首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mackerel icefish (Champsocephalus gunnari Lönnberg E (1905) The Fishes of the Swedish South Polar Expedition. Wiss. Ergebnisse Schwedische Südpol- Exped. 1901–1903, vol 5, p 37 is widely distributed south of the Antarctic convergence and over shelf areas surrounding sub-Antarctic Islands. In order to evaluate global population structure in this species, we examined DNA sequence variation in four mitochondrial regions and four nuclear genes in icefish from four locations in the Atlantic Ocean sector and one location in the Indian Ocean. Despite small sample sizes, mitochondrial and nuclear gene data indicated the existence of at least three genetically distinct stocks: Heard Island, South Shetland Islands, and the remaining Atlantic populations (Shag Rocks, South Georgia, and Bouvet Island). The mitochondrial and nuclear SNP markers developed here will be useful for more extensive analyses of population structure in this species.  相似文献   

2.
The Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) is bound by its Article II, 3 to follow an ecosystem approach to management. This approach has been extended to the application of a precautionary approach in the late 1980s. In our review, we deal primarily with the science-related aspects of CCAMLR and its development towards an ecosystem approach to the management of the living resources of the Southern Ocean. To assist the Commission in meeting its objectives, as set out in Article II, 3, the Scientific Committee established the CCAMLR Ecosystem Monitoring Programme to detect possible effects of krill fishing on the performance of top-level predators, such as albatrosses, penguins, petrels and fur seals. Fisheries in the Southern Ocean followed the fate of other fisheries worldwide in which target species were depleted to low level one after the other. Currently, two types of fisheries are open: the longline fisheries on Patagonian toothfish (Dissostichus eleginoides) and Antarctic toothfish (Dissostichus mawsoni) and the trawl fisheries on mackerel icefish (Champsocephalus gunnari). Both fisheries are managed in a single-species context, however, with conservation measures in place to protect by-catch species, such as rattails (Macrouridae) and skates and rays (Rajidae). Two major problems still exist in fisheries in the Southern Ocean: the by-catch of birds in longline fisheries primarily in the Indian Ocean and the high level of IUU fishing again in the Indian Ocean. Both, the by-catch of birds and high IUU catches undermine the credibility of CCAMLR to safeguard the marine living resources in the Southern Ocean.  相似文献   

3.
Icefish or white- blooded fish are a family of species unique among vertebrates in that they possess no haemoglobin. With the exception of one species which occurs on the southern Patagonian shelf, icefish live only in the cold-stable and oxygen-rich environment of the Southern Ocean. It is still questionable how old icefish are in evolutionary terms: they may not be older than 6 Ma, i.e. they evolved well after the Southern Ocean started to cool down or they are 15–20 Ma old and started to evolve some time after the formation of the Antarctic Circumpolar Current. Individuals of most icefish species with the exception of species of the genus Champsocephalus have been found down to 700–800 m depth, a few even down to more than 1,500 m. Icefish have been shown to present organ-level adaptations on different levels to compensate for the ‘disadvantages’ of lacking respiratory pigments. These include a low metabolic rate, well perfused gills, increased blood volume, increased cardiac output, cutaneous uptake of oxygen, increased blood flow with low viscosity, enlarged capillaries, large heart, and increased skin vascularity. Biological features, such as reproduction and growth, are not unique and are comparable to other notothenioids living in the same environment. Icefish produce large yolky eggs which have a diameter of more than 4 mm in most species. Consequently, the number of eggs produced is comparatively small and exceeds 10,000–20,000 eggs in only a few cases. With the exception of species of the genus Champsocephalus which mature at an age of 3 to 4 years, icefish do not attain maturity before they are 5–8 years old. Spawning period of most icefish species is autumn–winter. The incubation period spans from 2 to 3 months in the north of the Southern Ocean to more than 6 months close to the continent. Growth in icefish to the extent it is known is fairly rapid. They grow 6–10 cm in length per annum before they reach spawning maturity. Icefish feed primarily on krill and fish. Some icefish species were abundant enough to be exploited by commercial fisheries, primarily in the 1970s and 1980s with Champsocephalus gunnari as the main target species. Most stocks of this species had been overexploited by the beginning of the 1990s, some had further declined due to natural causes. Other species taken as by-catch species in fisheries were Chaenocephalus aceratus, Pseudochaenichthys georgianus, and Chionodraco rastrospinosus. Chaenodraco wilsoni was the only species exploited on a commercial scale in the high-Antarctic. Part I was published in the preceding issue of Polar Biology. DOI 10.1007/s00300-005-0019-z.  相似文献   

