首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the isolated jejunum loop technique investigations of prostaglandin E2 and F2 alpha were made on canine intestinal absorption and transport of glucose and on the circulation of the intestinal loop. These compounds decreased glucose absorption; intra-arterial prostaglandin administration decreased the portal transport of glucose, but intraluminal administration caused an increase. PGE2 enhanced the circulation of the intestinal loop; intra-arterial PGF2 alpha diminished this circulation, whereas on intraluminal PGF2 alpha had no significant effect.  相似文献   

2.
The effect of prostaglandin F on ovulation and fertilization was studied in rabbits. The number of ovulation was not affected by subcutaneous injection of PGF but the recovery of ova was significantly decreased when PGF was given either at 12 or 16 h after HCG injection and autopsied 24 h latter. The results suggest that exogenous PGF accelerates ovum transport and expels the eggs prematurely from the female tract and does not impair ovulation or the fertilization processes when given to rabbit at 1 mg/kg B.W.  相似文献   

3.
Potential interactions between PGD2 and PGF in the mesenteric and renal vascular beds were investigated in the anesthetized dog. Regional blood flows were measured with electromagnetic flow probes. PGD2, PGF and Norepinephrine (NE) were injected as a bolus directly into the appropriate artery, and responses to these agents were obtained before, during and after infusion of either PGD2 or PGF into the left ventricle. In each case, the infused prostaglandin caused vascular effects of its own. Left ventricular infusion of PGD2 reduced responses to local injections of PGD2 in the intestine, and a similar effect was observed for PGF, suggesting significant receptor or receptor-like interactions for each of the prostanoids. However, systemic infusion of prostaglandin F (20–100 ng/kg/min) had no effect on renal or mesenteric vascular responses to local injection of prostaglandin D2. Similarly, PGD2 administration (100 ng/kg/min) did not affect responses to PGF in the intestine. The present results therefore suggest that these prostaglandins, i.e., D2 and F, act through separate receptors in the mesenteric and renal vascular beds. In addition, increased prostaglandin F levels produced by infusion of F reduced mesenteric but not renal blood flow, suggesting that redistribution of cardiac output might participate in side effects often observed with clinical use of this prostaglandin, such as nausea and abdominal pain.  相似文献   

4.
Prostaglandins are well known for their ability to stimulate contraction in gastrointestinal smooth muscle, yet very little information is available on how their activity affects propulsion . Thus, studies were undertaken to determine the effect of various prostaglandins on qastric emptying (GE) and small intestinal transit (SIT) in unanesthetized fasted rats. Rats were treated with intravenous, subcutaneous, or oral PGF2α, PGE2, or 16,16 dimethyl PGE2 at various doses, followed 1 (intravenous), 20 (subcutaneous) or 10 (oral) mins later by intragastric 51Cr oxide in black ink. Forty-five mins later, rats were sacrificed by CO2 asphyxiation, the pylorus clamped, and the gut excised. SIT was expressed as the percent of intestinal length traveled by the most distal portion of ink. GE was expressed as the percent of the 51Cr emptied into the intestines. If GE was affected by prostaglandin treatment, the experiments were repeated with rats pre-implanted with duodenal cannula. This preparation allowed the visual transit marker to be deposited directly into the dueodenum, thus avoiding acceleration or delay of SIT caused by fluctuations in GE. The results of these studies show that: (1) intravenous 16,16 dimethyl PGE2 (5–50 μg/kg), but not PGF2α or PGE2, accelerates GE and delays SIT; (2) oral prostaglandin administration increases SIT; (3) oral 16,16 dimethyl PGE2 delays GE; (4) subcutaneous 16,16 dimethyl PGE2 accelerates, has no effect upon, or delays GE depending upon dose, but accelerates SIT at all doses tested; and (5) subcutaneous PGE2 accelerates SIT while PGF2α does not. Thus, the effect of prostaglandins on GE and SIT depends upon the dosage and route of administration as well as type of prostaglandin used.  相似文献   

5.
In humans eicosapentaenoic acid can be converted to 3-series prostaglandins (PGF, PGI3, and PGE3). Whether 3-series prostaglandins can protect the gastric mucosa from injury as effectively as their 2-series analogs is unknown. Therefore, we compared the protective effects of PGF and PGF against gross and microscopic gastric mucosal injury in rats. Animals received a subcutaneous injection of either PGF or PGF in doses raning from 0 (vehicle) to 16.8 μmol/kg and 30 min later they received intragastric administration of 1 ml of absolute ethanol. Whether mucosal injury was assessed 60 min or 5 min after ethanol, PGF was significantly less protective against ethanol-induced damage than PGF. These findings indicate that the presence of a third double bond in the prostaglandin F molecule between carbons 17 and 18 markedly reduces the protective effects of this prostaglandin on the gastric mucosa.  相似文献   

