首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
3.
Impairment of glucose‐stimulated insulin secretion (GSIS) caused by glucolipotoxicity is an essential feature in type 2 diabetes mellitus (T2DM). Palmitate and eicosapentaenoate (EPA), because of their lipotoxicity and protection effect, were found to impair or restore the GSIS in beta cells. Furthermore, palmitate was found to up‐regulate the expression level of sterol regulatory element‐binding protein (SREBP)‐1c and down‐regulate the levels of pancreatic and duodenal homeobox (Pdx)‐1 and glucagon‐like peptide (GLP)‐1 receptor (GLP‐1R) in INS‐1 cells. To investigate the underlying mechanism, the lentiviral system was used to knock‐down or over‐express SREBP‐1c and Pdx‐1, respectively. It was found that palmitate failed to suppress the expression of Pdx‐1 and GLP‐1R in SREBP‐1c‐deficient INS‐1 cells. Moreover, down‐regulation of Pdx‐1 could cause the low expression of GLP‐1R with/without palmitate treatment. Additionally, either SREBP‐1c down‐regulation or Pdx‐1 over‐expression could partially alleviate palmitate‐induced GSIS impairment. These results suggested that sequent SREBP‐1c‐Pdx‐1‐GLP‐1R signal pathway was involved in the palmitate‐caused GSIS impairment in beta cells. J. Cell. Biochem. 111: 634–642, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Using an automated cell counting technique developed previously (Case et al., Ecology and Evolution 2014; 4: 3494), we explore the lifespan effects of lac‐1, a ceramide synthase gene paralogous to lag‐1 in Neurospora crassa in conjunction with the band bd (ras‐1) gene. We find that the replicative lifespan of a lac‐1KO bd double mutants is short, about one race tube cycle, and this double mutant lacks a strong ~21‐hr clock cycle as shown by race tube and fluorometer analysis of fluorescent strains including lac‐1KO. This short replicative lifespan phenotype is contrasted with a very long estimated chronological lifespan for lac‐1KO bd double mutants from 247 to 462 days based on our regression analyses on log viability, and for the single mutant lac‐1KO, 161 days. Both of these estimated lifespans are much higher than that of previously studied WT and bd single mutant strains. In a lac‐1 rescue and induction experiment, the expression of lac‐1+ as driven by a quinic acid‐dependent promoter actually decreases the median chronological lifespan of cells down to only 7 days, much lower than the 34‐day median lifespan found in control bd conidia also grown on quinic acid media, which we interpret as an effect of balancing selection acting on ceramide levels based on previous findings from the literature. Prior work has shown phytoceramides can act as a signal for apoptosis in stressed N. crassa cells. To test this hypothesis of balancing selection on phytoceramide levels, we examine the viability of WT, lag‐1KO bd, and lac‐1KO bd strains following the dual stresses of heat and glycolysis inhibition, along with phytoceramide treatments of different dosages. We find that the phytoceramide dosage–response curve is altered in the lag‐1KO bd mutant, but not in the lac‐1KO bd mutant. We conclude that phytoceramide production is responsible for the previously reported longevity effects in the lag‐1KO bd mutant, but a different ceramide may be responsible for the longevity effect observed in the lac‐1KO bd mutant.  相似文献   

5.
6.
Low insulin‐like growth factor‐1 (IGF‐1) signaling is associated with improved longevity, but is paradoxically linked with several age‐related diseases in humans. Insulin‐like growth factor‐1 has proven to be particularly beneficial to the brain, where it confers protection against features of neuronal and cognitive decline. While aging is characterized by central insulin resistance in the face of hyperinsulinemia, the somatotropic axis markedly declines in older humans. Thus, we hypothesized that increasing IGF‐1 in the brain may prove to be a novel therapeutic alternative to overcome central insulin resistance and restore whole‐body insulin action in aging. Utilizing hyperinsulinemic‐euglycemic clamps, we show that old insulin‐resistant rats with age‐related declines in IGF‐1 level demonstrate markedly improved whole‐body insulin action, when treated with central IGF‐1, as compared to central vehicle or insulin (< 0.05). Furthermore, central IGF‐1, but not insulin, suppressed hepatic glucose production and increased glucose disposal rates in aging rats (< 0.05). Taken together, IGF‐1 action in the brain and periphery provides a ‘balance’ between its beneficial and detrimental actions. Therefore, we propose that strategies aimed at ‘tipping the balance’ of IGF‐1 action centrally are the optimal approach to achieve healthy aging and longevity in humans.  相似文献   