4.
Icefish or white-blooded fish are a family of species, unique among vertebrates in that they possess no haemoglobin. With the exception of one species which occurs on the southern Patagonian shelf, icefish live only in the cold-stable and oxygen-rich environment of the Southern Ocean. It is still questionable how old icefish are in evolutionary terms: they may not be older than 6 Ma, i.e. they evolved well after the Southern Ocean started to cool down or they are 15–20 Ma old and started to evolve some time after the formation of the Antarctic Circumpolar Current. Individuals of most icefish species with the exception of species of the genus Champsocephalus have been found down to 700–800 m depth, a few even down to more than 1,500 m. Icefish have been shown to present organ-level adaptations on different levels to compensate for the ‘disadvantages’ of lacking respiratory pigments. These include a low metabolic rate, well perfused gills, increased blood volume, increased cardiac output, cutaneous uptake of oxygen, increased blood flow with low viscosity, enlarged capillaries, large heart, and increased skin vascularity. Biological features, such as reproduction and growth, are not unique and are comparable to other notothenioids living in the same environment. Icefish produce large yolky eggs which have a diameter of more than 4 mm in most species. Consequently, the number of eggs produced is comparatively small and exceeds 10,000–20,000 eggs in only a few cases. With the exception of species of the genus Champsocephalus which mature at an age of 3 to 4 years, icefish do not attain maturity before they are 5–8 years old. Spawning period of most icefish species is autumn-winter. The incubation period spans from 2 to 3 months in the north of the Southern Ocean to more than 6 months close to the continent. Growth in icefish to the extent it is known is fairly rapid. They grow 6–10 cm in length per annum before they reach spawning maturity. Icefish feed primarily on krill and fish. Some icefish species were abundant enough to be exploited by commercial fisheries, primarily in the 1970s and 1980s with Champsocephalus gunnari as the main target species. Most stocks of this species had been overexploited by the beginning of the 1990s, some had further declined due to natural causes. Other species taken as by-catch species in fisheries were Chaenocephalus aceratus, Pseudochaenichthys georgianus, and Chionodraco rastrospinosus. Chaenodraco wilsoni was the only species exploited on a commercial scale in the high-Antarctic. Part II will be published in the following issue. DOI 10.1007/s00300-005-0020-6.  相似文献   

5.
In recent years, a large number of individuals of the species Latimeria chalumnae, one of the living fossil coelacanths, have been landed off the coast of Tanzania. Although L. chalumnae specimens have also been landed at other localities in the western Indian Ocean, so far, viable populations of this species have been identified only at two localities, Comoros and South Africa. Therefore, the recent active catch off Tanzania suggests a new habitat for L. chalumnae. To examine the genetic background of the Tanzanian fish, we analyzed complete mtDNA sequences of two Tanzanian individuals (Kigombe-9 and Songo Mnara-1) collected from the north and south coasts of Tanzania. Using the recently reported criteria for six haplotypes established in a population genetic study for coelacanths living in the western Indian Ocean [Schartl, M., Hornung, U., Hissman, K., Schauer, J., Fricke, H., 2005. Relatedness among east African coelacanths. Nature 435, 901.], we characterized Songo Mnara-1 as haplotype 1 and Kigombe-9 as haplotype 5. We suggest that the Songo Mnara specimen is a member of the Comoran group, but was swept away by the South Equatorial current. The individual from Kigombe may be a member of an undiscovered population that exists near the boundary between Tanzania and Kenya. Further analysis using more than 19 individuals recently captured off the north coast of Tanzania will reveal whether a new population exists there. Our sequence data suggest additional variable sites in the mtDNA sequence that may define the population structure of coelacanths in the western Indian Ocean and also raise the possibility that the previously published Comoran coelacanth mtDNA sequence contains several critical errors including base changes and indels.  相似文献   

6.