6.
Dose response relationships for pregnancy termination in hamsters following administration of prostaglandin F (PGF by three subcutaneous methods were determined in 526 hamsters. The median effective dose (ED50) for PGF given as a single subcutaneous injection in 500 μl of saline was 22.2 μg. Administration of the prostaglandin with an Alzet® osmotic minipump (subcutaneous insertion for 24 hours) required 1.35 times more PGF (ED50 = 30.0 μg). The least effective method of prenancy termination in the hamster involved administration of PGF by a single subcutaneous injection in 20.4 μl of saline (the same volume delivered by the minipump in 24 hours); the ED50 for this method of administration was 41.3 μg of PGF.  相似文献   

7.
A series of experiments were conducted to evaluate the effects of mode and frequency of administration and estrous cycle stage on the response of the cycling ewe to PGF. The effects of dexamethasone, arachadonic acid and prostaglandin synthetase inhibitors on estrous cycle length and plasma progesterone levels were also determined.Intramuscular administration of 5 or 10 mg of PGF, on days 8 and 9 after estrus (5 ewes/group), significantly (p<.01) shortened the mean length of the estrous cycle and the interval from the end of treatment to estrus. Mean plasma progesterone levels, 24 hours after initial injection, were significantly (p<.01) lowered. When administered on day 8 only, these doses were considerably less effective in shortening estrous cycle length or lowering plasma progesterone levels. Intravaginal administration of PGF, by polyurethane tampon, was also largely ineffective.Treatment of ewes with 10 mg of PGF i.m., on days 3 and 4 of the estrous cycle, resulted in a return to estrus in 2 days in 25% of the treated animals. Plasma progesterone levels of PGF-treated ewes were significantly lower than controls on the second, third and fourth days after the start of dosing. It would appear that PGF exerts a retarding effect on developing CL functionality.The prostaglandin synthetase inhibitors, aspirin, flufenamic acid and 1-p-chlorobenzylidene-2-methyl-5-methoxy-3-indenylacetic acid, were administered orally or parenterally for 16 days beginning on day 8 of the estrous cycle. These compounds failed to prolong estrous cycle length. Parenteral administration of dexamethasone did not result in PGF release in the cycling ewe, at least not in quantities sufficient to induce luteolysis. The prostaglandin precursor, arachadonic acid, also was not luteolytic when given parenterally to cycling ewes.  相似文献   

8.
Probenecid in single or repeated doses does not modify levels of PGF and TXB2 in rat brain cortex. After administration of subconvulsant dose of pentamethylene tetrazone (PMT) PGF increases sharply and rapidly declines subsequently, whereas the elevation of TXB2 is smaller but of longer duration. After probenecid pretreatment PGF levels do not decline up to 30 minutes after the initial peak and are still elevated after 60 minutes. Levels of TXB2 tend to be reduced after pretreatment. Differences in transport process or in biosynthetic compartments for these arachidonic acid (AA) metabolites may account for the observed data.  相似文献   

9.
The present study has been performed to investigate how PGs would participate the hatching process. Effects of indomethacin, an antagonist to PGs biosynthesis, on the hatching of mouse blastocysts were examined in vitro. Furthermore, it was studied that prostaglandin E2 (PGE2), prostaglandin F (PGF) or 6-keto-prostaglandin F (6-keto-PGF) were added to the culture media with indomethacin. (1) The hatching was inhibited by indomethacin yet the inhibition was reversible. (2) In the groups with indomethacin and PGE2, no improvement was seen in the inhibition of hatching and the inhibition was irreversible. (3) In the groups with indomethacin and PGF, inhibition of hatching was improved in comparison with the group with indomethacin. (4) In the groups with indomethacin and 6-keto-PGF, no improvement was seen. The above results indicated that PGF possibly had an accelerating effect on hatching and a high concentration of PGE2 would exert cytotoxic effect on blastocysts.  相似文献   

10.
Whole cell preparations of rat stomach corpus, jejunum, and colon were incubated and the released prostaglandin E2 (PGE2), PGF, PGD2, 15 keto-13,14 dihydro PGE2, and 15 keto-13,14 dihydro PGF were measured by combined gas chromatography-mass spectrometry. All regions made PGD2 and possessed a high capacity for producing 15 keto-13,14 dihydro derivatives of both PGE2 and PGF. Hypertonic sucrose solutions resulted in concentration-dependent increases in prostaglandin release, particularly of PGE2 and its metabolite. It is suggested that PG's may play a role in the local effects of luminal hyperosomolarity on digestive tract functions.  相似文献   