7.
Epilepsy, one of the most frequent neurological disorders, is still insufficiently treated in about 30% of patients. As a consequence, identification of novel anticonvulsant agents is an important issue in medicinal chemistry. In the present article we report synthesis, physicochemical, and pharmacological evaluation of N‐trans‐cinnamoyl derivatives of R and S‐2‐aminopropan‐1‐ol, as well as R and S‐2‐aminobutan‐1‐ol. The structures were confirmed by spectroscopy and for derivatives of 2‐aminopropan‐1‐ols the configuration was evaluated by means of crystallography. The investigated compounds were tested in rodent models of seizures: maximal electroshock (MES) and subcutaneous pentetrazol test (scPTZ), and also in a rodent model of epileptogenesis: pilocarpine‐induced status prevention. Additionally, derivatives of 2‐aminopropan‐1‐ols were tested in benzodiazepine‐resistant electrographic status epilepticus rat model as well as in vitro for inhibition of isoenzymes of cytochrome P450. All of the tested compounds showed promising anticonvulsant activity in MES. For R(–)‐(2E)‐N‐(1‐hydroxypropan‐2‐yl)‐3‐phenylprop‐2‐enamide pharmacological parameters were found as follows: ED50 = 76.7 (68.2–81.3) mg/kg (MES, mice i.p., time = 0.5 h), ED50 = 127.2 (102.1–157.9) mg/kg (scPTZ, mice i.p., time = 0.25 h), TD50 = 208.3 (151.4–230.6) mg/kg (rotarod, mice i.p., time = 0.25 h). Evaluation in pilocarpine status prevention proved that all of the reported compounds reduced spontaneous seizure activity and act as antiepileptogenic agents. Both enantiomers of 2‐aminopropan‐1‐ols did not influence cytochrome P450 isoenzymes activity in vitro and are likely not to interact with CYP substrates in vivo. Chirality 28:482–488, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
9.
10.
Five new geminal aminocycloalkanephosphonic acids ( 4 – 8 ) containing both an aromatic ring and a cycloalkane ring were synthesized and evaluated as potential inhibitors of buckwheat phenylalanine ammonia‐lyase (PAL). Within the set of compounds which are related to 2‐aminoindane‐2‐phosphonic acid (AIP, 3 ), a known powerful inhibitor of PAL, racemic 1‐aminobenzocyclobutene‐1‐phosphonic acid ( 4 ), was six times weaker than AIP as an in vitro inhibitor of buckwheat PAL, but six times stronger than AIP as an in vivo inhibitor of phenylalanine‐derived anthocyanin synthesis in buckwheat.  相似文献   

11.
3Z‐3‐[(1H‐pyrrol‐2‐yl)‐methylidene]‐1‐(1‐piperidinylmethyl)‐1,3‐2H‐indol‐2‐one (Z24), a synthetic anti‐angiogenic compound, inhibits the growth and metastasis of certain tumors. Previous works have shown that Z24 induces hepatotoxicity in rodents. We examined the hepatotoxic mechanism of Z24 at the protein level and looked for potential biomarkers. We used 2‐DE and MALDI‐TOF/TOF MS to analyze alternatively expressed proteins in rat liver and plasma after Z24 administration. We also examined apoptosis in rat liver and measured levels of intramitochondrial ROS and NAD(P)H redox in liver cells. We found that 22 nonredundant proteins in the liver and 11 in the plasma were differentially expressed. These proteins were involved in several important metabolic pathways, including carbohydrate, lipid, amino acid, and energy metabolism, biotransformation, apoptosis, etc. Apoptosis in rat liver was confirmed with the terminal deoxynucleotidyl transferase dUTP‐nick end labeling assay. In mitochondria, Z24 increased the ROS and decreased the NAD(P)H levels. Thus, inhibition of carbohydrate aerobic oxidation, fatty acid β‐oxidation, and oxidative phosphorylation is a potential mechanism of Z24‐induced hepatotoxicity, resulting in mitochondrial dysfunction and apoptosis‐mediated cell death. In addition, fetub protein and argininosuccinate synthase in plasma may be potential biomarkers of Z24‐induced hepatotoxicity.  相似文献   

12.
Little is known about how adhesion molecules on APCs accumulate at immunological synapses. We show here that ICAM‐1 on APCs is continuously internalized and rapidly recycled back to the interface after antigen‐priming T‐cell contact. The internalization rate is high in APCs, including Raji B cells and dendritic cells, but low in endothelial cells. Internalization is significantly reduced by inhibitors of Na+/H+ exchangers (NHEs), suggesting that members of the NHE‐family regulate this process. Once internalized, ICAM‐1 is co‐localized with MHC class II in the polarized recycling compartment. Surprisingly, not only ICAM‐1, but also MHC class II, is targeted to the immunological synapse through LFA‐1‐dependent adhesion. Cytosolic ICAM‐1 is highly mobile and forms a tubular structure. Inhibitors of microtubule or actin polymerization can reduce ICAM‐1 mobility, and thereby block accumulation at immunological synapses. Membrane ICAM‐1 also moves to the T‐cell contact zone, presumably through an active, cytoskeleton‐dependent mechanism. Collectively, these results demonstrate that ICAM‐1 can be transported to the immunological synapse through the recycling compartment. Furthermore, the high‐affinity state of LFA‐1 on T cells is critical to induce targeted movements of both ICAM‐1 and MHC class II to the immunological synapse on APCs. J. Cell. Biochem. 111: 1125–1137, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
14.
15.
The present study reports the convenient synthesis, spectroscopic characterization, bio‐assays and computational evaluation of a novel series of N‐acyl‐1H‐imidazole‐1‐carbothioamides. The screened derivatives displayed excellent antioxidant activity, moderate antibacterial and antifungal potential. The screened derivatives were found to be highly biocompatible against hRBCs. Molecular docking ascertained the mechanism and mode of action towards the molecular target delineating that ligands and complexes were stabilized at the active site by electrostatic and hydrophobic forces in accordance to the corresponding experimental results. Docking simulation provided additional information about the possibilities of inhibitory potential of the compounds against RNA. Computational evaluation predicted that N‐acyl‐1H‐imidazole‐1‐carbothioamides 5c and 5g can serve as potential surrogates for hit to lead generation and design of novel antioxidant and antibacterial agents.  相似文献   