BACKGROUND:

In order to understand how selection is operating in the Gowda population, the index of opportunity for selection was calculated and the present findings were compared with some related findings from other South Indian (SI) populations.

MATERIALS AND METHODS:

Crow (1958) and the modified method by Johnston and Kensinger (1971) were used for the present purpose.

RESULTS AND DISCUSSION:

The index of total selection intensity (I) was found to be moderate taking into consideration the range for many Indian populations. Considering certain differences in fertility and mortality heritable, it appears that natural selection play an important role in shaping the genetic constitution of the Gowda population. Analysis of data indicates that the index due to fertility seems to contribute more towards selection than mortality. This trend might be because of better living condition and health-care system among the Gowdas which have a positive impact on the lower contribution of mortality for the evolution mechanism of the Gowda population through natural selection.  相似文献   

7.
Aim Climatic changes and fluctuations in the past have strongly influenced the distribution of animal and plant species. Such fluctuations are also reflected in the patterns of genetic diversity on both local and global scales. The genetic pattern of the pearly heath butterfly, Coenonympha arcania, was used to evaluate the genetic differentiation of isolated (in north‐western Europe), peripheral (in north‐eastern Europe) and central (in southern Europe) populations in the context of post‐glacial distributional changes of the species. Location Europe (Sweden, Germany, the Baltic states, Italy, Slovenia, Hungary, Romania, Bulgaria). Thus, samples were collected from large parts of the species’ distribution representing the three categories mentioned above. Methods We analysed 18 loci of 569 individuals from 28 populations by allozyme electrophoresis. We used both individual‐based and population‐based analyses, including F‐statistics, various clustering methods and Markov chain Monte Carlo simulations. Results All loci, except Fum, were polymorphic. The mean FST for all samples was 0.18. The mean genetic distance among populations was 0.046. Two major genetic lineages were distinguished. Populations from the centre of the distributional range in southern Europe and the northern periphery of the distributional range differed significantly in their level of genetic variability. The central populations of south‐eastern Europe showed high levels of genetic diversity and no differentiation among populations. Main conclusions Most probably the two major genetic lineages evolved during glacial isolation in two disjunct Mediterranean refugia. The lack of genetic differentiation across south‐eastern Europe implies a continuous Würm ice age distribution in this area, thus supporting the functional existence of steppe forests throughout this region. The peripheral‐isolated populations in Sweden seem to have suffered from one or more severe bottlenecks, resulting in substantial genetic impoverishment. The peripheral‐connected eastern Baltic populations, on the other hand, are affected by post‐glacial and possibly recurrent gene flow from more central parts of the distribution.  相似文献   

8.
Both mtDNA variation and allozyme data demonstrate that geographic groupings of different color morphs of the starfish Linckia laevigata are congruent with a genetic discontinuity between the Indian and Pacific Oceans. Populations of L. laevigata sampled from Thailand and South Africa, where an orange color morph predominates, were surveyed using seven polymorphic enzyme loci and restriction fragment analysis of a portion of the mtDNA including the control region. Both allozyme and DNA data demonstrated that these populations were significantly genetically differentiated from each other and to a greater degree from 23 populations throughout the West Pacific Ocean, where a blue color morph is predominant. The genetic structure observed in L. laevigata is consistent with traditional ideas of a biogeographic boundary between the Indian and Pacific Oceans except that populations several hundreds kilometers off the coast of north Western Australia (Indian Ocean) were genetically similar to and had the same color morphs as Pacific populations. It is suggested that gene flow may have continued (possibly at a reduced rate) between these offshore reefs in Western Australia and the West Pacific during Pleistocene falls in sea level, but at the same time gene flow was restricted between these Western Australian populations and those in both Thailand and South Africa, possibly by upwellings. The molecular data in this study suggest that vicariant events have played an important role in shaping the broadscale genetic structure of L. laevigata. Additionally, greater genetic structure was observed among Indian Ocean populations than among Pacific Ocean populations, probably because there are fewer reefs and island archipelagos in the Indian Ocean than in the Pacific, and because present-day surface ocean currents do not facilitate long-distance dispersal.  相似文献   