11.
The metabolism of PGE1 and PGF were studied in an in vitro system using placentae from 11-day pregnant rats. PGE1 was metabolized faster than PGF. The same system was employed to study the quantitative metabolism of these prostaglandins at various stages of pregnancy in the rat. Results of these investigations showed that metabolism became maximal between days 9–12 and between days 15–22 of gestation. On days 12–15 of pregnancy, metabolism decreased, and was at its lowest point on day 14. Maximum prostaglandin metabolism during the sensitive period of days 9–12 of gestation may act as a protective device against the detrimental effects of prostaglandin. Possible correlation of prostaglandin regulation with hormonal balance is discussed.  相似文献   

12.
The naturally-occurring metabolite of prostaglandin F, 15-keto prostaglandin F (15-keto PGF), elicited rapid and sustained declines in serum progesterone concentrations when administered to rhesus monkeys beginning on day 22 of normal menstrual cycles. Evidence for luteolysis of a more convincing nature was obtained in studies where a single dose of 15-keto PGF was given on day 20 of ovulatory menstrual cycles in which intramuscular injections of hCG were also given on days 18–20; serum progesterone concentrations fell precipitously in monkeys within 24 hours following intramuscular administration of 15-keto PGF. However, corpus luteum function was impaired in only 4 of 11 early pregnant monkeys when 15-keto PGF was administered on days 30 and 31 from the last menses, a time when the ovary is essential for the maintenance of pregnancy. Gestation failed in 2 additional monkeys 32 and 60 days after treatment with 15-keto PGF, but progressed in an apparently normal manner in the remaining 5 animals. Two pregnant monkeys treated with 15-keto PGF on day 42 from the last menstrual period, a time when the ovary is no longer required for gestation, continued their pregnancies uneventfully. Corpus luteum function was not impaired in 9 control monkeys which received injections of vehicle or hCG at appropriate times during the menstrual cycle or pregnancy.  相似文献   

13.
The cerebral cortical action of prostaglandin F (PGF) has been determined by recording the effects of intracarotid injections of PGF on cerebral evoked potentials. PGF differentially reduced cortical evoked potentials. The cortical action of PGF appeared to be qualitatively identical with that of norepinephrine (NE) but weaker. A protection of the cortex from the inhibitory action of NE by a preceding dose of PGF was demonstrated. The actions of both PGF and NE appear to be on the same or related postsynaptic receptors. The actions described were at doses that did not reduce oxygen availability. PGF may act as a modulator of adrenergic transmission in the cortex. The intracellular recording in the companion paper supplies the further critical evidence that PGF has a synaptic inhibitory action.  相似文献   

14.
Radioimmunoassays for measuring prostaglandin F (PGF) and 5α, 7α-dihydroxy-11-keto tetranorprosta-1,16-dioic acid, PGF-main urinary metabolite (PGF-MUM), with 125I-tyrosine methylester amide (TMA) of PGF and PGF-MUM were developed.Antibody to PGF was produced in rabbits immunized with conjugates of PGF coupled to bovine serum albumine. Antibody to PGF-MUM was also produced in rabbits immunized with conjugates of PGF-MUM coupled to bovine serum albumin.PGF-125I-TMA had an affinity to antiserum to PGF. PGF-MUM-125I-TMA also responded to antiserum to PGF-MUM.  相似文献   

15.
It has been shown in vitro that the lamb ductus arteriosus forms prostaglandins PGE2, PGF2α, 6 keto PGF1α (and its unstable precursor PGI2). In this study the relative potencies of these endogenous prostaglandins were investigated on isolated lamb ductus arteriosus preparations contracted by exposure to elevated PO2 and indomethacin. All the prostaglandins (except PGF2α) relaxed the vessel. This is consistent with the hypothesis that endogenous prostaglandins inhibit the tendency of the vessel to contract in response to oxygen. Only PGE2, however, relaxed the vessel at concentrations below 10−8M. PGI2 and 6 keto PGF had approximately 0.001 and 0.0001 times the activity of PGE2. Although PGE2 has been observed to be a minor product of prostaglandin production in the lamb ductus arteriosus, the tissue's marked sensitivity to PGE2 might make it the most significant prostaglandin in regulating the patency of the vessel.  相似文献   

