that EG2 has limited exposure at the cell surface. On the basis of these data, export of enzymes from their intracellular locations appears to occur via three different mechanisms: a specific secretory pathway independent of cellulose, a secretory mechanism which is mediated by contact with cellulose, and a generalized blebbing process that occurs irrespective of the carbon source.  相似文献   

10.
M McGavin  J Lam    C W Forsberg 《Applied microbiology》1990,56(5):1235-1244
The distribution of endoglucanase activities in cultures of Fibrobacter succinogenes subsp. succinogenes S85 grown on different carbon sources was examined by a variety of biochemical and immunological techniques. Total culture endoglucanase activity was primarily cell associated and was expressed constitutively, although synthesis of endoglucanase 1 (EG1) was repressed by cellobiose. Western immunoblotting showed that EG1 and EG3 were released into the culture fluid during growth, while EG2 remained largely associated with the cell. Subcellular localization showed low endoglucanase activity in the periplasmic fraction and similar, high levels in the cytoplasmic and membrane fractions. Western immunoblotting showed that EG2 was absent from the periplasmic fraction. Data from immunoelectron microscopy with either polyclonal or monoclonal antibody to EG2 revealed a high density of gold labeling at sites where there was a disruption in the regular features of the cell surface, such as in blebbing or physical tearing of the membrane. When cells were grown on cellulose, there was a high density of labeling on the cellulose but not on the cells, indicating that EG2 has limited exposure at the cell surface. On the basis of these data, export of enzymes from their intracellular locations appears to occur via three different mechanisms: a specific secretory pathway independent of cellulose, a secretory mechanism which is mediated by contact with cellulose, and a generalized blebbing process that occurs irrespective of the carbon source.  相似文献   

11.
Fibrobacter succinogenes S85, a cellulolytic rumen bacterium, is very efficient in degrading lignocellulosic substrates and could be used to develop a biotechnological process for the treatment of wastes. In this work, the metabolism of cellulose by F. succinogenes S85 was investigated using in vivo 13C NMR and 13C-filtered spin-echo difference 1H NMR spectroscopy. The degradation of unlabelled cellulose synthesised by Acetobacter xylinum was studied indirectly, in the presence of [1-13C]glucose, by estimating the isotopic dilution of the final bacterial fermentation products (glycogen, succinate, acetate). During the pre-incubation period of F. succinogenes cells with cellulose fibres, some cells ('non-adherent') did not attach to the solid material. Results for 'adherent' cells showed that about one fourth of the glucose units entering F. succinogenes metabolism originated from cellulose degradation. A huge reversal of succinate metabolism pathway and production of large amounts of unlabelled acetate which was observed during incubation with glucose only, was found to be much decreased in the presence of solid substrate. The synthesis of glucose 6-phophate was slightly increased in the presence of cellulose. Results clearly showed that 'non-adherent' cells were able to metabolise glucose very efficiently; consequently the metabolic state of these cells was not responsible for their 'non-adherence' to cellulose fibre.  相似文献   

12.
13.
In this article we compared the metabolism of phosphorylated and unphosphorylated oligosaccharides (cellodextrins and maltodextrins) in Fibrobacter succinogenes S85 resting cells incubated with the following substrates: glucose; cellobiose; a mixture of glucose and cellobiose; and cellulose. Intracellular and extracellular media were analysed by (1)H-NMR and by TLC. The first important finding is that no cellodextrins were found to accumulate in the extracellular media of cells, regardless of the substrate; this contrasts to what is generally reported in the literature. The second finding of this work is that maltodextrins of degree of polymerization > 2 are synthesized regardless of the substrate, and can be used by the bacteria. Maltotriose plays a key role in this metabolism of maltodextrin. Maltodextrin-1-phosphate was detected in all the incubations, and a new metabolite, corresponding to a phosphorylated glucose derivative, was produced in the extracellular medium when cells were incubated with cellulose. The accumulation of these phosphorylated sugars increased with the degree of polymerization of the substrate.  相似文献   