9.
Zoogeography of the coral reef fishes of the Socotra Archipelago   总被引:1,自引:0,他引:1  
Fish communities and habitats were studied at the Socotra archipelago (Gulf of Aden, ≈12°N 54°E). Extensive and unexpected hermatypic coral communities were recorded, at the centre of a 2200 km gap in knowledge of species and habitat distributions which coincides with a change from a western Indian Ocean coral reef fauna to an Arabian one. The fish assemblage associated with the Socotra archipelago corals is predominantly south Arabian. An east African influence, minimal on the mainland coasts of Arabia, is more evident here, and results in previously unrecorded sympatry between Arabian endemic species and their Indian Ocean sister taxa. A study of distributions of Chaetodontidae (butterflyfishes) in the north-western Indian Ocean reveals a number of distinct patterns, with a trend for species replacement along a track from the northern Red Sea to the Indian Ocean. A major feature of the reef fish zoogeography of the region is found to be a distinct south Arabian area, characterized by a 'pseudo-high latitude effect' which results from seasonal cold water upwelling along the Arabian sea coasts of Yemen and Oman and the Indian Ocean coast of Somalia. This south Arabian feature is consistent across a wide range of fish families. It is most pronounced in Oman and Yemen, and although it is the dominant influence at Socotra it is slightly 'diluted' here by the east African influence. The south Arabian area wholly or partly accounts for most of the major marine zoogeographic features around Arabia, and is the principal feature fragmenting Arabian coastal fish assemblages, and separating them from those of the wider Indo-west Pacific.  相似文献   

10.
The population structure of the giant mottled eel, Anguilla marmorata, was investigated with mitochondrial and microsatellite DNA analyses using 449 specimens from 13 localities throughout the species range. Control region F-statistics indicated the North Pacific (Japan, Taiwan, Philippines, Sulawesi), South Pacific (Tahiti, Fiji, New Caledonia, Papua New Guinea), eastern Indian Ocean (Sumatra), western Indian Ocean (Réunion, Madagascar), Ambon, and Guam regions were significantly different (Phi(ST) = 0.131-0.698, P < 0.05) while only a few differences were observed between localities within the South Pacific. These regions were roughly clustered in the neighbour-joining tree, although Ambon individuals were mainly divided into North and South Pacific groups. Analysis with eight microsatellite loci showed almost identical results to those of the control region, except no genetic difference was observed between the western and eastern Indian Ocean (F(ST) = 0.009, P > 0.05). The Bayesian cluster analysis of the microsatellite data detected two genetic groups. One included four North Pacific localities, and the other included eight localities in the South Pacific, Indian Ocean, and Guam, but Ambon individuals were evenly assigned to these two groups. These results showed that A. marmorata has four genetically different populations (North Pacific, South Pacific, Indian Ocean, Guam region). The North Pacific population is fully panmictic whereas the South Pacific and Indian Ocean populations have a metapopulation structure. Interestingly, Guam was suggested to be inhabited by a reproductive population restricted to that region, and the individuals from the North and South Pacific populations co-exist in Ambon.  相似文献   

11.
Extant coelacanths (Latimeria chalumnae) were first discovered in the western Indian Ocean in 1938; in 1998, a second species of coelacanth, Latimeria menadoensis, was discovered off the north coast of Sulawesi, Indonesia, expanding the known distribution of the genus across the Indian Ocean Basin. This study uses ecological niche modeling techniques to estimate dimensions of realized niches of coelacanths and generate hypotheses for additional sites where they might be found. Coelacanth occurrence information was integrated with environmental and oceanographic data using the Genetic Algorithm for Rule-set Production (GARP) and a maximum entropy algorithm (Maxent). Resulting models were visualized as maps of relative suitability of sites for coelacanths throughout the Indian Ocean, as well as scatterplots of ecological variables. Our findings suggest that the range of coelacanths could extend beyond their presently known distribution and suggests alternative mechanisms for currently observed distributions. Further investigation into these hypotheses could aid in forming a more complete picture of the distributions and populations of members of genus Latimeria, which in turn could aid in developing conservation strategies, particularly in the case of L. menadoensis.  相似文献   

