首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Process Biochemistry》2004,39(11):1745-1749
A moderately thermophilic Bacillus subtilis strain, isolated from fresh sheep’s milk, produced extracellular thermostable α-amylase. Maximum amylase production was obtained at 40 °C in a medium containing low starch concentrations. The enzyme displayed maximal activity at 135 °C and pH 6.5 and its thermostability was enhanced in the presence of either calcium or starch. This thermostable α-amylase was used for the hydrolysis of various starches. An ammonium sulphate crude enzyme preparation as well as the cell-free supernatant efficiently degraded the starches tested. The use of the clear supernatant as enzyme source is highly advantageous mainly because it decreases the cost of the hydrolysis. Upon increase of reaction temperature to 70 °C, all substrates exhibited higher hydrolysis rates. Potato starch hydrolysis resulted in a higher yield of reducing sugars in comparison to the other starches at all temperatures tested. Soluble and rice starch took, respectively, the second and third position regarding reducing sugars liberation, while the α-amylase studied showed slightly lower affinity for corn starch and oat starch.  相似文献   

2.
A purified preparation of Bacillus licheniformis α-amylase was immunologeeally and electrophoretically compared with commercial crystalline α-amylase of Bacillus subtilis. The former enzyme reacted completely with rabbit antiserum to the same enzyme showing a single precipitin band, and moved toward the cathode in immuno-electrophoresis on agarose at pH 9.6. On the contrary, crystalline α-amylase of Bacillus subtilis migrated to the anode in immunoelectrophoresis at pH 8.6, though it weakly cross-reacted with the antiserum, suggesting that amylases of Bacillus licheniformis and Bacillus subtilis are not identical. In addition, the neutralization test of amylase activity showed that α-amylase of Bacillus licheniformis was much more susceptible to inhibition by the serum than was Bacillus subtilis α-amylase. Each of four species of Bacillus licheniformis α-amylase extracted from the sliced discs after disc electrophoresis on polyacrylamide gel was distinct from the others by showing individual migratory rate, but they were antigenically similar to each other and to the parent enzyme.  相似文献   

3.
α-Amylase was used as a heterologous model protein to investigate the effects of promoters, signal peptides and over-expression of an extra-cytoplasmic molecular chaperone, PrsA lipoprotein, on enhancing the secretion of α-amylase in Bacillus subtilis. Four promoters and six signal peptides were compared, successively, and the highest yield of α-amylase was achieved under the promotion mediated by PAprE, a strong constitutive promoter, and secretion by SPnprE, a signal peptide from B. subtilis. Moreover, under conditions of overexpressed PrsA lipoprotein, the secretion production and activity of α-amylase increased to 2.5-fold. The performance of the recombinant B. subtilis 1A751PL31 was evaluated with a fed-batch fermentation in a 7.5 l fermentor. Optimization of regulatory elements and over-expression of PrsA lipoprotein had a significant effect on enhancing the production of α-amylase in B. subtilis.  相似文献   

4.
An alkalophilic bacterial strain was isolated from the soil sample of Assam, North-East India. This strain was found capable of growing and producing α-amylase at extremely alkaline pH (12.5). By molecular characterization, this bacterium was identified as Bacillus licheniformis strain AS08E. Statistical optimization of media components resulted in 3-fold increase in the production of α-amylase from this bacterium. From this strain, a major extracellular α-amylase of ∼55 kDa was purified to homogeneity with a 14.5-fold increase in its specific activity. The N-terminal sequence of this enzyme showed extensive identity with α-amylases purified from thermostable bacteria. The purified enzyme showed optimum activity at pH 10.0 and 80 °C, and demonstrated stability toward various surfactants, organic solvents, and commercial laundry detergents. The spectroflurometric analysis suggests that the enzyme has a strong binding affinity toward soluble starch. TLC analysis of starch degradation product displays this α-amylase as a high maltose-forming enzyme. The future application of this enzyme in food and detergent industries is highly promising.  相似文献   