14.
Fibrobacter succinogenes is one of the most active cellulolytic bacteria ever isolated from the rumen, but enzymes from F. succinogenes capable of hydrolyzing native (insoluble) cellulose at a rapid rate have not been identified. However, the genome sequence of F. succinogenes is now available, and it was hoped that this information would yield new insights into the mechanism of cellulose digestion. The genome has a single family 45 beta-glucanase gene, and some of the enzymes in this family have good activity against native cellulose. The gene encoding the family 45 glycosyl hydrolase from F. succinogenes S85 was cloned into Escherichia coli JM109(DE3) using pMAL-c2 as a vector. Recombinant E. coli cells produced a soluble fusion protein (MAL-F45) that was purified on a maltose affinity column and characterized. MAL-F45 was most active on carboxymethylcellulose between pH 6 and 7 and it hydrolyzed cellopentaose and cellohexaose but not cellotetraose. It also cleaved p-nitrophenyl-cellopentose into cellotriose and p-nitrophenyl-cellobiose. MAL-F45 produced cellobiose, cellotriose and cellotetraose from acid swollen cellulose and bacterial cellulose, but the rate of this hydrolysis was much too low to explain the rate of cellulose digestion by growing cultures. Because the F. succinogenes S85 genome lacks dockerin and cohesin sequences, does not encode any known processive cellulases, and most of its endoglucanase genes do not encode carbohydrate binding modules, it appears that F. succinogenes has a novel mechanism of cellulose degradation.  相似文献   

15.
Fibrobacter succinogenes subsp. succinogenes S85 initiated growth on microcrystalline cellulose without a lag whether inoculated from a glucose, cellobiose, or cellulose culture. During growth on cellulose, there was no accumulation of soluble carbohydrate. When the growth medium contained either glucose or cellobiose in combination with microcrystalline cellulose, there was a lag in cellulose digestion until all of the soluble sugar had been utilized, suggesting an end product feedback mechanism that affects cellulose digestion. Cl-stimulated cellobiosidase and periplasmic cellodextrinase were produced under all growth conditions tested, indicating constitutive synthesis. Both cellobiosidases were cell associated until the stationary phase of growth, whereas proteins antigenically related to the Cl-stimulated cellobiosidase and a proportion of the endoglucanase were released into the extracellular culture fluid during growth, irrespective of the substrate. Immunoelectron microscopy of cells with a polyclonal antibody to Cl-stimulated cellobiosidase as the primary antibody and 10-nm-diameter gold particles conjugated to goat anti-rabbit antibodies as the second antibody revealed protrusions of the outer surface which were selectively labeled with gold, suggesting that Cl-stimulated cellobiosidase was located on the protrusions. These data support the contention that the protrusions have a role in cellulose hydrolysis; however, this interpretation is complicated by reactivity of the antibodies with a large number of other proteins that possess related antigenic epitopes.  相似文献   

16.
Properties of the recombinant proteins derived from Fibrobacter succinogenes endoglucanase F (EGF), AD2 and AD4, were characterized using surface plasmon resonance. Because AD2, which contains two reiterated regions, showed stronger affinity to immobilized carboxymethylcellulose (CMC) than did AD4, which contains only the first reiterated region, it has been assumed that the reiterated regions of EGF are cellulose-binding modules. While calcium enhanced the binding of AD2 to the immobilized CMC, it did not enhance the binding of AD4. Moreover, the results obtained from experiments using cellooligosaccharides showed that the binding sites of AD4 and AD2 span approximately four and nine glucosyl units, respectively.  相似文献   

17.
An acetylxylan esterase (EC 3.1.1.6) was purified to apparent homogeneity from the nonsedimentable extracellular culture fluid of Fibrobacter succinogenes S85 grown on cellulose. This enzyme had an apparent molecular mass of 55 kDa and an isoelectric point of 4.0. The temperature and pH optima were 45 degrees C and 7.0, respectively. The apparent Km and Vmax were 2.7 mM and 9,100 U/mg, respectively, for the hydrolysis of alpha-naphthyl acetate. The enzyme cleaved acetyl residues from birchwood acetylxylan but did not hydrolyze carboxymethylcellulose, larchwood xylan, ferulic acid-arabinose-xylose polymer, p-nitrophenyl-alpha-L-arab-inofuranoside, or longer-chain naphthyl fatty acid esters. The esterase enzyme may play a role in enhancing hemicellulose degradation by F. succinogenes, thereby allowing it greater access to cellulose present in forage cell walls.  相似文献   