12.
The lipid content, fatty acid composition and calorific value of seven species of mesopelagic deep-sea fish of the family Myctophidae and the mackerel icefish, Champsocephalus gunnari, important in the diet of Southern Ocean marine predators, are presented. Fish were sampled at the Kerguelen Plateau (KP) and Macquarie Ridge (MR) in the Indian and Pacific sectors of the Southern Ocean respectively, to examine geographic variation in lipid compositon. All species of myctophid from KP and Electrona antarctica from MR were high in lipid content (6-18% wet mass), particularly Gymnoscopelus nicholsi (18%) and E. antarctica (15%). The mackerel icefish, and G. fraseri and Protomyctophum tenisoni from MR were generally lower in lipid content (3-5%) and varied significantly in fatty acid composition from KP species. KP myctophids were high in calorific content (9.3 kJ g-1 wet mass) when compared with icefish (5.4 kJ g-1 wet mass) and other published values for prey items of marine predators such as squid (1.7-4.5 kJ g-1). KP myctophids were distinguished from each other and from C. gunnari and MR specimens by cluster and discriminant function analysis using six fatty acids (16:0, 18:1̩, 20:1̩, 22:1Ὃ, 20:5̣, 22:6̣). Findings presented here highlight trophic links between high-latitude fish and their prey and emphasise the importance of myctophids as a significant energy source for marine predators foraging in the Polar Frontal Zone.  相似文献   

13.
Monoterpene composition of the shoot cortical oleoresin from a number of centrally-located natural stands of Lodgepole pine was compared with that from populations derived from a variety of more peripheral parts of the natural range. The chemical diversity in interior populations was high; over much of the periphery it was much lower but locally in extreme north and north-eastern areas it became very high, a feature associated with possible glacial refugia and with recent introgressive influences from Jack pine. There is evidence for a more generally pervasive and probably more ancient interaction between, or progenitor of, the two species over a large part of the range, particularly in south-central British Columbia. The chemotypic distributional data are discusssd in relation to the recent history of the species.  相似文献   

14.
Monitoring of coral reefs has become a major tool for understanding how they are changing, and for managing them in a context of increasing degradation of coastal ecosystems. The Global Coral Reef Monitoring Network (GCRMN) has near-global coverage, but there are few remote sites free of direct human impact that can serve as reference sites. This study provides baseline data for the French Iles Eparses in the Mozambique Channel, Western Indian Ocean (WIO), whose coral reefs are little known owing to their limited accessibility, and have been free from fishing pressure for over 20 years. Surveys of coral reef health and fish community structure were undertaken at four of the islands (Europa, Bassas da India, Juan de Nova and Glorieuses) in 2011–2013. Monitoring was conducted using standardized GCRMN methods for benthos and fish communities, at the highest taxonomic level. Benthic cover showed a latitudinal gradient, with higher coral cover and conversely lower algae cover (60% and 14% respectively) in the south of the Mozambique Channel. This could be due to the geomorphology of the islands, the latitudinal temperature gradient, and/or the history of chronic stress and bleaching events during the last decades. Fish also showed a latitudinal gradient with higher diversity in the north, in a center of diversity for the western Indian Ocean already recognized for corals. An exceptional biomass fish was recorded (approximately 3500 kg/ha excluding sharks, compared to a maximum of 1400 kg/ha elsewhere in the WIO). The presence of large predators and sharks in all the islands as well as the absence of fleshy benthic algae were indicators of the good health of the reef systems. Nevertheless, these islands are beginning to experience illegal fishing, particularly in the north of the Mozambique Channel, demonstrating their vulnerability to exploitation and the need to protect them as reference sites for coral reef studies, including of climate change impacts, for the region and globally.  相似文献   