5.
6.
A monoclonal antibody against recombinant thermostable α-amylase produced by Escherichia coli was isolated from serum-free medium and immobilized on Sepharose 4B. The adsorption equilibrium between α-amylase and the immobilized immuno-adsorbent showed a Langmuir type isotherm. The breakthrough curve calculated numerically using the averaged volumetric coefficient coincided well with the experimental data. More than 90% of the activity of bound α-amylase could be recovered by eluting with glycine-HCl buffer (pH 2.5). The elution profile at pH 2.5 became sharper with increasing temperature. By using an immuno-affinity column, the recombinant α-amylase produced by E. coli could be purified homogeneously from crude extract enzyme solution with two-step elution.  相似文献   

7.
The structural gene for a thermostable α-amylase from Bacillus stearothermophilus was cloned in plasmids pTB90 and pTB53. It was expressed in both B. stearothermophilus and Bacillus subtilis. B. stearothermophilus carrying the recombinant plasmid produced about fivefold more α-amylase (20.9 U/mg of dry cells) than did the wild-type strain of B. stearothermophilus. Some properties of the α-amylases that were purified from the transformants of B. stearothermophilus and B. subtilis were examined. No significant differences were observed among the enzyme properties despite the difference in host cells. It was found that the α-amylase, with a molecular weight of 53,000, retained about 60% of its activity even after treatment at 80°C for 60 min.  相似文献   

8.
Several tunicamycin resistant mutants were obtained from Bacillussubtilis NA64. One of them, B7 strain produced a 5-fold larger amount of α-amylase than NA64 did. Only the amount of α-amylase, among excreted proteins, was enhanced. Genetic analyses by transformation suggested that a single mutation in B7 induced both resistance to tunicamycin and hyperproductivity of extracellular α-amylase.  相似文献   

9.
An artificially inserted extra peptide (21 amino acid peptide) between the B. subtilis α-amylase signal peptide and the mature thermostable α-amylase was completely cleaved by B. subtilis alkaline protease in vitro. The cleavage to form a mature enzyme was observed between pH 7.5 and 10, but not between pH 6.0 and 6.5, although a similar protease activity toward Azocall was observed between pH 6.0 and 7.5. To analyze the effects of pH on the cleavage, CD spectra at pH 6, 8, and 11 of the NH2-terminally extended thermostable α-amylase were analyzed and the results were compared with those of the mature form of the α-amylase. It is suggesteded that the cleavage of the NH2-terminally extended peptide is controlled by the secondary and tertiary structure of the precursor enzyme. Similar cleavage of different NH2-terminally extended peptides by the alkaline protease was also found in other hybrid thermostable α-amylases obtained.  相似文献   

10.
Using a method consisting of two repetitions of “prophage transformation,” the thermostable α-amylase gene in Bacillus subtilis has been cloned in temperate phage ρ11.  相似文献   

11.
The production of extracellular α-amylase in Bacillus subtilis is probably regulated by many genetic elements, such as amyR, tmrA7, pap, amyB and sacU. Additional genetic elements, C-108 and A-2 for production of the α-amylase were found in D-cycloserine and ampicillin resistant mutants (C108 and A2) of B. subtilis 6160, respectively. Strain C108 increased the production of α-amylase about 5 times and protease about 80 times compared to parental 6160 strain. Strain A2 showed a nearly 6-fold increased α-amylase production.

These genetic elements displayed a synergistic effect with other genetic factors in production of extracellular α-amylase when these elements were transferred by DNA mediated transformation. By stepwise introduction of these and other genetic elements into B. subtilis 6160 by transformation and mutation, strains with higher α-amylase producing activity were obtained. The finally obtained strain, T2N26, produced about 1,500-2,000 times more α-amylase than parental 6160 strain.  相似文献   