16.
Differently from most transformed cells, cutaneous melanoma expresses the pleiotropic factor thrombospondin‐1 (TSP‐1). Herein, we show that TSP‐1 (RNA and protein), undetectable in four cultures of melanocytes and a RGP melanoma, was variously present in 13 cell lines from advanced melanomas or metastases. Moreover, microarray analysis of 55 human lesions showed higher TSP‐1 expression in primary melanomas and metastases than in common and dysplastic nevi. In a functional enrichment analysis, the expression of TSP‐1 correlated with motility‐related genes. Accordingly, TSP‐1 production was associated with melanoma cell motility in vitro and lung colonization potential in vivo. VEGF/VEGFR‐1 and FGF‐2, involved in melanoma progression, regulated TSP‐1 production. These factors were coexpressed with TSP‐1 and correlated negatively with Slug (SNAI2), a cell migration master gene implicated in melanoma metastasis. We conclude that TSP‐1 cooperates with FGF‐2 and VEGF/VEGFR‐1 in determining melanoma invasion and metastasis, as part of a Slug‐independent motility program.  相似文献   

17.
18.
Insulin‐like growth factor (IGF)‐binding protein‐1 (IGFBP‐1), the main secretory protein of decidua that binds to IGFs and has been shown to inhibit or stimulate IGFs' bioactivities. Polymerization, one of the posttranslational modifications of IGFBP‐1, has been shown to lead to loss of inhibiting effect of IGFBP‐1 on IGF‐I actions. The current studies were undertaken to elucidate the effects of steroid hormones on IGFBP‐1 polymerization in trophoblast cell cultures. Placental tissues were obtained during legal, elective procedures of termination of pregnancy performed between 7 and 10 weeks of gestation, and primary trophoblast cells were separated. IGFBP‐1 polymerization was analyzed by SDS–PAGE and immunoblotting. IGFBP‐1 was polymerized when IGFBP‐1 was added to trophoblast cell cultures. Polymerization of IGFBP‐1 was inhibited by the addition of anti‐tissue transglutaminase antibody into the culture media. There was an increase in the intensity of polymerized IGFBP‐1 bands with the addition of medroxyprogesterone acetate (MPA), while no such difference was observed upon treatment with estradiol. MPA also increased the expression of tissue transglutaminase on trophoblast cell membranes. IGF‐I stimulated trophoblast cell migration, while IGFBP‐1 inhibited this IGF‐I‐induced trophoblast response. Addition of MPA attenuated the inhibitory effects of IGFBP‐1 on IGF‐I‐induced trophoblast cell migration. IGFBP‐1 was polymerized by tissue transglutaminase on the cell surface of trophoblasts, and MPA increased tissue transglutaminase expression on the cell surface and facilitated IGFBP‐1 polymerization. These results suggest that progesterone might facilitate polymerization of decidua‐secreted IGFBP‐1 and increase IGF‐I actions at feto‐maternal interface, thereby stimulating trophoblast invasion of maternal uterus. J. Cell. Physiol. 226: 434–439, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
20.
  • Ethylene and nitric oxide (NO) act as endogenous regulators during leaf senescence. Levels of ethylene or its precursor 1‐aminocyclopropane‐1‐carboxylate acid (ACC) depend on the activity of ACC synthases (ACS), and NO production is controlled by NO‐associated 1 (NOA1). However, the integration mechanisms of ACS and NOA1 activity still need to be explored during leaf senescence.
  • Here, using experimental techniques, such as physiological and molecular detection, liquid chromatography‐tandem mass spectrometry and fluorescence measurement, we investigated the relevant mechanisms.
  • Our observations showed that the loss‐of‐function acs1‐1 mutant ameliorated age‐ or dark‐induced leaf senescence syndrome, such as yellowing and loss of chlorophyll, that acs1‐1 reduced ACC accumulation mainly in mature leaves and that acs1‐1‐promoted NOA1 expression and NO accumulation mainly in juvenile leaves, when compared with the wild type (WT). But the leaf senescence promoted by the NO‐deficient noa1 mutant was not involved in ACS1 expression. There was a similar sharp reduction of ACS1 and NOA1 expression with the increase in WT leaf age, and this inflection point appeared in mature leaves and coincided with the onset of leaf senescence.
  • These findings suggest that NOA1‐dependent NO accumulation blocked the ACS1‐induced onset of leaf senescence, and that ACS1 activity corresponds to the onset of leaf senescence in Arabidopsis.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号