15.
Indian oil sardines, commercially and ecologically important pelagic fishes in Indian waters have not been the focus of major genetic studies as compared to their counter parts in Atlantic and Pacific oceans in spite of several reports suggesting stock complexity and intraspecific diversity. Hence, we investigated the genetic stock structure of Indian oil sardine, Sardinella longiceps using microsatellite markers by collecting a total of 768 individuals from eight locations along the Indian coast and one from Gulf of Oman over a 2 year period (2013–2015). Six polymorphic microsatellite markers revealed significant genetic differentiation between populations with the highest FST value (0.055) between Oman and Indian coastline. Within the Indian coastline another major subdivision between Mumbai & Mangalore vs. other regions was detected (FST value 0.047) which was also confirmed in Barrier analysis with the presence of two strong barriers between these eco-regions. There exist pronounced differences in oceanographic and environmental features between Gulf of Oman, Western Indian Ocean and Eastern Indian Ocean (Bay of Bengal) which may act as barriers for effective dispersal and gene flow resulting in genetic differentiation. Even though, the samples collected from Calicut, Kollam, Trivandrum, Chennai and Vizag showed the presence of admixed genotypes, the possible presence of distinct populations in some regions was evident in Bayesian analysis which needs to be confirmed further using more widespread sampling design and powerful markers. The present study provided insights into the biocomplexity and intra-specific diversity of Indian oil sardine populations, which needs to be preserved for maintaining resilience of these important fishes to climate change and habitat alterations in the Indian Ocean.  相似文献   

16.
The distributional patterns of the seven species of Rhizoprionodon were analysed using the panbiogeographical method of track analysis. The individual tracks of Rhizoprionodon suggest that the genus is mainly an Indian–Atlantic Ocean group. Five generalized tracks were found: (1) Caribbean, defined by R. porosus and R. terraenovae; (2) eastern coast of South America, defined by R. porosus and R. lalandei; (3) Indian Ocean, defined by R. acutus and R. oligolinx; (4) north‐western Australia, defined by R. acutus, R. oligolinx and R. taylori; (5) north‐north‐eastern Australia, defined by R. acutus and R. taylori. Only R. longurio was not included in any generalized track, and its distribution is restricted to the eastern Pacific Ocean. Two biogeographical nodes were found at the intersection of the generalized tracks 1 and 2 (Caribbean Sea) and generalized tracks 4 and 5 (north Australia). The generalized tracks overlap with those found in several unrelated marine taxa. Overall, the generalized tracks are associated with warm currents. The biogeographical nodes found (Caribbean and Australian) are coincident with the global distribution of mangroves.  相似文献   

17.
Antitropical distribution and evolution in the Indo-West Pacific Ocean   总被引:1,自引:0,他引:1  
Antitropical distributions of continental shelf, Indo-West Pacific species are probably not due to transgression of the tropics during the glacial periods, isothermic submergence, island integration, rising Neogene temperatures, or the Mesozoic dispersal of fragments from a Pacific continental mass. Characteristics of common antitropical patterns, plus information from systematic works on a variety on a variety of animal and plant groups, indicate that the long discarded "relict theory" of Theel (1885) appears to best fit the evidence, for it provides a mechanism whereby antitropical distribution may be brought about. The relict theory is compatible with the concept that the East Indies part of the Indo-West Pacific has been functioning as a center of evolutionary origin. It suggests that antitropical and associated disjunct patterns are produced as an older species, that has spread out to occupy a broad range, loses ground and gradually becomes supplanted by a younger species that had subsequently evolved in the East Indies. As this process goes on, the older species becomes restricted to a few isolated localities on the fringe of its original range. These isolates are often found to the north and south of the equatorial region but may include relict populations at the western edge of the Indian Ocean.  相似文献   