16.
To evaluate the details of the adrenergic stimulation of urinary prostaglandins in man, ten normal volunteers were given various agonists and antagonists. The effect of 4 hour IV infusions of norepinephrine (NE), NE + phentolamine (PHT), NE + phenoxybenzamine (PHB), NE + prazosin (PZ), isoproterenol (ISO), and PHT alone on urinary PGE2 and PGI2 (6 keto PGF) were determined. PGE2 and 6 keto PGF were measured by radioimmunoassay from 4 hour urine samples. NE stimulated both PGE2 (196±40 to 370±84 ng/4 hrs/g creatinine and 6 keto PGF1α(184±30 to 326±36), both p<0.01. In contrast, ISO had no effect on either PGE2 or 6 keto PGF excretion. Alpha blockade with PHT. PHB, or PZ inhibited the NE induced systemic pressor effect. However, the effect of the alpha blockers on the NE induced stimulation of PGE2 and 6 keto PGF varied. PHT did not alter the NE stimulated PGE2 or 6 keto PGF release (370±84 vs. 381±80) PGE2 and (326±50 vs. 315±40) 6 keto PGF, both p>0.2). PHT alone stimulated only 6 keto PGF. PHB and the specific α1 antagonist PZ similarly eliminated the NE induced prostaglandin release. These results suggest that adrenergically mediated urinary prostaglandin release in man is via an alpha receptor with α1 characteristics.  相似文献   

17.
The effect of prostaglandin F (PGF) on the sperm output of six boars was investigated in two studies. Although PGF did not significantly affect sperm numbers in the ejaculate, a significantly longer (P < 0.05) ejaculation of the sperm rich fraction occurred following injection of PGF. In the second study it was found that PGF produced a 49% increase (P < 0.05) in the number of sperm in the sperm rich fraction of the ejaculate. The implications of these results on artificial breeding are discussed.  相似文献   

18.
Pregnancies in hamsters may be terminated with 10 μg PGF administered b.i.d. on days 4, 5 and 6 of gestation. Small (250 μg and above) daily injections of progesterone on the same days will reverse this PG effect; in contradistinction, 10 mg of progesterone per day failed to maintain normal pregnancies in hamsters spayed on day 5. Daily administration of 3 mg of progesterone and 1 μg of estrone essentially normalized the gestation; administration of PGF at 10 mg on days 5, 6 and 7 of pregnancy in steroid-maintained rats, resulted in pregnancy termination in all animals, while 1 mg was partly effective. These data demonstrate an extra-ovarian site of action of prostaglandin F on pregnancy in hamsters.  相似文献   

19.
The effects of prostaglandin (PG)F and PGF, 1–15 lactone were compared in luteal phase, non-pregnant and in early pregnant rhesus monkeys. Animals treated with either PG after pretreatment with human chorionic gonadotropin (hCG) had peripheral plasma progesterone concentrations that were not statistically different from those in animals treated with hCG and vehicle. However, menstrual cycle lengths in monkeys treated with PGF, 1–15 lactone were significantly (P <0.02) shorter than those in vehicle treated animals. In the absence of hCG pretreatment, plasma progesterone concentrations were significantly (P <0.008) lower by the second day after the initial treatment with either PGF or PGF, 1–15 lactone than in vehicle treated monkeys. Menstrual cycle lengths in monkeys treated with either PG were significantly (P <0.04) shorter than those in animals treated with vehicle. There were no changes in plasma progesterone concentrations in early pregnant monkeys treated with PGF, and pregnancy was not interrupted. In contrast, plasma progesterone declined and pregnancy was terminated in 5 of 6 early pregnant monkeys treated with PGF, 1–15 lactone. These data indicate that PGF, 1–15 lactone decreases menstrual cycle lengths in non-pregnant rhesus monkeys. More importantly, PGF, 1–15 lactone terminates early pregnancy in the monkey at a dose which is less than an ineffective dose of PGF.  相似文献   

20.
The effect of prostaglandin PGF on the hCG stimulated and basal progesterone production by human corpora lutea was examined . hCG (40 i.u./ml) stimulated progesterone formation in corpora lutea of early (days 16–19 of a normal 28 day cycle), mid (days 20–22) and late (days 23–27) luteal phases. This stimulation was inhibited by PGF (10 μg/ml) in corpora lutea of mid and late luteal phases. PGF alone did not show a consistent effect on basal progesterone production. The inhibition of hCG stimulated progesterone production by PGF at times corresponding to luteolysis indicates a role for that prostaglandin in the process of luteolysis in the human corpus luteum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号