12.
B. subtilis α-amylase was immobilized on cyanogen bromide activated carboxymethyl cellulose. The conversion of wheat starchwas carried out at 72°C in a stirred tank by soluble and immobilized α-amylase. The initial reaction rate with immobilized α-amylase was lower than with the soluble enzyme, but after 1 hr immobilized α-amylase produced a higher quantity of reducing sugars than the soluble enzyme. The action pattern of immobilized α-amylase was different from that of the soluble enzyme: immobilized α-amylase produced relatively more glucose and maltose, except at the beginning of conversion. Immobilized α- readily hydrolyze G6. The starch conversion by immobilized α-amylase was not diffusion controlled at a stirring rate of 100-300 rpm.  相似文献   

13.
AmyL, an extracellular α-amylase from Bacillus licheniformis, is resistant to extracellular proteases secreted by Bacillus subtilis during growth. Nevertheless, when AmyL is produced and secreted by B. subtilis, it is subject to considerable cell-associated proteolysis. Cell-wall-bound proteins CWBP52 and CWBP23 are the processed products of the B. subtilis wprA gene. Although no activity has been ascribed to CWBP23, CWBP52 exhibits serine protease activity. Using a strain encoding an inducible wprA gene, we show that a product of wprA, most likely CWBP52, is involved in the posttranslocational stability of AmyL. A construct in which wprA is not expressed exhibits an increased yield of α-amylase. The potential role of wprA in protein secretion is discussed, together with implications for the use of B. subtilis and related bacteria as hosts for the secretion of heterologous proteins.  相似文献   

14.
Summary Potato peel was found to be a superior substrate for solid state fermentation, compared to wheat bran, for the production of α-amylase by two thermophilic isolates of Bacillus licheniformis and Bacillus subtilis. Under optimal conditions, B. licheniformis produced 270 units/ml and 175 units/ml of α-amylase on potato peel and wheat bran, respectively, while the corresponding values for B. subtilis were 600 units/ml and 265 units/ml. The enzyme from B.␣licheniformis was optimally active at 90 °C and pH 9.0, while that from B. subtilis at 60 °C and pH 7.0. The nature of the experimental data permitted excellent polynomial fits, on the basis of which, two master equations, corresponding to the isolated strains, were derived for estimation of enzyme activity for any set of values of temperature, particle size, moisture, and incubation time within the indicated ranges.  相似文献   

15.
Thermostable α-amylase is of great importance in the starch fermentation industry; it is extensively used in the manufacture of beverages, baby foods, medicines, and pharmaceuticals. Bacillus amyloliquefaciens produces thermostable α-amylase; however, production of thermostable α-amylase is limited. Ion-beam implantation is an effective method for mutation breeding in microbes. We conducted ion-beam implantation experiments using two different ions, Ar(+) and N(+), to determine the survival rate of and dose effect on a high α-amylase activity strain of B. amyloliquefaciens that had been isolated from soil samples. N(+) implantation resulted in a higher survival rate than Ar(+) implantation. The optimum implantation dose was 2.08 × 10(15) ions/cm(2). Under this implantation condition, we obtained a thermally and genetically stable mutant α-amylase strain (RL-1) with high enzyme activity for degrading α-amylase. Compared to the parental strain (RL), the RL-1 strain had a 57.1% increase in α-amylase activity. We conclude that ion implantation in B. amyloliquefaciens can produce strains with increased production of thermostable α-amylase.  相似文献   

16.
利用毕赤酵母的质粒载体pPIC9K将极端耐热古菌Pyrococcusfuriosus的超耐热酸性α-淀粉酶(Amy)基因转化到多型汉逊酵母HP-6中,获得重组汉逊酵母。经过甲醇进行诱导,表达产物的酶活性检测和SDS-PAGE电泳,证明α-淀粉酶(Amy)在多型汉逊酵母中利用AOX1启动子和α-因子信号肽有效表达并分泌到胞外。该酶的最适反应温度为90~100℃,最适作用pH为4.0~5.0,较之重组毕赤酵母的最适作用pH还低0.5。此外与毕赤酵母的重组蛋白相比,重组汉逊酵母α-淀粉酶不仅菌株筛选简便、周期短,而且具有更容易筛选到高拷贝转化子以及适用于大规模工业发酵等优点。  相似文献   