18.
Fibrobacter is a highly cellulolytic genus commonly found in the rumen of ruminant animals and cecum of monogastric animals. In this study, suppression subtractive hybridization was used to identify the genes present in Fibrobacter succinogenes S85 but absent from F. intestinalis DR7. A total of 1,082 subtractive clones were picked, plasmids were purified, and inserts were sequenced, and the clones lacking homology to F. intestinalis were confirmed by Southern hybridization. By comparison of the sequences of the clones to one another and to those of the F. succinogenes genome, 802 sequences or 955 putative genes, comprising approximately 409 kb of F. succinogenes genomic DNA, were identified that lack similarity to those of F. intestinalis chromosomal DNA. The functional groups of genes, including those involved in cell envelope structure and function, energy metabolism, and transport and binding, had the largest number of genes specific to F. succinogenes. Low-stringency Southern hybridization showed that at least 37 glycoside hydrolases are shared by both species. A cluster of genes responsible for heme, porphyrin, and cobalamin biosynthesis in F. succinogenes S85 was either missing from or not functional in F. intestinalis DR7, which explains the requirement of vitamin B12 for the growth of the F. intestinalis species. Two gene clusters encoding NADH-ubiquinone oxidoreductase subunits probably shared by Fibrobacter genera appear to have an important role in energy metabolism.  相似文献   

19.
Fibrobacter succinogenes subsp. succinogenes S85, formerly Bacteroides succinogenes, adheres to crystalline cellulose present in the culture medium. When the cells are suspended in buffer, adhesion is enhanced by increasing the ionic strength. Heat, glutaraldehyde, trypsin, and pronase treatments markedly reduce the extent of adhesion. Treatment with dextrinase, modification of amino and carboxyl groups with Formalin or other chemical agents, and inclusion of either albumin (1%) or Tween 80 (0.5%) do not decrease the degree of adhesion. Adherence-defective mutants isolated by their inability to bind to cellulose exhibited different growth characteristics. Class 1 mutants grew on glucose, cellobiose, amorphous cellulose, and crystalline cellulose. Class 3 mutants grew on glucose and cellobiose but not on amorphous or crystalline cellulose. No substantial changes were detected in the endoglucanase, cellobiosidase, and cellobiase activities of the wild type and the mutants. These data suggest that adhesion to crystalline cellulose is specific and that it involves surface proteins.  相似文献   

20.
Conditions promoting maximal in vitro activity of the particulate NADH:fumarate reductase from Fibrobacter succinogenes were determined. This system showed a pH optimum of 6.0 in K+ MES buffer only when salt (NaCl or KCl) was present. Salt stimulated the activity eightfold at the optimal concentration of 150m M. This effect was due to stimulation of fumarate reductase activity as salt had little effect on NADH: decylubiquinone oxidoreductase (NADH dehydrogenase). The stimulation of fumarate reductase by salt at pH 6.0 was not due to removal of oxaloacetate from the enzyme. Kinetic parameters for several inhibitors were also measured. NADH dehydrogenase was inhibited by rotenone at a single site with a K i of 1 M. 2-Heptyl-4-hydroxyquinonline-N-oxide (HOQNO) inhibited NADH: fumarate reductase with a K i of 0.006 M, but NADH dehydrogenase exhibited two HOQNO inhibition constants of approximately 1 M and 24 M. Capsaicin and laurylgallate each inhibited NADH dehydrogenase by only 20% at 100 M. NADH dehydrogenase gave K m values of 1 M for NADH and 4 M for reduced hypoxanthine adenine dinucleotide.Published with the approval of the Director of the Agricultural Experiment Station, North Dakota State University, as journal article no. 2201  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号