18.
Tropical cyclones are renowned for their destructive nature and are an important feature of marine and coastal tropical ecosystems. Over the last 40 years, their intensity, frequency and tracks have changed, partly in response to ocean warming, and future predictions indicate that these trends are likely to continue with potential consequences for human populations and coastal ecosystems. However, our understanding of how tropical cyclones currently affect marine biodiversity, and pelagic species in particular, is limited. For seabirds, the impacts of cyclones are known to be detrimental at breeding colonies, but impacts on the annual survival of pelagic adults and juveniles remain largely unexplored and no study has simultaneously explored the direct impacts of cyclones on different life‐history stages across the annual life cycle. We used a 20‐year data set on tropical cyclones in the Indian Ocean, tracking data from 122 Round Island petrels and long‐term capture–mark–recapture data to explore the impacts of tropical cyclones on the survival of adult and juvenile (first year) petrels during both the breeding and migration periods. The tracking data showed that juvenile and adult Round Island petrels utilize the three cyclone regions of the Indian Ocean and were potentially exposed to cyclones for a substantial part of their annual cycle. However, only juvenile petrel survival was affected by cyclone activity; negatively by a strong cyclone in the vicinity of the breeding colony and positively by increasing cyclone activity in the Northern Indian Ocean where they spend the majority of their first year at sea. These contrasting effects raise the intriguing prospect that the projected changes in cyclones under current climate change scenarios may have positive as well as the more commonly perceived negative impacts on marine biodiversity.  相似文献   

19.
Hybrid zones are natural laboratories for investigating the dynamics of gene flow, reproductive isolation, and speciation. A predominant marine hybrid (or suture) zone encompasses Christmas Island (CHR) and Cocos (Keeling) Islands (CKE), where 15 different instances of interbreeding between closely related species from Indian and Pacific Oceans have been documented. Here, we report a case of hybridization between genetically differentiated Pacific and Indian Ocean lineages of the three‐spot dascyllus, Dascyllus trimaculatus (Rüppell, 1829). Field observations indicate there are subtle color differences between Pacific and Indian Ocean lineages. Most importantly, population densities of color morphs and genetic analyses (mitochondrial DNA and SNPs obtained via RADSeq) suggest that the pattern of hybridization within the suture zone is not homogeneous. At CHR, both color morphs were present, mitochondrial haplotypes of both lineages were observed, and SNP analyses revealed both pure and hybrid genotypes. Meanwhile, in CKE, the Indian Ocean color morphs were prevalent, only Indian Ocean mitochondrial haplotypes were observed, and SNP analysis showed hybrid individuals with a large proportion (~80%) of their genotypes assigning to the Indian Ocean lineage. We conclude that CHR populations are currently receiving an influx of individuals from both ocean basins, with a greater influence from the Pacific Ocean. In contrast, geographically isolated CKE populations appear to be self‐recruiting and with more influx of individuals from the Indian Ocean. Our research highlights how patterns of hybridization can be different at scales of hundreds of kilometers, due to geographic isolation and the history of interbreeding between lineages.  相似文献   

20.
The Giant African Land Snail, Achatina ( = Lissachatina) fulica Bowdich, 1822, is a tropical crop pest species with a widespread distribution across East Africa, the Indian subcontinent, Southeast Asia, the Pacific, the Caribbean, and North and South America. Its current distribution is attributed primarily to the introduction of the snail to new areas by Man within the last 200 years. This study determined the extent of genetic diversity in global A. fulica populations using the mitochondrial 16S ribosomal RNA gene. A total of 560 individuals were evaluated from 39 global populations obtained from 26 territories. Results reveal 18 distinct A. fulica haplotypes; 14 are found in East Africa and the Indian Ocean islands, but only two haplotypes from the Indian Ocean islands emerged from this region, the C haplotype, now distributed across the tropics, and the D haplotype in Ecuador and Bolivia. Haplotype E from the Philippines, F from New Caledonia and Barbados, O from India and Q from Ecuador are variants of the emergent C haplotype. For the non-native populations, the lack of genetic variation points to founder effects due to the lack of multiple introductions from the native range. Our current data could only point with certainty to the Indian Ocean islands as the earliest known common source of A. fulica across the globe, which necessitates further sampling in East Africa to determine the source populations of the emergent haplotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号