17.
Phosphopentomutase (PPM) catalyzes the interconversion of α-d-(deoxy)-ribose 1-phosphate and α-d-(deoxy)-ribose 5-phosphate. We developed a coupled or uncoupled enzymatic assay with an enzyme nucleoside phosphorylase for determining PPM activities on d-ribose 5-phosphate at a broad temperature range from 30 to 90 °C. This assay not only is simple and highly sensitive but also does not require any costly special instrument. Via this technology, an open reading frame TM0167 from a thermophilic bacterium Thermotoga maritima putatively encoding PPM was cloned. The recombinant PPM was overexpressed in Escherichia coli Rosetta. This enzyme has the highest activity at 90 °C. MnCl2 (0.1 mM) and 50 μM α-d-glucose 1,6-bisphosphate are cofactors. The kinetic parameters of Km and kcat are 1.2 mM and 185 s−1 at 90 °C, respectively. The enzyme has a half-life time of up to 156 min at 90 °C. This enzyme is the most active and thermostable PPM reported to date.  相似文献   

18.
Microorganisms-grauling above 60 °C isolated from deep-sea hydrothermal vents were screened for amylolytic activity. Of the 269 strains tested, 70 were found to be positive. Nine archaea (including Thermococcus hydrothermalis AL662 and Thermococcus fumicolans ST557) and one thermophilic bacterium were selected for the determination of thermostability, and the temperature and pH optima of their amylolytic enzymes. Pullulanase, α-glucosidase and α-amylase activities were detected in four archaeal strains (including AL662 and ST557) related to the genus Thermococcus. The anaerobic hyperthermophilic archaeon, Thermococcus hydrothermalis was chosen for the further study of the α-glucosidase activity, and a preliminary characterization of this enzyme was carried out. The small number of highly thermostable α-glucosidases that has been described to date, combined with the very interesting properties of this enzyme, suggest a use for this enzyme in biotechnological processes.  相似文献   

19.
We have introduced the α-amylase gene from Bacillus licheniformis (amy gene) in a non-replicative plasmid which can be conveniently integrated and amplified at a specific site of the B. subtilis chromosome. Although we were able to select spontaneous and stable gene amplification of about 20 integrated copies, the amylase secretion remained very low. A DNA fragment presenting a high promoter activity in B. subtilis was therefore inserted upstream from the amy gene coding sequence, leading to a significant increase of amylase production. However, the amplified structures obtained with this construction were found to contain no more than 12 copies of the amy gene and to be rather unstable when cells were grown under non-selective conditions.  相似文献   

20.
The cloning of α-amylase gene ofS. occidentalis and the construction of starch digestible strain of yeast,S. cerevisiae AS. 2. 1364 with ethanol-tolerance and without auxotrophic markers used in fermentation industry were studied. The yeast/E.coli shuttle plasmid YCEp1 partial library ofS. occidentalis DNA was constructed and α-amylase gene was screened in S.cerevisiae by amylolytic activity. Several transformants with amylolysis were obtained and one of the fusion plasmids had an about 5.0 kb inserted DNA fragment, containing the upstream and downstream sequences of α-amylase gene fromS. occidentalis. It was further confirmed by PCR and sequence determination that this 5.0 kb DNA fragment contains the whole coding sequence of α-amylase. The amylolytic test showed that when this transformant was incubated on plate of YPDS medium containing 1 % glum and 1 % starch at 30°C for 48 h starch degradation zones could be visualized by staining with iodine vapour. α-amylase activity of the culture filtratate is 740–780 mU/mL and PAGE shows that the yeast harboring fusion plasmids efficiently secreted α-amylase into the medium, and the amount of the recombinant α-amylase is more than 12% of the total proteins in the culture filtrate. These results showed that α-amylase gene can be highly expressed and efficiently secreted inS. cerevisiae AS. 2.1364, and the promotor and the terminator of α-amylase gene fromS. occidentalis work well inS. cercvisiac AS. 2.1364.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号